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Abstract

The era of gravitational-wave physics began with the first detection of a gravitational-

wave signal from a binary black hole merger in 2015. Ground-based interferometric de-

tectors now regularly observe gravitational waves from compact binary coalescences, with

over 100 detections to date. These observations have had a significant impact on vari-

ous areas of physics, such as astrophysics, cosmology, and nuclear physics. As detector

sensitivity improves and new detectors are constructed, the frequency of detections is ex-

pected to increase further. This highlights the growing need for computationally efficient

algorithms to detect these signals and localize their sources. Reducing computational

costs is also important to enable follow-up observations by electromagnetic telescopes.

To address this demand, machine learning has emerged as a potential solution and has

been actively studied over the past decade. Although machine learning-based methods

have shown promising performance in various tasks, understanding their predictions can

be challenging due to the intricate nature of the models, which are characterized by an

extremely large number of parameters. In the first two studies presented in this thesis, we

address this challenge by applying explainable artificial intelligence techniques to improve

the reliability of gravitational-wave detection models. Our visualization of the rationale

behind the models’ predictions provides interpretability and offers insights to enhance

their efficiency.

Core-collapse supernovae represent another anticipated source of gravitational waves

by current and future ground-based detectors. Detecting these events is crucial for gaining

insights into the explosion mechanism and the internal structure of neutron stars. To infer

physical information from detected gravitational-wave signals, accurate extraction of the

frequencies is essential. The Hilbert-Huang transform is a viable option for this purpose,

as it is not affected by the trade-off relationship between temporal duration and bandwidth

and does not assume any specific waveform morphologies. In the final research covered in

this thesis, we employ this technique to analyze gravitational waves originating from core-

collapse supernovae. We present a study toward extracting the frequencies of gravitational-

wave modes arising from proto-neutron star oscillations to estimate physical properties of

these stars. Our approach demonstrates comparable accuracy to the conventional short-

time Fourier transform-based method, indicating its potential as a new means of inferring

physical parameters of proto-neutron stars from gravitational-wave signals.
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Chapter 1

Introduction

Throughout history, humans have learned a great deal by observing the Universe. From

observing stars with the naked eye to the groundbreaking development of telescopes in the

late 16th century, our understanding of the Universe has improved significantly. Techno-

logical advancements have led to the development of various instruments, including radio

telescopes, X-ray telescopes, and gamma-ray telescopes, which have revealed important

discoveries such as the cosmic microwave background. The recently launched James Webb

Space Telescope [4] enables us to explore the distant history of the Universe at near-infrared

wavelengths. X-ray and gamma-ray observations have revealed high-energy events such

as supernovae and pulsars. Although electromagnetic observations have their strengths,

there are limitations, particularly in the study of the early Universe, due to potential

challenges of photon propagation in high-energy conditions. A major milestone occurred

on September 14, 2015, when the Advanced Laser Interferometer Gravitational-wave Ob-

servatory (Advanced LIGO) [5] detected the first gravitational wave (GW), introducing a

new approach to observing the Universe [6].

GWs are ripples in spacetime caused by accelerating objects with asymmetrical mass

distribution, initially theorized to exist by Einstein as a consequence of the general theory

of relativity [7, 8]. Due to their minuscule nature, only GWs generated by astrophysical

phenomena are detectable on Earth, posing a significant challenge to their detection. In

the 1960s, Weber carried out pioneering experiments using resonant bar detectors made of

aluminum [9]. He claimed to have detected a GW by observing a coincident signal in two

detectors [10], but subsequent follow-up experiments and analyses considered the event to

be a false positive [11]. Subsequently, in the 1970s, Hulse and Taylor found a binary pulsar

system known as PSR 1913+16 [12], and by observing its orbit, they provided indirect

evidence for the emission of GWs from this system [13]. Their research not only confirmed

the existence of GWs, but also provided substantial support for the theory of general

relativity. In the 1980s, the concept of using laser interferometry to detect GWs over a

broad frequency range began to gain momentum. By the 2000s, first-generation detectors

including TAMA300 in Tokyo, Japan [14], GEO600 near Hanover, Germany [15], Virgo

near Pisa, Italy [16], and two LIGO detectors in Hanford, Washington and Livingston,

Louisiana in the United States [17], were constructed. However, these detectors did not

succeed in detecting GW events.

Significant advancements occurred in the 2010s with the introduction of upgraded

second-generation detectors. Specifically, the two LIGO detectors were upgraded to Ad-

vanced LIGO, while Virgo underwent an upgrade to Advanced Virgo [18]. In addition, a
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FIG. 1.1. The GW event GW150914 observed by the LIGO Hanford (H1) and Livingston
(L1) detectors. Each strain time series is filtered with a 35-350 Hz band-pass filter. The
strain at the H1 detector is shifted in time by 6.9 ms and inverted. Data taken from
Ref. [36].

new detector named KAGRA was constructed in Gifu, Japan [19]. The first direct GW

detection was achieved by the two detectors of Advanced LIGO, shown in Fig. 1.1. The

detected GW, named GW150914, was generated from a binary black hole (BBH) merger

with component masses of 36M⊙ and 29M⊙ [6]. In 2017, the two LIGO detectors and

Advanced Virgo detected a GW signal from a binary neutron star (BNS) merger with a

total mass of 2.7M⊙, which is referred to as GW170817 [20]. The source was localized

within a sky region of 28 deg2 based on data from the three detectors. This precise local-

ization enabled a multi-messenger observation of the event [21]. Shortly after the event,

approximately 1.7 s following the merger, the FERMI and INTEGRAL telescopes detected

a gamma-ray burst, known as GRB170817A [22, 23]. The optical and infrared counter-

part associated with this event was identified in the direction of the Hydra constellation,

specifically in the galaxy NGC4993. These GW and electromagnetic observations of the

BNS merger provided constraints on the tidal deformability and the nuclear equation of

state of neutron stars [24, 25], ruled out some gravity theories [26, 27], and provided new

insights into various aspects, such as the Hubble constant [28] and kilonovae [29]. In the

third observing run (O3), two neutron star-black hole (NSBH) mergers were detected,

completing the expected set of detectable compact binary systems [30]. In the course of

three observing runs, Advanced LIGO and Advanced Virgo reported 90 confident GW

detections from compact binary coalescences (CBCs) in total [31–34]. In the fourth ob-

serving run (O4), which commenced in May 2023, more than 80 CBC events have already

been detected [35].

As detector sensitivity improves and new detectors are constructed, the frequency of

GW detection is expected to increase. Consequently, there is a growing need for com-

putationally efficient algorithms to detect and analyze these signals. The current search

method for CBC signals is called matched filtering [37], an optimal method for detecting a

known signal in stationary Gaussian noise. It works by taking the correlation of theoreti-

cal waveforms, drawn from a set of candidate signals, with the detector strain. However,

it introduces a significant computational cost as the number of waveform parameters in-

creases. Reducing computational costs for the detection and source localization are crucial
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for enabling follow-up observations by electromagnetic telescopes.

Another expected GW source is the core-collapse supernova (CCSN). This phenomenon

is an explosion of massive stars at the end of their lifetimes, leading to the formation of

neutron stars or black holes. While supernova explosions have been frequently observed

through electromagnetic waves, we cannot observe electromagnetic waves produced near

the central engine due to the large scattering cross section. Since GWs and neutrinos can

propagate to us without losing physical information from the central engine, detecting

them is essential for understanding the explosion mechanism and revealing the internal

structure of neutron stars. Neutrinos from a supernova were observed in 1987 from a su-

pernova event SN1987A in the Large Magellanic Cloud at 51 kpc away from Earth [38, 39].

