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Overview

e thermal noise in GW detectors (revision)
e Important material properties

e mechanical loss measurements

— bulk
— coatings

e (optics...)

e summary
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Thermal noise in GW detectors
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Thermal noise in GW detectors

e GW detectors are amongst the most sensitive tools today.

e operation at the technical and scientifical limitations (noise,
cross coupling, etc.)

e Improving the instruments means fighting with physics
— novel techniques (setups, cryogenics, etc.)
— novel materials (change of material for optical components)
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Thermal noise in GW detectors

e The first generation of interferometric GW detectors (LIGO,
Virgo, GEO600, TAMA300) reached their design sensitivities in
a wide range of frequencies.
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Thermal noise in GW detectors

e current detectors are based on:
— fused silica optics (best optical material currently available)
— fused silica or metal suspensions

e friction between the suspension and the optics can be avoided
by using the low mechanical loss jointing technique of
hydroxide catalysis bonding
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Thermal noise in GW detectors

e Currently, the second generation of GW detectors is being built
based on the experiences of the first generation of GW
detectors and novel techniques that have been tested.

e further improvements:
— aLlGO, aVirgo, GEO-HF fused silica, room temperatur,

monolithic suspensions
(demonstrated in GEO600 for
years)

— LCGT + CLIO sapphire, cryogenics

N

pioneering work in the field of cryogenic large scale interferometry
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Thermal noise in GW detectors

e As the second generation is designed and currently about to
being built researchers started a conceptual design study for a
3rd generation detector — the Einstein Telescope design study.

e aims:
— What technologies are needed to increase sensitivity by a factor of
10 compared to 2nd generation?
— How might such a design look like?
— Which materials should be used? Which design?
— (How much does it cost?)

e homepage: www.et-gw.eu
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Thermal noise in GW detectors

Nawrodt, Martin 08/2011 #9/71



Thermal Noise in GW detectors

improvement of the sensitivity between different generations of GW detectors:

strain sensitivity (1/VHz)
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Thermal noise in GW detectors

e Parts of the Einstein Telescope have to be operated at
cryogenic temperatures to reduce thermal noise.

e natural links between ET and LCGT:
— Ccryogenics
— pulse tube vs. LHe cooling
— contamination of the mirrors due to cryotrapping
— general: pioneering technology in cryogenics

— people exchange between Japanese and Einstein Telescope
researchers now extended through personal exchange program
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Thermal noise in GW detectors

e a reminder of thermal noise:

— two different types

(1) fluctuating thermal energy — Brownian thermal noise
(2) fluctuating temperature — thermo-elastic, thermo-
refractive, thermo-optic

temperature dependent parameter (e.g. CTE, dn/dT)
links temperature fluctuation and phase fluctuation of the
detector
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Thermal noise in GW detectors

e a reminder of bulk thermal noise

o=0 possible for some materials,
v' Thermo-elastic noise: e.g. silicon (@ 18 and 125 K)

4k, T?o’(1+0)

n5/2pzczf2.

v' Brownian thermal noise:

SITM (f T)

temperature

2k, T 1 c’
SgM(f9T) - 3/2 f .Y ><(I)substrate(f T)

e main message: material properties influence strongly the
thermal noise — (nearly) all of them are temperature dependent
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Thermal noise in GW detectors

e a reminder of bulk thermal noise

v" Thermo-elastic noise:
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« similar with thermo-optical noise and finite corrections
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Material properties
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Overview of material properties

e mechanical properties

basic property: strength of the material (especially for
suspension elements)
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Overview of material properties

e mechanical properties

Young‘s modulus, Poisson ratio
mass density of the material

available size
(growing methods)

[Wacker]

optimum crystal orientation

mechanical loss to determine Brownian thermal noise
(= main focus of this lecture)
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Overview of material properties

e thermal properties

— strongly temperature dependent
— crystalline materials follow ,,basic* thermodynamics / statistics
(Debye theory)

— heat capacity (— T3 at low temperatures for crystals)

