Parametric signal amplification for a high-frequency gravitational-wave detector

Department of physics, Tokyo Institute of Technology, Japan

Ken-ichi Harada, Sotatsu Otabe, Kentaro Somiya

Outline

Introduction

Optical spring Parametric signal amplification

Experimental setup at Tokyo Tech.

Result

Summary

Gravitational Wave

GW sources in a few kHz band

binary neutron star merger, supernova, etc.

Artist's illustration of the final stages of a neutron-star merger.

The high-frequency signal cannot be detected by currently GW detectors because of sensitivity degradation due to shot noise.

D. Radice, *et al.*, Astrophys. J. Lett. 842, L10 (2017).

By improving the sensitivity in the kHz band, we significantly boost our understanding of the Universe.

Squeezer and amplifier

For improving the detection sensitivity in a high-frequency band.

Input squeezing

- decreases noise (wideband)
- weak against losses

Parametric amplifier

increases signal (particular frequency)

Squeezer and amplifier

For improving the detection sensitivity in a high-frequency band.

Parametric signal amplification

$$\Omega \propto \sqrt{\frac{\sin 2\phi}{\left(r + \frac{1}{r}\right) - 2\cos 2\phi}}$$

Optical spring with OPA

$$\Omega \propto \sqrt{\frac{\sin 2\phi}{\left(r + \frac{1}{r}\right) - \left(s + \frac{1}{s}\right)\cos 2\phi}}$$

r: reflectivity of SRM

 ϕ : detuned phase of SRM

Optical spring frequency can be enhanced by tuning the optical parametric gain s.

Sensitivity estimation

Sensitivity of signal recycling Michelson interferometer (SRMI) with OPA

When the optical parametric gain s is large, the optical spring frequency become high.

How to do experiment

Improvement of the detection sensitivity in HFB.

Confirmation of the signal amplification by measuring the resonance frequency of optical spring (OS).

Experimental steps

- Construction of MI and SRC
- Construction of the stabilization system for MI and SRC
- Generation of the pump laser (532 nm)
 by the 2nd harmonic generation (SHG)
- Confirmation of the OPA effect
- Confirmation of the resonance frequency of OS

Experimental setup

Piezo1: Stabilize the MI system

PD: Photodetector BS: Beam Splitter

Piezo: Piezoelectric Actuator

Laser output power

Suspended mirror

Diameter: 6 mm

Weight: 0.2 g

Resonant frequency: 16 Hz Mount made of polyester

Experimental setup

SRM: Signal recycling mirror

Piezo1: Stabilize the MI system

Piezo2: Stabilize the SRC

by using the sub-carrier light

Subcarrier: Modulated by AOM and EOM

PD: Photodetector BS: Beam Splitter

Piezo: Piezoelectric Actuator

Laser output power

Suspended mirror

Diameter: 6 mm Weight: 0.2 g

Resonant frequency: 16 Hz Mount made of polyester

Experimental setup

Piezo1: Stabilize the MI system

Piezo2: Stabilize the SRC by using the sub-carrier light

Bow-tie cavity: Generate 532 nm light by SHG

Stabilized by the PDH method

PD: Photodetector BS: Beam Splitter

Piezo: Piezoelectric Actuator

SRM: Signal recycling mirror

PPKTP: Periodically Poled KTiOPO₄

PDH: Pound-Drever-Hall

Results

Pump power (532 nm): 90 mW Measurement of OPA

Confirm the signal amplification of the 1064 nm light.

Measurement of the OS frequency

The Peak and shift of the OS frequency do not observed.

We need the improvement for the setup.

Improvement of the setup

Fiber amplifier: Installed in the setup

Fiber amplifier

Maximum output power: 10 W

Output power after the fiber amp.

Output power of the pump

532 nm power: achieved over 300 mW

Summary

Parametric amplification of GW signal can be a way to improve the sensitivity at high frequencies.

Confirmation of the signal amplification by measuring the resonance frequency of optical spring (OS).

Introduce the fiber amplifier to increase the power.

1064 nm Confirm the output power of over 10 W.

532 nm Confirm the output power of over 300 mW.

Future plan

Confirmation of the resonance frequency of OS by using the improved powers.