Observations of this event by neutrinos and electromagnetic waves confirmed the theory of

stellar evolution process, and revealed that about 99% of the gravitational binding energy

(∼ 1053 erg) is released as neutrinos. However, the details of the explosion mechanism

are not yet fully understood, and GW signals from CCSNe have yet to be detected. In

recent years, multi-dimensional numerical simulations of supernova explosions have been

intensively studied. Their GW signals have stochastic nature due to the hydrodynamical

instabilities [40], making it difficult to accurately model their waveforms. Consequently,

the matched-filtering technique is not practical in the search for GWs from CCSNe, and

alternative detection methods are required.

Machine learning has emerged as a new approach in GW data analysis, and has been

actively studied over the past several years [41, 42]. In particular, deep learning, including

convolutional neural networks (CNNs) has gained momentum, following the success in

fields such as image recognition and natural language processing [43]. A key characteristic

of deep learning models is their ability to make predictions in a very short time, which may

be valuable for low-latency searches. The ability to learn robust features from data sets

could be beneficial in searching for GW signals from unmodeled sources. The applications

in GW physics range from CBC search [44–46], CCSN search [46, 47], parameter estima-

tion [48–50], classification of transient noises [51–53], and control of interferometers [54], to

name a few. While deep learning has demonstrated robust performance on various tasks,

the complex nature of its models, characterized by an extremely large number of param-

eters, poses a challenge in understanding their decision-making processes. In response to

this challenge, the field of explainable artificial intelligence [55] has gained prominence,

aiming to make models’ decisions transparent and interpretable. Specifically, in the con-

text of CNNs, efforts have been made to develop techniques that attempt to understand

the decision-making process by mapping the output of the network back into the input

space to identify the specific input components that were discriminative in producing the

output. In our research, we utilize this techniques to GW detection and classification

models.

Another data analysis technique used in our study is the Hilbert-Huang transform [56].

While time-frequency maps are typically generated using methods such as short-time

Fourier transform or wavelet transforms, their limitations arise from the uncertainty rela-

tionship between duration and bandwidth. In this context, the Hilbert-Huang transform

holds a distinct advantage as it is not affected by this relationship, given its ability to

compute instantaneous frequency for each data point. This feature makes it a valuable
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tool for delving into the underlying physics of GW signals. Previous research [57] utilized

this technique for determining frequencies of GW modes from hydrodynamic instabilities

in CCSNe. In this study, we perform a basic study towards extracting GW modes arising

from oscillations of proto-neutron stars to estimate their parameters.

Part I of the thesis will focus on the theory of GW astronomy and GW data analysis

method used in the research projects. In Chapter 2, we provide the principles of GW

physics. Chapter 3 describes the theory of deep learning and their applications in GW

data analysis. The fundamentals of the Hilbert-Huang transform and its applications in

GW astronomy will be discussed in Chapter 4.

Our research results are presented in Part II. In Chapter 5, we describe our study

published in Ref. [2]. In the study, we apply explainable artificial intelligence techniques to

a CNN classifier of GW signals from CCSNe. Chapter 6 is a reproduction of the paper [3].

This study compares different CNN detection models of GWs from CBC sources through

feature attribution analysis. In Chapter 7, we present our results on the applications of the

Hilbert-Huang transform of GW signals to parameter estimation of proto-neutron stars.
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Part I

Theoretical Foundation
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Chapter 2

Gravitational Wave

This chapter covers the principles of GW theory, mainly following the textbook by

Maggiore [58]. We derive the basic characteristics of GWs and describe their detectors

and the methods used to analyze their data, as an introduction to the research presented

in the subsequent chapters.

2.1 Derivation from general relativity

2.1.1 Propagation

The gravitational action is given by S = SEH + SM, where SM denotes the matter

action, and SEH represents the Einstein-Hilbert action, defined by

SEH =
c3

16πG

∫
d4x

√
−gR. (2.1)

Let us consider the vacuum spacetime, where SM = 0. We express the metric tensor as

the sum of the Minkowski metric ηµν = diag(−1, 1, 1, 1) and a perturbative term as

gµν = ηµν + hµν , (2.2)

and expand the action to quadratic order in hµν . The Ricci scalar R is expanded as

R = gµνRµν

= ηµνR(1)
µν − hµνR(1)

µν + ηµνR(2)
µν +O(h3) (2.3)

where R
(1)
µν and R

(2)
µν are the linear and quadratic terms of the Ricci tensor for h, respec-

tively. These terms are given by (refer to Appendix A)

R(1)
µν =

1

2
(−h,µν − hµν,α

α + hαµ,ν
α + hαν,µ

α), (2.4)

R(2)
µν =

1

2

[
1

2
hαβ,µh

αβ
,ν + hαβ(hαβ,µν + hµν,αβ − hαµ,νβ − hαν,µβ)

+hν
α,β(hαµ,β − hβµ,α)−

(
hαβ,β − 1

2
h,α
)
(hαµ,ν + hαν,µ − hµν,α)

]
. (2.5)
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By using the expansion of
√
−g:

√
−g = 1 +

1

2
h+O(h2), (2.6)

we obtain the equation

√
−gR = ηµνR(1)

µν +
h

2
ηµνR(1)

µν − hµνR(1)
µν + ηµνR(2)

µν +O(h3). (2.7)

Substituting Eqs. (2.4), (2.5), and (2.7) into Eq. (2.1) yields the expansion of the Einstein-

Hilbert action to quadratic order in h, expressed as

SEH = − c3

16πG

∫
d4x
(
hαβ,µh

αβ,µ − h,µh
,µ + 2hµν,µh,ν − 2hµν,µh

ρ
ν,ρ +O(h3)

)
. (2.8)

The corresponding Lagrangian density is

L = − c4

16πG

(
hαβ,µh

αβ,µ − h,µh
,µ + 2hµν,µh,ν − 2hµν,µh

ρ
ν,ρ +O(h3)

)
. (2.9)

Here, the linear term vanishes when expanding around a classical solution. Variating this

action with respect to h leads to the linearized Einstein equation in the vacuum,

−h,µν + hµρ,ν
ρ + hνρ,µ

ρ −□hµν − ηµν(hρσ
,ρσ −□h) = 0. (2.10)

Introducing

h̄µν = hµν −
1

2
ηµνh (2.11)

and rewriting Eq. (2.10) with h̄µν results in a simpler equation,

□h̄µν + ηµν h̄ρσ
,ρσ − h̄µρ,ν

ρ − h̄νρ,µ
ρ = 0. (2.12)

While choosing a frame in which the linearization Eq. (2.2) holds, there still remains

a residual gauge symmetry. Consider a transformation,

xµ → x′µ = xµ + ξµ(x). (2.13)

Under this transformation, hµν and h̄µν are transformed as

hµν(x) → h′µν(x
′) = hµν(x)− (ξν,µ + ξµ,ν), (2.14)

h̄µν(x) → h̄′µν(x
′) = h̄µν(x)− (ξν,µ + ξµ,ν − ηµνξ

ρ
,ρ). (2.15)

We choose the Lorentz gauge, defined as

h̄µν
,ν = 0. (2.16)

We can impose this condition by choosing ξ that satisfies

h̄µν
,ν → (h̄µν

,ν)′ = h̄µν
,ν −□ξµ = 0. (2.17)
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Imposing the Lorentz gauge simplifies the linearized Einstein equation to a simple wave

equation,

□h̄µν = 0. (2.18)

Solutions of Eq. (2.18) are plane waves, represented by

h̄µν = Aµν exp(ikρx
ρ), (2.19)

where kρk
ρ = 0. Since hµν is symmetric, Aµν is also symmetric, exhibiting ten independent

components. Enforcing the Lorentz gauge Eq. (2.16) reduces the number of independent

components to six. Additionally, ξµ comprises four independent components, leaving two

independent components in Aµν . ξµ also satisfies the wave equation and can be expressed

as

ξµ = Bµ exp(ikρx
ρ). (2.20)