— thermal conductivity (removal of heat!)
— coefficient of thermal expansion
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Overview of material properties

e thermal properties

— thermal conductivity
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Overview of material properties

e thermal properties

— coeffcient of thermal expansion

larger CTE for cryst. materials compare to amorphous (reason:
summation of tiny effects in the crystal)

usually CTE decreases with decreasing temperature

some materials show temperatures with CTE = 0
(e.g. silicon @ 18 and 125 K)
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Overview of material properties

e optical properties

— refractive index n
forming HR mirror coatings

— thermo-refractive coefficient dn/dT
determines the thermo-refractive noise

— optical absorption o

sets a fundamental limit to the minimum operational temperature
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Mechanical loss

- Introduction -
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Basics of mechanical loss

e elastic behaviour of a solid

G ... Stress
e ...strain
E ... Young's modulus
(German: modulus of elasticity)

instantaneous reaction, full recovery
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Basics of mechanical loss

e anelastic behaviour of a solid
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Basics of mechanical loss

e periodic process — anelasticity and mechanical loss
hysteresis

(= energy loss) |

AE
E
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Basics of mechanical loss

isothermal adiabatic
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Basics of mechanical loss

e definition of the mechanical loss = phase lag between stress
and strain

e measurement via the mechanical Q-factor at a resonance

e Kkeep in mind:

The mechanical loss is a continuous function of frequency
but we just probe it at certain frequencies (resonant
frequencies) of a system — no full knowledge available.
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Loss mechanisms

e There are many different origins of loss in solids.
e Focus on 3 dominant ones:

— phonon-phonon interaction
— thermo-elastic loss
— Impurity driven losses

e Phonon-phonon-damping (Akhiezer-/Landau-Rumer-Damping)

Phonons are forming a certain distribution when in
equilibrium. At low frequency excitations the acoustic
vibration (= phonon) modulates the lattice —» new local

equilibrium — redistribution consumes energy — loss.
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Loss mechanisms

e Phonon-phonon-damping (Akhiezer-/Landau-Rumer-Damping)

Phonons are forming a certain distribution when in
equilibrium. At low frequency excitations the acoustic
vibration (= phonon) modulates the lattice —» new local

equilibrium — redistribution consumes energy — loss.

(Akhiezer loss)

If the phonon energy is high (high frequency vibration) the
acoustic phonon directly interacts with the phonons of the

given distribution — direct phonon scattering —
redistribution consumes energy — loss.

(Landau-Rumer-Loss)
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Basics of mechanical loss

e thermo-elastic damping

If a sample is deformed certain parts will be compressed or

expanded — local heating or cooling (depending on CTE).
Sample is now in thermal non-equilibrium — heat flux —
entropy is increased — loss.

e impurity driven damping

Impurities can occupy different positions in a lattice
depending on the applied stress. If an external vibration
IS applied it might be energetic better to change positions
— loss.
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Basics of mechanical loss

e The transition between 2 (gquasi-)stable positions can be
modelled with a double-well potential:

OT
1+ (cor)2

,Debye peak”

o(w) = A

A ... relaxation strength
T ... relaxation time

energy

thermally activated process:

EA
kT

position IT=T €

0

E, ... activation energy
T4 ... Felaxation constant
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Basics of mechanical loss

e ring-down measurements e bandwidth measurements

f, Q= to
O Q Af
< <
2 2
2 2 Af
= =
time frequency
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Basics of mechanical loss

- excitation of modes —
— mechanical (e.g. piezo) @) @ - —

— electro-static @ s I
-

e vibration read-out
— electrical read-out (capacitor)
— optical read-out (e.g. optical lever,
interferometric techniques)
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Mechanical loss