From Eq. (2.14), the transformation of Aµν is given by

Aµν → A′
µν = Aµν − iBµkν − iBνkµ + iηµνBρk

ρ. (2.21)

Let us consider a wave traveling in the z-direction,

kµ = (k, 0, 0, k). (2.22)

By choosing Bµ such that

B0 =
i(2A00 +A11 +A22)

4k
, (2.23)

B1 =
iA01

k
, (2.24)

B2 =
iA02

k
, (2.25)

B3 =
i(2A00 −A11 −A22)

4k
, (2.26)

two conditions

A′
0ν = 0, (2.27)

ηµνA′
µν = 0, (2.28)

are satisfied, in addition to the Lorentz-gauge condition. These gauge conditions are

termed as the transverse traceless gauge. With the transverse traceless gauge, since the

trace of the transformed tensor is zero, h̄′µν = h′µν holds, denoted as hTT
µν . h

TT
µν are expressed

by two independent components h+ and h× as

hTT
ij = (h+e

+
ij + h×e

×
ij) exp(ikρx

ρ), (2.29)
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where

e+ij = ê1 ⊗ ê1 − ê2 ⊗ ê2, (2.30)

e×ij = ê1 ⊗ ê2 + ê2 ⊗ ê1. (2.31)

h+ and h× are referred to as the plus mode and cross mode of GWs, respectively. In

Fig. 2.1, we illustrate the effect of these two modes when GWs are normally incident to

the plane.

FIG. 2.1. Illustration of the effect of the plus and cross modes of GWs on a circular ring
of free masses.

2.1.2 Generation

This section delves into the generation of GWs, demonstrating that the amplitude of

GWs can be expressed through the second time derivative of the quadrupole moment. We

initiate the discussion by considering the linearized Einstein equation,

□h̄µν = −16πG

c4
Tµν . (2.32)

By employing the Green’s function, the solution to this wave equation can be expressed

as

h̄µν(t,x) =
4G

c4

∫
d3x′

1

|x− x′|
Tµν

(
t− |x− x′|

c
,x′
)
. (2.33)

In the transverse traceless gauge, hij can be expressed as

hTT
ij (t,x) =

4G

c4
Λij,kl

∫
d3x′

1

|x− x′|
Tkl

(
t− |x− x′|

c
,x′
)

(2.34)

where Λij,kl is the projecting operator into the transverse traceless gauge, given by

Λij,kl = PikPjl −
1

2
PijPkl, (2.35)

where

Pij = δij − ninj . (2.36)

Let us consider the multipole expansion of the right-hand side of the equation. The

velocity of the source can be expressed as v ∼ ωsd, where the typical angular frequency of
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the source is ωs and the magnitude is d. Consequently, the frequency ω of the radiating

GW is of the order of ωs, leading to ω ∼ v/d, or

λ– ∼ c

v
d. (2.37)

Hence, in a non-relativistic system where v ≪ c holds, the wavelength of GWs is signif-

icantly larger than that of the source. In such cases, understanding the details of the

motion inside the source is not necessary, allowing consideration of only the lowest-order

terms of the multipole moment. If r = |x| is significantly larger than the size of the source

d, then we can use the approximation,∣∣x− x′∣∣ ≃ r − x′ · x̂. (2.38)

Thus, Eq. (2.34) can be approximated as

hTT
ij (t,x) =

1

r

4G

c4
Λij,kl

∫
d3x′ Tkl

(
t− r

c
+

x′ · x̂
c

,x′
)
. (2.39)

Using the Taylor expansion of the integrand,

Tkl

(
t− r

c
+

x′ · x̂
c

,x′
)

= Tkl

(
t− r

c
,x′
)
+ x′ · x̂ ∂0Tkl

(
t− r

c
,x′
)

+
1

2
(x′ · x̂)2∂20Tkl

(
t− r

c
,x′
)
+ · · · , (2.40)

Eq. (2.39) can be expressed as

hTT
ij (t,x) =

1

r

4G

c4
Λij,kl

[
Skl + x̂m∂0S

kl,m +
1

2
x̂mx̂n∂

2
0S

kl,mn

]
ret

, (2.41)

where

Sij(t) =

∫
d3xT ij(t,x), (2.42)

Sij,k(t) =

∫
d3xT ij(t,x)xk, (2.43)

Sij,kl(t) =

∫
d3xT ij(t,x)xkxl. (2.44)

are the momenta of T ij , and ‘ret’ means that the momenta and their derivatives are

evaluated at (t − r/c,x′). Furthermore, we define the momentum related to the energy
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density T 00/c2 and momentum density T 0i/c,

M =
1

c2

∫
d3xT 00(t,x), (2.45)

M i =
1

c2

∫
d3xT 00(t,x)xi, (2.46)

M ij =
1

c2

∫
d3xT 00(t,x)xixj , (2.47)

M ijk =
1

c2

∫
d3xT 00(t,x)xixjxk, (2.48)

P i =
1

c

∫
d3xT 0i(t,x), (2.49)

P i,j =
1

c

∫
d3xT 0i(t,x)xj , (2.50)

P i,jk =
1

c

∫
d3xT 0i(t,x)xjxk. (2.51)

Since we are considering a linear approximation of the gravitational field, the energy-

momentum tensor satisfies the conservation law,

Tµν
,ν = 0. (2.52)

Thus, within a sufficiently large volume V away from the source, we have

cṀ =

∫
d3x ∂0T

00 = −
∫

d3x ∂iT
0i = −

∫
∂V

dSi T
0i = 0. (2.53)

The third equality is based on Gauss’s theorem. A similar calculation yields the following

relationships:

Ṁ = 0 (2.54)

Ṁ i = P i (2.55)

Ṁ ij = P i,j + P j,i (2.56)

Ṁ ijk = P i,jk + P j,ki + P k,ij (2.57)

Ṗ i = 0 (2.58)

Ṗ i,j = Sij (2.59)

Ṗ i,jk = Sij,k + Sik,j (2.60)

By differentiating Eq. (2.56) with respect to time and using the symmetry of Sij along

with Eq. (2.59), we obtain

M̈ ij = 2Sij . (2.61)

Using this equation, the primary term in Eq. (2.41) is described as

hTT
ij (t,x) =

1

r

2G

c4
Λij,klM̈

kl(t− r/c). (2.62)
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By introducing the traceless quadrupole moment,

Qkl =Mkl − 1

3
δklMii, (2.63)

hTT
ij can be rewritten as

hTT
ij (t,x) =

1

r

2G

c4
Λij,klQ̈kl(t− r/c) (2.64)

=
1

r

2G

c4
Q̈TT

ij (t− r/c). (2.65)

This expression is known as the quadrupole formula of GWs.

2.1.3 Energy-momentum tensor

The energy-momentum tensor carried by GWs is described by

tµν =

〈
− ∂L
∂(hαβ,µ)

hαβ
,ν + ηµνL

〉
, (2.66)

where ⟨·⟩ is a spatial average over several reduced wavelength, and L is the Lagrangian

density defined in Eq. (2.9). In the transverse traceless gauge, by inserting the Lagrangian

density and using the equation of motion □hµν = 0 and the gauge conditions, we obtain

the gauge free expression

tij =
c4

32πG
⟨hkl,ihkl,j⟩. (2.67)

The gauge-invariant energy density is

t00 =
c2

32πG
⟨ḣij ḣij⟩

=
c2

16πG
⟨ḣ2+ + ḣ2×⟩. (2.68)

The propagating GW carries away an energy flux

dE

dt
= c

∫
dA t00

=
c3r2

16πG

∫
dΩ ⟨ḣ2+ + ḣ2×⟩. (2.69)

By using the quadrupole formula, we have

dE

dt
=

G

8πc5

∫
dΩ Λij,kl⟨

...
Q ij

...
Qkl⟩, (2.70)

and using the integral of the Lambda operator:∫
dΩ Λij,kl =

2π

5
(11δikδjl − 4δijδkl + δilδjk), (2.71)
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we obtain the expression of the energy flux,

dE

dt
=

G

5c5
⟨
...
Q ij

...
Q ij⟩. (2.72)

2.2 Detector

This chapter describes the basics of the Michelson interferometer and its interaction

with GWs, along with the summary of current and future GW detectors.

2.2.1 Michelson interferometer

A schematic diagram of the Michelson interferometer is shown in Fig. 2.2. A laser

beam is split into two directions at the beam splitter, travels along the x and y arms,

reflects off a mirror, returns to the beam splitter, and interferes. GWs change the fringes

of the Michelson interferometer by differentially changing the length of the space at 90

degrees to each other. Therefore, GWs can be detected from changes in the intensity of

the interferogram of the Michelson interferometer.

Laser
End mirror

End mirror

Photodetector

Beamsplitter

FIG. 2.2. Schematic diagram of a Michelson interferomter.

Let Lx and Ly be the lengths of the arms of the Michelson interferometer in the x

and y directions, respectively, and consider the response of the Michelson interferometer

to the plus mode of a GW in the transverse traceless gauge coming from the z direction.

The spacetime interval is given by

ds2 = −c2dt2 + (1 + h+(t))dx
2 + (1− h+(t))dy

2 + dz2. (2.73)

Photons travel along null geodesics, i.e. ds2 = 0. For the light in the x arm, to first order

in h+, we have

dx = ±cdt
(
1− 1

2
h+(t)

)
, (2.74)
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where the plus sign represents light traveling from the beam splitter to the mirror, and the

minus sign represents the opposite direction. Consider a photon leaving the beam splitter

at a time t0 and reaching the mirror in the x axis at a time t1. Integrating Eq. (2.74)

yields

Lx = c(t1 − t0)−
c

2

∫ t1

t0

dt′ h+(t
′). (2.75)

Suppose it returns to the beam splitter at a time t,

−Lx = −c(t− t1) +
c

2

∫ t

t1

dt′ h+(t
′). (2.76)

Adding the equations above, and considering t0 in the integral interval to the first order

in h+ as t− 2Lx/c, the time ∆tx for a round trip of the x arm is given by

∆tx = t− t0

=
2Lx

c
+

1

2

∫ t

t0

dt′ h+(t
′)

=
2Lx

c
+

1

2

∫ t

t−2Lx/c
dt′ h+(t

′). (2.77)

Similarly, in the y direction, we have

∆ty =
2Ly

c
− 1

2

∫ t

t−2Ly/c
dt′ h+(t

′) (2.78)

The phase change ∆ϕ is then expressed as

∆ϕ = Ω0(∆tx −∆ty) (2.79)

=
2(Lx − Ly)Ω0

c
+Ω0

∫ t

t−2L/c
dt′ h+(t

′) (2.80)

where Ω0 is the angular frequency of the laser, and we assumed Lx ≃ Ly ≃ L in the second

term. The second term is the phase difference induced by GWs:

∆ϕGW = Ω0

∫ t

t−2L/c
dt′ h+(t

′). (2.81)

Let h̃(ω) be the Fourier transform of h+(t). Then the phase difference is

∆ϕGW =
Ω0

2π

∫ t

t−2L/c
dt′
∫ ∞

−∞
dω h̃(ω)e−iωt′

= −
∫ ∞

−∞
dω

Ω0

πω
sin

(
ωL

c

)
eiωL/ch̃(ω)e−iωt. (2.82)

The amplitude of the frequency response function takes the maximum at ωL/c = π/2.

From this equation, the optimal arm length for detecting GWs of 100 Hz is calculated as

750 km, but it is practically impossible to install such a large interferometer on the ground.

Therefore, in the current detectors, optical resonators are applied in the interferomters to
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extend the effective arm length.

2.2.2 Antenna pattern

Here, let us consider GWs from arbitrary directions. The response of a detector against

a GW hij is generally expressed using a detector tensor Dij as [58]

h = Dijh
ij . (2.83)

The detector tensor of an interferometer that has arms in x and y axes is

Dij =
1

2
(x̂ix̂j − ŷiŷj) =

1 0 0

0 −1 0

0 0 0


ij

. (2.84)

Hence, the response in this case is expressed as h = (h11 − h22)/2. The phase difference

of this GW can be obtained by replacing h+ with h in Eq. (2.81). However, h11 and h22

should be expressed in the detector frame, not in the source frame. We transform a GW

in the source frame (x′, y′, z′) into the detector frame (x, y, z). In the source frame, a GW

signal in the transverse traceless gauge is written as

h′ij =

h+ h× 0

h× −h+ 0

0 0 0


ij

. (2.85)

We define three angles, θ, ϕ, and ψ between the two frames as illustrated in Fig. 2.3. The

rotation matrix from (x′, y′, z′) to (x, y, z) is

R = R−1
z (ϕ)R−1

y (θ)R−1
z (ψ)

=

 cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 cosψ sinψ 0

− sinψ cosψ 0

0 0 1


=

 cos θ cosϕ cosψ − sinϕ sinψ cos θ cosϕ sinψ + sinϕ cosψ sin θ cosϕ

− cos θ sinϕ cosψ − cosϕ sinψ − cos θ sinϕ sinψ + cosϕ cosψ − sin θ sinϕ

− sin θ cosψ − sin θ sinψ cos θ

 ,

(2.86)

and a GW in the source frame h′kl is transformed into the detector frame hij by

hij = RikRjlh
′
kl. (2.87)

By the straightforward matrix calculations, we obtain
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FIG. 2.3. Relative orientation of the source and sky frames.

h11 = h+(cos
2 θ cos2 ϕ cos 2ψ − sin2 ϕ cos 2ϕ− cos θ sin 2ϕ sin 2ψ)

+ h×(cos
2 θ cos2 ϕ sin 2ψ + cos θ sin 2ϕ cos 2ψ − sin2 ϕ sin 2ψ), (2.88)

h22 = h+(cos
2 θ cos 2ϕ sin2 ψ − cos 2ϕ cos2 ψ + cos θ sin 2ϕ sin 2ψ)

+ h×(cos
2 θ sin 2ϕ sin2 ψ − cos θ cos2 ϕ sin 2ψ − sin 2ϕ cos2 ψ). (2.89)

Substituting this into h = (h11 − h22)/2 leads to the expression

h = h+

(
1 + cos2 θ

2
cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ

)
+ h×

(
1 + cos2 θ

2
cos 2ϕ sin 2ψ + cos θ sin 2ϕ cos 2ψ

)
. (2.90)

Therefore, the phase difference induced by the GW is expressed as

∆ϕGW = Ω0

∫ t

t−2L/c
dt′
(
h+(t

′)F+(θ, ϕ, ψ) + h×(t
′)F×(θ, ϕ, ψ)

)
, (2.91)

where F+ and F× are called the antenna pattern functions, given by

F+(θ, ϕ, ψ) =
1 + cos2 θ

2
cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ, (2.92)

F×(θ, ϕ, ψ) =
1 + cos2 θ

2
cos 2ϕ sin 2ψ + cos θ sin 2ϕ cos 2ψ, (2.93)

respectively. These functions represent the sensitivity of the Michelson interferometer to

the plus and cross polarizations of GWs coming from the direction (θ, ϕ, ψ). Figure 2.4

illustrates the antenna patterns of a Michelson interferometer in the z = 0 plane with

arms along the x and y axes for both plus and cross modes, along with the average.
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FIG. 2.4. Antenna pattern of a Michelson interferometer in the z = 0 plane with arms
along the x and y axes. The polarization angle ψ is set to zero.