- Bulk Materials -
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Selected examples - Quartz

e crystalline quartz is well known — toy material to investigate
setups and data processing tools

silicon hydrothermal growth of crystal

l

grown from solution under pressure
oxygen (~ 500 bar) at elevated temperatures
containing:

e water
e silicon dioxide

cryst. quartz shows channels « sodium carbonate / hydroxide

along its c-axis
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Selected examples - Quartz

impurities trapped in multiple well potential

loss peaks associated with sodium
along the c-axis

Damping Q™

0.143ev

N
0.055ev

0O 20 40 60 80
Temperature [K]

100 120 140 160 180 200

loss process is orientation dependent

— detailed study needs different cryst.
cuts from the same material

activation energy from experiment:
~ 355 meV

Nawrodt, Martin 08/2011 #36/71



Selected examples — Fused Silica
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temperature (K)

300

fused silica:

* very low loss at room
temperature reaching
4x1010

» large loss peak
around 30K

l

not suited for cryogenic
use in GW detectors

Amorphous silica has a near but no far order. Thus, loss processes get a
distribution of loss parameters. The peak is the superposition of all of them.
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Selected examples — Sapphire/Silicon

e crystalline materials needed for cryogenic operation
e different candidate materials have been discussed in the past

e possible candidate materials are sapphire (LCGT) and Si (ET)

® reasons:

— both are optical materials (remember, FS is currently the best
optical material)

— both are available in rather large pieces
— high thermal conductivity
— coating techniques available

e while sapphire can be operated at 1064nm silicon demands a
change of the laser wavelength due to its optical absorption
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Selected examples — Sapphire/Silicon

e mechanical loss of silicon and sapphire is comparable at
cryogenic temperatures (Q‘s up to several 10° achieved)
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temperature (K)
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Selected examples — Sapphire/Silicon

e detailed investigation of intrinsic loss mechanisms in promising
candidate bulk materials ongoing

e (guestions:
— general loss processes?
— Impurities? tolerable level of impurities?
— heat treatment to remove dislocations?
— surface loss?

e collaboration of several groups (Jena, Glasgow, Legnaro,
starting collaboration with Japan) to investigate intrinsic
damping of materials (coatings, bulk, surfaces, etc.)
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Optical coatings

e Requirements — high reflectivity, low optical absorption (< 1ppm)
e Multilayer coatings of dielectric materials, A/4 thick

» Reflectivity from difference in

refractive index, and number
of layers, 2N.

\// / / / / /
: 2
R nsf — g v\/\///////
2N — - | VA
nsj + n 0

Substrate 1
. \. C—" Quarter wave optical thickness of high index material
j — ( n H ]2 L ) I:l Quarter wave optical thickness of low index material

e Current detectors use silica (n=1.45) / tantala (n=2.03) coatings,
~ 15 bi-layers
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Coating thermal noise

e |Levin — interferometer most sensitive to mechanical loss close
to the reflected laser beam

— Thus mechanical loss of coatings is particularly important
e Coating loss dominated by the loss of the tantala layers

d)tantala ~ 4x104
—  bsilica— %107

e Measurements suggested no observable loss from coating layer
Interfaces (however recent results from LMA, Lyon, suggest
some interface loss may be observable)

e Doping Ta,Os with TiO, can reduce the loss by —40%.
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Coating thermal noise

Advanced LIGO Sensitivity
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e Coating thermal noise expected to limit achievable sensitivity of
future GW detectors at their most sensitive frequencies
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Coating loss measurements

» First cryogenic measurement of silica/tantala coating by Yamamoto
et al, showed possible slight increase in loss at low temperature

e Cryogenic loss studies of mono-layers of individual coating materials
carried out in collaboration between Glasgow, Jena, LMA

— Study individual materials in isolation
— ldentify microscopic dissipation mechanisms
— Test coating performance at cryogenic temperatures

Single layer coatings of silica (left) and tantala (right),
clamped for loss measurements
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Measuring coating loss - 1

e Single layers of a coating material
applied to silicon cantilever substrates

e Loss measured from exponential ring-

down of bending modes

=

coated cantilever in clamp
within cryostat

bending modes excited via
eletrostatic drive
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Measuring coating loss

e Loss of coating layer
calculated from
difference in loss of a
coated and un-coated
cantilever

e Scaling factor
accounts for fraction
of total elastic energy
stored in the coating
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Loss peak analysis - tantala

e Debye-like mechanical loss peaks

®T
1+ ((x)r)2

o(w) = A

A ... relaxation strength
T ... relaxation time

e thermally activated process

EA
kT
T=T ¢C "