2.2.3 Current detectors

The GW detectors currently in operation are second-generation detectors such as Ad-

vanced LIGO, Advanced Virgo, and KAGRA. GEO600 is also in operation to collect data

through the astrowatch program. GEO600 also plays an important role in demonstrating

novel technologies for other detectors.

Configuration of current detectors

The standard configuration of the current detectors is called the dual-recycled Fabry-

Pérot Michelson interferometer. This setup comprises several essential components to

enhance the sensitivity of GW detection. Figure 2.5 shows a schematic representation of

this configuration. There are three primary techniques integrated in a simple Michelson

interferometer.

• Fabry-Pérot cavity. The Fabry-Pérot cavity consists of two highly reflective mir-

rors arranged in parallel. It works as an optical resonator, allowing light to bounce

back and forth between the mirrors multiple times, increasing the effective path

length traveled by the laser light.

• Power recycling. Since the interferometer is controlled to be at the dark fringe,

most of the incident light is returned to the laser. In the power recycling technique,

a mirror is placed at the injection port of the interferometer and reflects the returned

light back to the interferometer. The power recycling cavity, which consists of the

power recycling mirror and the input test masses, effectively increases the injection

laser power, thereby reducing shot noise.

• Signal recycling. The signal recycling mirror, placed at the anti-symmetric port of

the interferometer, reflects the signal sidebands into the interferometer, forming the
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FIG. 2.5. Schematic diagram of a dual recycled Fabry-Pérot Michelson interferometer.
ITMX (Y): input test mass X (Y), ETMX (Y): end test mass X (Y), BS: beam splitter,
PRM: power recycling mirror, SRM: signal recycling mirror, PD: photo detector.

signal recycling cavity with the input test masses. If the signal recycling mirror is

placed such that the GW sidebands are resonant within the cavity, the technique is

called resonant sideband extraction, allowing extraction of the GW sidebands before

they are canceled out. When the signal recycling cavity is detuned, sensitivity is

improved in a narrow frequency range.

Noise sources

The main sources of noise in current ground-based interferometers are seismic noise,

thermal noise, and quantum noise. Figure 2.6 shows the design sensitivity and noise

spectrum of KAGRA.

• Seismic noise. The detector’s mirrors are sensitive to various disturbances such as

micro-seismic motion, wind, and human activity, which are attenuated by suspension

pendulums. Seismic noise from ground vibrations limits the sensitivity below ∼
10 Hz, where the strain sensitivity is inversely proportional to the square of the

frequency [60]. A single pendulum with resonance frequency f0, at frequencies f ≫
f0 attenuates the strain sensitivity by a factor of f20 /f

2. To further improve vibration

isolation, multi-stage pendulums are used in current detectors. In addition, the

construction of detectors underground, such as KAGRA, further reduces the seismic

noise.

• Thermal noise. Thermal noise arises from random energy transfer with the heat

bath, inducing vibrations in both the suspension system and the mirror. Suspension

thermal noise results from the mechanical vibrations generated within the suspen-

sion system, inducing small fluctuations in the mirror’s position. Mirror thermal
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FIG. 2.6. Design sensitivity of KAGRA [59].

noise involves the excitation of the elastic vibrations of the mirror, resulting in tiny

oscillations on its surface. Typically, suspension thermal noise is the dominant noise

source in the frequency range of 10 Hz to 100 Hz. Around 100 Hz, mirror ther-

mal noise becomes prominent. Methods to reduce thermal noise include the use of

high-Q coatings and suspension wires, and cooling the mirrors and suspension wires.

Specifically, KAGRA is designed to lower the temperature of its mirrors to 20 K [61].

• Quantum noise. Quantum noise originates from vacuum field fluctuations entering

the anti-symmetric port of the interferometer. At high frequencies, shot noise due

to the phase fluctuations of the vacuum field is dominant, while at low frequencies,

radiation pressure noise caused by the amplitude fluctuations is prominent. There

exists a trade-off relationship between these two, resulting in a lower bound on the

noise spectrum, known as the standard quantum limit [62]. Utilizing squeezed light

can be used to surpass the standard quantum limit [63].

2.2.4 Future detectors

Various types of interferometric detectors are planned to be constructed in the future

to advance GW astronomy.

Ground-based detectors

LIGO-India [64], an almost identical replica of the current LIGO detectors, is planned

for construction in Hingoli, India. This will improve the precision of GW source localiza-

tion and increase the operational time, also known as the duty cycle, of the international

GW network. Neutron-star Extreme Matter Observatory [65] is another proposed future

detector in Australia. By using long signal recycling cavity, the detector specializes in
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the 1-4 kHz frequency band, making it ideal for detecting the post-merger phase of BNS

mergers and CCSNe to study nuclear physics.

Following the success of the second-generation detectors, third-generation detectors

have been proposed and will be constructed in a few decades. Einstein Telescope [66]

is a detector proposed to be built underground in Europe. Although its optical layout

has not been finalized, one concept is to arrange three detectors in a triangular configu-

ration, each consisting of two interferometers with 10-km long arms, shown in Fig. 2.7.

The two interferometers are specialized for low-frequency and high-frequency bands, re-

spectively [67]. Cosmic Explorer [68] is another proposed third-generation detector in

the United States, consisting of an interferometer with 40-km L-shaped arms. These

third-generation detectors are expected to make it possible to tackle a lot of interesting

scientific questions [69, 70]. For instance, observing NSBH and BNS mergers with high

signal-to-noise ratio (SNR) would provide valuable insights into the interior structure of

neutron stars. Additionally, it could enable the first-ever detection of GWs from CCSNe

and continuous waves from isolated rotating neutron stars.

FIG. 2.7. Schematic illustration of the Einstein Telescope layout. Three detectors form an
equilateral triangle, each consisting of two interferometers with a length of 10 km. One is
optimized for high frequencies, using a 1064 nm laser beam and fused silica optics, while
the other, designed for low frequencies, uses a 1550 nm laser beam and silicon optics.
Image taken from Ref. [71].

Space-based detectors

The sensitivities of ground-based detectors at low frequencies is limited by seismic

noise. To overcome this, several projects are underway to launch space-based interfer-

ometers. Laser Interferometer Space Antenna (LISA) [72] aims to observe GWs in the
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frequency range between 0.1 mHz and 1 Hz with a constellation of three spacecrafts ar-

ranged in an equilateral triangle with sides 2.5 million km long, flying in a heliocentric

orbit. DECi-hertz Interferometer Gravitational-wave Observatory (DECIGO) [73] aims

to observe GWs in the frequency range of 0.1 Hz to 10 Hz. Its sensitivity bridges the

gap between the sensitivity of LISA and that of ground-based detectors. Other projects,

such as TianQin [74] and Taiji [75], are also in development. These space-based detectors

could detect GWs from supermassive black hole mergers, extreme mass ratio inspirals, and

stochastic GW backgrounds. Figure 2.8 plots characteristic strain for various detectors

and sources.

FIG. 2.8. Characteristic strain against frequency for various detectors and sources. The
plot was generated using GWPlotter [76, 77].

2.3 Astrophysical source

2.3.1 Compact binary coalescence

Black holes and neutron stars are both formed after the death of stars through grav-

itational collapse. When the mass of the core after the explosion exceeds a threshold

known as the Tolman-Oppenheimer-Volkoff limit [78, 79], the gravitational force becomes

so strong that it overwhelms all other forces, causing the core to collapse further. This

collapse forms a singularity surrounded by an event horizon, which marks the boundary

of the black hole. If the remaining core mass after an explosion is less than the threshold,

the gravitational force is counteracted by the neutron degeneracy pressure, which prevents

further collapse. The core then stabilizes as a neutron star.

These dense celestial objects often form binary systems that orbit around each other

while emitting GWs, eventually merging. This phenomenon is known as compact binary



Chapter 2. Gravitational Wave 22

FIG. 2.9. Inpiral, merger, and ringdown phases of GW signals from CBC events. Image
taken from Ref. [6].

coalescence (CBC). There are three distinct types of CBC events: BBH mergers, NSBH

mergers, and BNS mergers. To date, all observed GWs have been produced by CBC

events, with BBH mergers accounting for most of them. These GW signals exhibit three

different signal morphologies: inspiral, merger, and ringdown. During the inspiral phase,

the binary objects gradually approach each other and emit GWs of increasing frequency.

Then, in the merger phase, the objects merge into a single object, emitting a burst of

GWs. After the merger, the resulting object settles into a stable state, emitting damped

oscillations in GWs as it reaches its final state. Figure 2.9 shows the inspiral, merger, and

ringdown GW signal of a BBH merger.

Describing GWs from CBC sources requires at least 15 parameters, as summarized

in Table 2.1. Additional parameters may include the eccentricity (e) of the binary orbit

and the neutron star’s tidal deformability (Λ). These 15 parameters are categorized as

either intrinsic or extrinsic. Intrinsic parameters are the component masses and three-

dimensional spin vectors. The dimensionless spin is defined as χ = S/m2, where S

and m are the angular momentum and the mass of the component star, respectively.

Extrinsic parameters are the spherical coordinates (r, ι, ψ), sky position, described by

the declination α and the right ascension δ, along with the time and the phase at the

coalescence, represented as (tc,Φc).

Several techniques have been developed to accurately model GW waveform originating

from CBCs. These waveforms are used for event detection and parameter estimation. The

post-Newtonian approximation [80, 81] is a perturbative method to analytically solve the

Einstein’s field equations by expanding the system around v/c, where v represents the

velocity of the objects. However, in binary systems, towards the end of the inspiral

phase, the velocities can approach values close to the speed of light, making this method

inaccurate for describing the entire signal. Another method is numerical relativity [82–84],

which involves solving the Einstein’s field equations numerically. This method is suited

for accurately modeling the entire signal including the merger and the ringdown phases,
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TABLE. 2.1. Parameters for describing GWs from CBC sources.

Intrinsic parameters
Component masses m1,m2

Component spins χ1,χ2

Extrinsic parameters

Coalescence phase Φc

Coalescence time tc

Luminosity distance r

Inclination ι

Polarization angle ψ

Declination α

Right ascension δ

but it is highly computationally expensive. The effective-one-body formalism [85, 86] is

a framework used to approximate the dynamics of binary systems with a single effective

test mass, providing a full waveform. It is widely used by multiple detection pipelines

due to its accuracy [34]. Phenomenological models [87, 88] combine the post-Newtonian

approximations and the numerical relativity waveforms to generate a full waveform. These

models are widely used for parameter estimation with their accuracy and computational

efficiency [34].

As of January 2024, the total number of detected GW events from CBC sources is 171.

Figure 2.10 displays the cumulative number of detections made from the O1 run to the

middle of the O4 run.
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 * O4a entries are preliminary candidates found online.

FIG. 2.10. Cumulative number of detections made from the O1 run to the middle of the
O4 run. ‘O3a’ and ‘O3b’ refer to the first and second halves of the O3 run, respectively.
Image taken from Ref. [89].
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2.3.2 Core-collapse supernova

A supernova is an energetic explosion that marks the end of the life of a massive star,

with an associated energy of ∼ 1053 erg across the electromagnetic spectrum, neutrinos,

and GWs. Below we describe the basic theory of CCSNe, referring to review papers [90–

92].

Throughout their lives, stars undergo nuclear fusion reactions in their interiors, creating

a pressure that counteracts gravity. Initially formed from hydrogen and helium, stars are

in hydrostatic equilibrium, but the energy loss through thermal radiation causes them to

undergo a gravitational contraction, leading to an increase in density and temperature.

Once the temperature exceeds 107 K, a hydrogen fusion reaction takes place in the star’s

core, marking its status as a main-sequence star. Subsequently, heavier elements such

as carbon and oxygen are synthesized in sequence, forming an onion-skin structure with

heavier elements lying toward the center. In light stars, nuclear fusion ceases with the

synthesis of light elements, resulting in the formation of a white dwarf. Although the

temperature decreases with the cessation of nuclear fusion, the white dwarf remains in

equilibrium with the electron degeneracy pressure. Conversely, massive stars with masses

above 8-10 M⊙ continue the fusion process until iron is synthesised in the core. Since

iron has a high binding energy per nucleon, it cannot undergo fusion. As iron begins

to accumulate in the core, its mass increases. When the mass of the iron core exceeds

the Chandrasekhar mass, gravity overcomes pressure and collapse begins. The resulting

explosion is a CCSN explosion.

The detailed mechanism of the explosion in CCSNe has not been fully elucidated. The

process is generally considered as follows.

• Core collapse. In the iron core, iron captures electrons through the reaction:

56Fe + e− → 56Mn+ νe. (2.94)

This process decreases the number of electrons, lowering denegeracy pressure. Ad-

ditionally, an endothermic reaction caused by iron photodisintegration:

56Fe + γ → 134He + 4n− 124.4MeV (2.95)

further lowers the pressure and triggers core collapse.

• Neutrino trapping. After the collapse, the density of the core increases, and

various reactions produce neutrinos. When the core density exceeds 1011-1012 g/cm3,

electron neutrinos begin to be trapped in the core. This is called the neutrino

trapping, and the region where neutrinos are trapped is called the neutrino sphere.

• Core bounce. During the collapse, the core consists of two parts. The inner core

contracts at a subsonic speed while the outer core contracts at a supersonic speed.

When nuclear densities reach ∼ 3× 1014 g/cm3, the falling material bounces off the

nucleus and creates a shock wave outward. The shock wave is initially generated

spherically symmetrically inside the neutrino sphere. In the area where the shock

wave passes through, the reaction e− + p ↔ n + νe produces a large amount of
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electron neutrinos. When the shock wave reaches the neutrino sphere, the neutrinos

are emitted. This is called the neutronization burst. The core that was not shocked

during the core bounce forms a proto-neutron star.

• Shock stall. As the shock wave propagates, it loses energy due to iron photodisin-

tegration and neutrino emissions. The shock wave stops before reaching the surface

of the star. This stopped shock wave is called a standing accretion shock. The radius

of the shock wave is 100-200 km.

• Shock revival. How the stalled shock wave is revived to reach the stellar surface is

not yet fully understood and has been actively studied using numerical simulations.

Two primary mechanisms are currently favored. The first is called the neutrino-

driven mechanism. The massive gravitational energy from the collapse is stored

in the proto-neutron star and is brought out by the neutrinos. In this scenario, a

part of the energy carried by neutrinos is used to revive the shock wave. Recent

multi-dimensional simulations have revealed that convection [93] and the standing-

accretion shock instability (SASI) [94, 95] also play crucial roles in shock revival.

The second mechanism is known as the magnetorotational mechanism, in which the

rotational energy of the star amplifies the magnetic field, and the magnetic energy

contributes to the revival of the shock wave. Since not many stars rotate rapidly,

most CCSNe are believed to be caused by the neutrino-driven mechanism rather

than by this mechanism.