0

E,. ... activation energy
T4 ... Frelaxation constant
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Mechanical loss of coating
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Loss mechanism parameters — Arrhenius plot

12 . ; ' | ,
m  TiO,-doped Ta,Os5
A  Undoped Ta,04
------ Linear fit for doped data
10 oA Linear fit for undoped data | 7
S
\P—vg—\A‘%.\
> 84 T, 7]
% bl A
6 - Ny y r_‘_i .
4 1 | |
0.045 0.050 0.055 0.060 0.065
o}
1/Tpcak (K )

Activation energy

» Doping with TiO, increases the activation energy.

(40 £ 3) meV for TiO, doped
Ta,0x
(29 + 2) meV for undoped Ta,Ox

 Transition between two stable states appears to be hindered
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Possible microscopic processes

e no long-distance order in coating materials (amorphous)

e possible transitions of atoms / atom groups

O O
/ /
Ta 1 \Ta Ta 1 \Ta
Ti

e doping might block possible positions — increase of activation
energy
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Distribution of model parameters

e Debye loss peak plotted using calculated activation energy and
relaxation constant

1.0
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e Much narrower than experimental peak

= Amorphous structure results in a distribution of activation
energies.
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Distribution of parameters

e refined model:
asymmetric double-well
potential

Potential energy

e barrier height distribution g(V)

e asymmetry distribution f(A)

A
9= BTCII jjl+(wr) sech [ZKBT ] F(A)g(V)dady

[Gilroy, Phillips 1981]

e vy represents the coupling between strain and the dissipation
mechanism

= C,; is the elastic constant of the material
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Distribution of barrier heights

e asymmetric double well potential:

2
myf
L0k, Tg(V)
[Gilroy, Phillips 1981] )00-:

$=

A Undoped tantala
* Doped tantala

g(V) ... barrier height distribution =
>
(@)

e Dbarrier height distribution 100 -
contains information about ‘
the microscopic structure h

- . 10

e doping changes height and 0

distribution of barrier heights
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Effect of heat treatment temperature on Ta,O¢ loss
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Loss at 1.9 kHz of 0.5 um thick un-doped Ta,O5 coatings heat treated at
300, 400, 600 and 800 C. (Coatings from CSIRO)

e Three loss peaks, triggered at different post-deposition heat-
treatment temperatures
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Effect of heat treatment temperature on Ta,O¢ loss

Mechanical loss

4.OX1O—3 T I Ll I Ll I L I T I
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. ——s800C
A
A
-3 A
2.0x107 A‘A -
| 2 |
A: 600 C ~ Above: Electron diffraction pattern of Ta,Og
heat treated at 600 C
3| A 4
1.0x10 / 400C 300C Left: Loss at 1.9 kHz of 0.5 pym Ta,O¢
- 'j A coatings annealed at 300, 400, 600 and
1 )K)K*)Ex '....‘ ™ P o 800 C.
- ? ¥ *x¥xxd %:% X o % *%1
00 T T T T T T T T T [ !
0 50 100 150 200 250 300
Temperature (K)
e 35K peak

— Observed in Ta,O¢ heat treated at 300, 400 C, and likely in Ta,O; heat
treated at 600 C
— Activation energy 54 meV

— Analogous to dissipation peak in fused silica, involving thermally
activated transitions of oxygen atoms?
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Effect of heat treatment temperature on Ta,O¢ loss
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e 18 K peak

— Observed in Ta,O; heat treated at 600 C and 800 C

— Related to structural changes brought on by heat treatment close to
crystallisation temperature?
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Effect of heat treatment temperature on Ta,O¢ loss
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e 90 K peak

— Observed in coating heat treated at 800 C

— Large, broad loss peak likely to be related to (expected) onset of
polycrystalline structure due to high temperature heat treatment. Loss
mechanism could be e.g. phonon scattering at grain boundaries
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Loss of silica coatings
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Scatter at higher
temperatures,
possibly due to
loss into clamp.