The GW signals from CCSNe are dominated by the oscillations of the proto-neutron

star, known as the g-modes. In neutrino-driven explosions, numerical simulations have

also observed low-frequency modes originating from the SASI. Figure 2.11 shows the two

GW signals from three-dimensional numerical simulations by Kuroda et al. [95]. In both

signals, there is a mode where the frequency increases with time from 100 Hz to 800-1000

Hz. In addition, we can see a low frequency mode around 100-200 Hz in the simulation

that used the SFHx equation of state.

2.3.3 Rotating neutron star

Neutron stars often manifest as pulsars, which emit beams of electromagnetic radiation.

Many pulsars rotate at high speeds, with frequencies of tens of Hz or higher. These stars

emit GWs due to asymmetries around their rotation axis caused by the deformation of

their outer layers, known as crusts, as well as fluid oscillations such as r-modes [96]. These

GWs are emitted at a nearly constant frequency for a period longer than the observation

time, and are called continuous waves. The typical amplitude of continuous waves is

written as [97]

h ∼
4π2GϵIzzf

2
GW

c4r
, (2.96)

where r is the distance to the source, ϵ is the equatorial ellipticity defined as ϵ = |Ixx −
Iyy|/Izz, and fGW is the frequency of the radiated GW, which is twice the rotation fre-

quency: fGW = 2frot.
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FIG. 2.11. Simulated GW amplitudes of plus mode and the corresponding time-frequency
spectrograms by Kuroda et al. [95]. Equation of states are SFHx (left) and TM1 (right).
The horizontal axis represents the time (ms) from core bounce. The simulation was
stopped at 0.35 s after core bounce. The component ‘A’ is originated from the proto-
neutron star’s g-mode oscillation. The component ‘B’ is considered to be originated from
the SASI. Figure taken from Ref. [95].

The frequency of continuous waves is nearly constant, but can change over the course

of the observation due to energy loss from neutron stars and Doppler shift due to the

Earth’s revolution around the Sun. While ground-based detectors are sensitive within the

frequency range of these waves, detecting them remains challenging due to their extremely

small amplitude, with the estimated upper limit of strain being on the order of 10−25 [98].

Thus, to increase the SNR, we need to observe for a long time, such as several months

or years, which is computationally expensive. Various methods, including those based on

machine learning to search for continuous waves, are reviewed in Refs. [97, 99].

2.3.4 Stochastic background

The superposition of a large number of independent sources generates a stochastic GW

background. These sources are divided into two categories: astrophysical and cosmological.

Astrophysical sources, such as CBCs, CCSNe, rotating neutron stars, and magnetars,

provide valuable information about the history of astrophysical processes. Cosmological

sources, such as GWs from inflation, cosmic strings, and first-order phase transitions,

could offer information about the early Universe [100].

The primary method to detect stochastic GW backgrounds is to take cross correlation

of strain between two detectors. Let si(t) be the ith detector output which is the sum of

the detector noise ni(t) and GW signal hi(t):

si(t) = ni(t) + hi(t) for i = 1, 2. (2.97)
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Time average of s1(t)s2(t) is calculated as

⟨s1(t)s2(t)⟩ = ⟨n1(t) + h1(t)⟩⟨n2(t) + h2(t)⟩
= ⟨n1(t)n2(t)⟩+ ⟨n1(t)h2(t)⟩+ ⟨h1(t)n2(t)⟩+ ⟨h1(t)h2(t)⟩
∼ ⟨n1(t)n2(t)⟩+ ⟨h1(t)h2(t)⟩. (2.98)

If the noise at each detector is independent, only the GW term remains. However, even

when two detectors are isolated, the detector noises are not completely independent. For

instance, correlated magnetic noise from Schumann resonances should be taken into ac-

count [101, 102].

The intensity of stochastic GW backgrounds are usually characterized by the dimen-

sionless energy density spectrum [103],

ΩGW(f) =
1

ρc

dρGW

d log f
, (2.99)

where ρGW is the energy density of the stochastic GW background, and ρc = 3H2
0/(8πG)

is the critical energy density, and H0 is the Hubble constant. Recent observations of

binary mergers by Advanced LIGO and Advanced Virgo have provided insights into the

stochastic GW backgrounds within the LIGO-Virgo observation band. The background

energy density dominated by binary mergers is estimated to be ΩGW(f) ∼ 10−9 at 25

Hz [104].

2.4 Data analysis

2.4.1 Matched filtering

Matched filtering is the optimal method for searching pre-known signals under station-

ary Gaussian noise, and it is currently the standard detection method for GWs from CBC

sources. Here, we will explain the fundamentals of this method, following Ref. [105].

Gaussian noise and power spectral density

In a noise time series, if each sample is an independent Gaussian random variable with

zero mean, the noise is known as Gaussian noise. The probability density function of a

Gaussian noise n(t) is written as

p[n(t)] ∝ exp

[
−1

2
4

∫ ∞

0
df

|ñ(f)|2

Sn(f)

]
, (2.100)

where Sn(f) is the one-sided power spectral density of the noise. For a time-series data

n(t) with an observation time T , the one-sided power spectral density is defined by

Sn(f) = lim
T→∞

2

T

∫ ∞

0
df |ñ(f)|2. (2.101)

If the power spectral density is independent of f , the noise is called white noise; otherwise

it is called colored noise. By defining a noise-weighted inner product (a|b) of two time
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series a(t) and b(t) by

(a|b) = 4Re

∫ ∞

0
df

ã(f)b̃∗(f)

S(f)
, (2.102)

the probability density function of a stationary Gaussian noise can be written as

p[n(t)] ∝ e−(n|n)/2. (2.103)

We show an alternative expression for the power spectral density Sn(f)

Sn(f) = lim
T→∞

2

T

∫ T/2

−T/2
dt n(t)ei2πft

∫ T/2

−T/2
dt′ n(t′)e−i2πft′

= lim
T→∞

2

T

∫ ∞

−∞
dτ ei2πfτ

∫ T/2

−T/2
dt n(t)n(t+ τ)

= 2R̃n(f). (2.104)

Here, R̃n(f) is the Fourier transform of the auto-correlation function for n(t), defined by

Rn(τ) = ⟨n(t)n(t+ τ)⟩, (2.105)

where ⟨·⟩ denotes the temporal average. The expression in Eq. (2.104) is known as Wiener-

Khinchin theorem. Another useful equation for Sn(f) is as follows:

⟨ñ∗(f ′)ñ(f)⟩ =
〈∫ ∞

−∞
dt n(t)e−i2πf ′t

∫ ∞

−∞
dt′ n(t′)ei2πft

′
〉

=

∫ ∞

−∞
dt ei2π(f−f ′)t

∫ ∞

−∞
dτ ⟨n(t)n(t+ τ)⟩e−i2πfτ

=
1

2
δ(f − f ′)Sn(f). (2.106)

Optimal detection statistic

Suppose we aim to detect a GW signal whose waveform is known beforehand. Let us

assume that the strain data s(t) recorded by a detector comprises stationary Gaussian

noise n(t) and potentially a known GW signal characterized by parameters θ, denoted as

h(t;θ). Detecting the signal h(t;θ) is considered a process of distinguishing between two

hypotheses:

H0 : s(t) = n(t), (2.107)

H1 : s(t) = h(t;θ) + n(t). (2.108)

Here, H0 represents the null hypothesis, suggesting the absence of the GW signal in the

data, while H1 represents the alternative hypothesis, indicating the presence of the GW

signal h(t;θ) in the data.