Repeated room
temperature
measurement of
silica coating
loss.

e Loss of SiO, will have a significant contribution to coating thermal

noise below 100 K
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Coating thermal noise at 100 Hz

107
| ' I ' I ! | ' | ' | ' |
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e If coating loss was constant with temperature, could gain factor of — 4 in
TN at 18 K

e Measured coating losses imply we can only gain a factor of — 1.7 in coating
TN by cooling to 18 K
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Probing links between atomic structure and loss

e Short range structure of amorphous materials probed by Reduced Density
Function analysis of TEM electron diffraction data

— RDF is a Fourier transform of the information gained from the intensity profile of
a diffraction pattern

— RDF gives statistical representation of where atoms are located with respect to a
central atom

p I —

)
g 50
AV EEEE
05 -
1 -
CCD Pixels from centre of DP r(A)
Diffraction pattern of tantala Resulting intensity profile (arbitrary units) Reduced density function

‘—0 G(r) =4 fo : p(g)sin(gr)dg —’
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The Reduced Density Function (RDF)

Ta O distan

1.0 F N

Ta Ta
distance

1 2
r (A)
RDFs of heat-treated tantala
coatings?

e Interpreting RDFs
— Peak position - nearest neighbour distances
— Peak height — nearest neighbour abundances
— Peak width — indicates level of order in structure
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Structural modelling

e RDF can be used as basis for Reverse Monte Carlo models of the
microstructure, allowing e.g. bond angle distributions to be
extracted

— Molecular dynamics simulations used to ensure models are energetically
stable

— 1 7 r T T 7 T T T T
0.20 = - 300 uC &
0.16 - I 600 °C

0.12 |-

Distribution
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0.00 “————+—+—+=f
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Ta—blue O -red
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Current / future coatings research

 Alternative high-index coating materials e.g. amorphous Si,
hafnia

« Alternative low-index materials e.g. Al,Og4
e EXxploring links between short-range atomic structure and loss

e Reduced coating / coating-free optics — diffractive optics and
resonant waveguide mirrors
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Optical Properties
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Important Properties

e refractive index n — influences coating selection

e thermo-refractive coefficient dn/dT — governs the thermo-
refractive noise

e optical absorption o — limits the operation at low temperatures
and at high laser powers

 all these parameters are needed at low temperatures!
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Research on the refractive index of Si at low temperatures

e classical prism experiment needed to determine refractive
iIndex

e method of minimum deviation with high resolution cryogenic
actuators

2 ,%A)E

method of minimum deviation

in Littrow-order experimental setup for cryogenic

measurements of the refractive index
A — laser, B — beam splitter, C — Faraday
isolator, D — cryostat, E- prism, F- detector
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Research on the thermo-refractive coefficient of Si

incoming light outcoming light
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Research on the optical absorption of silicon at low T.

« simplified electronic band structure

w
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[

direct transition

photons do not
carry momentum

X I

— indirect transition

——— phonon contribution

Ak = kphonon E + E =E

photon phonon

— photons with E < E,,=1.1eV can be
absorbed by assistance of phonons
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Research on the optical absorption of silicon at low T.
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[Keeves et al., J. Appl. Phys.]

A A phonon

photon

» density of phonons is strongly temperature dependent
« much smaller absorption can be expected at low temperatures
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— measurements ongoing
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Summary
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What have we learned?

e material properties strongly determine the thermal noise
performance of a detector

e simple temperature scaling is dangerous and leads to wrong
results

e Impurities determine mechanical losses — strong influence on
thermal noise

e material science (understanding temperature behaviour of
parameters) is needed to optimise future detectors

e a wide and open field...
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