According to the Neyman-Pearson lemma [106], the likelihood-ratio test is the uni-

formly most powerful test given a significance level α. Under the null hypothesis H0,

s follows a Gaussian distribution. Therefore, following the calculations from the previ-

ous section, the likelihood is proportional to e−(s|s)/2. Under the alternative hypothesis
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H1, s − h also follows a Gaussian distribution, making the likelihood proportional to

e−(s−h|s−h)/2. Consequently, the likelihood ratio becomes

Λ =
e−(s−h|s−h)/2

e−(s|s)/2 = e(s|h)e−(h|h)/2. (2.109)

As a result, the rejection region for the null hypothesis can be expressed using constants

k and k′ as

{s | Λ ≥ k} ⇐⇒ {s | (s|h) ≥ k′}. (2.110)

We call (s|h) the matched filter and denote as m:

m = 4Re

∫ ∞

0
df

s̃(f)h̃∗(f)

Sn(f)
(2.111)

In practical scenarios, the parameters θ describing the GW signal are unknown. Thus,

the likelihood-ratio test is adapted to use

Λ̂ = sup
θ

Λ(s, h(θ)). (2.112)

Let us investigate the statistical properties of the matched filter. If there is no signal

in the strain data, i.e., s(t) = n(t), then the expected value of m = (n|h) is zero, given

⟨n⟩ = 0. The variance is calculated as

Var[m] = ⟨m2⟩

= 4

∫ ∞

−∞
df

∫ ∞

−∞
df ′

⟨ñ(f)ñ∗(f ′)⟩h̃(f ′)h̃∗(f)
Sn(|f |)Sn(|f ′|)

= 4

∫ ∞

−∞
df

∫ ∞

−∞
df ′

1
2Sn(|f |)δ(f − f ′)h̃(f ′)h̃∗(f)

Sn(|f |)Sn(|f ′|)

= 2

∫ ∞

−∞
df
h̃(f)h̃∗(f)

Sn(|f |)
= (h|h). (2.113)

Since n(t) is a Gaussian random process and m(t) is linear in n(t), the matched filter m(t)

follows a Gaussian distribution with mean zero and variance (h|h) when there is no signal.

When the detector strain contains a GW signal h(t), we obtain

⟨m⟩ = (h|h), (2.114)

Var[m] = (h|h), (2.115)

thus the matched filter m(t) follows a Gaussian distribution with mean (h|h) and variance

(h|h). We define the SNR to be a normalized matched filter:

ρ =
(s|h)√
(h|h)

. (2.116)

When the strain is pure noise, ρ follows a standard normal distribution N (0, 1) and when

the strain contains the signal h(t), ρ follows a Gaussian distribution with mean
√
(h|h)
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and variance one.

2.4.2 Parameter estimation

After a GW signal is detected, our primary objective is to extract and infer the values of

the source parameters from the observed data. This inference process is essential for com-

prehensively studying the astrophysical properties of the detected source. In this context

of parameter estimation, Bayesian statistics play a pivotal role, offering a methodological

framework for quantifying parameter uncertainties through the GW posterior distribution.

Bayes’ theorem forms the bedrock of this statistical approach, enabling us to update our

knowledge about parameters θ given observed data d. Mathematically, Bayes’ theorem is

represented as

p(θ|d) = p(d|θ)p(θ)
p(d)

. (2.117)

Here, p(θ|d) is the posterior probability distribution of parameters given the observed

data. p(d|θ) is the likelihood function, expressing the probability of observing the data

given the parameters. p(θ) is the prior distribution, representing our initial knowledge or

assumptions about the parameters. p(d) is the marginal likelihood or evidence, serving

as a normalization factor. In most cases, calculating the posterior distribution p(θ|d)
analytically is infeasible due to high-dimensional and complex parameter spaces. This

challenge is particularly evident in scenarios of the parameter estimation of GW signals

from CBC sources, which are described by at least 15 parameters. A possible approach to

estimate this complex distribution involves using computational methods that efficiently

explore the parameter space and approximate the posterior distribution. Techniques such

as Markov-chain Monte Carlo [107] and nested sampling [108] stand out as viable strategies

for this purpose.

Markov-chain Monte Carlo

Markov-chain Monte Carlo (MCMC) methods, such as Metropolis-Hastings [107, 109]

or Gibbs sampling [110], iteratively generate samples from the posterior distribution, aim-

ing to converge towards an approximation of the true distribution. This method starts

with an initial parameter values θ(0) and proposes new parameter values θ′ based on a

proposal distribution q(θ′|θ(t)). It then accepts or rejects these proposed values according

to an acceptance probability α(θ(t),θ′), which considers the ratio of the probabilities of

the proposed and current values. Accepted values are used for the next iteration, and

this process continues to generate a sequence of samples that approximate the target

distribution.

Nested sampling

Nested sampling [108] is an efficient technique used to estimate the integral representing

the evidence. This method aims to compute the multi-dimensional integral

p(d) =

∫
dθ L(θ)p(θ), (2.118)
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where L(θ) = p(d|θ) is the likelihood function. Nested sampling achieves the computation

of this integral by transforming it into a one-dimensional integral using a series of steps.

Initially, it involves employing a set of ‘live points’ within a likelihood iso-contours. Define

X(λ) as the integral over the parameter space limited to the regions where L(θ) > λ,

weighted by the prior,

X(λ) =

∫
L(θ)>λ

dθ p(θ). (2.119)

X(λ) is a monotonically decreasing function of λ. Essentially, X(λ) accumulates the

prior mass within the iso-likelihood contours. Utilizing this, the evidence integral can be

rewritten as

p(d) =

∫ 1

0
dX L(X). (2.120)

This transformation facilitates a computationally feasible approach to estimating the evi-

dence by reducing the complexity associated with evaluating high-dimensional integrals.

2.4.3 Time-frequency analysis

Short-time Fourier transform

Short-time Fourier transform (STFT) is a method widely used to analyze the frequency

evolution of a non-stationary signal over time by applying the Fourier transform to short

segments of the signal. This is achieved by sliding a window function along the signal and

computing the Fourier transform for each windowed segment. Using a window function

w, the continuous STFT of a signal x(t) is defined as

X(τ, f) =

∫ ∞

−∞
dt x(t)w(t− τ)ei2πft. (2.121)

Its discrete form is given by

X[n, f ] =

∞∑
m=−∞

x[m]w[m− n]ei2πfm. (2.122)

The square of the STFT is often used, called a spectrogram:

S(τ, f) = |X(τ, f)|2. (2.123)

The spectrogram provides an intuitive understanding of how the signal’s spectrum changes

over time. Usually it is plotted with time on the horizontal axis, frequency on the vertical

axis, and color indicating energy density.

It can be shown that the duration σt and bandwidth σω have an uncertainty relation-

ship [111],

σtσω ≥ 1

2
, (2.124)

which will be derived in Appendix D. This relationship implies that a broader time obser-

vation provides higher-resolution frequency information and vice versa.
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Wavelet transform

The Fourier transform is based on the idea that any signal can be decomposed into

sinusoidal waves of different frequencies. Wavelet transform, on the other hand, uses an

orthonormal basis generated by shifting and scaling a mother wavelet. The specific form

of a wavelet scaled by a and translated by b is given by

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
, (2.125)

where ψ(t) is the mother wavelet. The continuous wavelet transform for a signal x(t) is

given by

W (a, b) =

∫ ∞

−∞
dt x(t)ψ∗

a,b(t). (2.126)

While the STFT keeps the time and frequency resolutions constant, wavelet transform

allows these resolutions to vary. The time duration is proportional to the parameter a,

and the frequency spread is inversely proportional to a. These characteristics make wavelet

transform useful for analyzing nonlinear and non-stationary signals.

Q transform

Q transform was initially introduced in Ref. [112] to analyze sounds from musical in-

struments. The method is now applied to many fields. For GWs, Chatterji et al. [113, 114]

proposed to use it to detect burst signals, and it has become the standard technique to

generate time-frequency representations of GW signals from CBC events. This method

is a modification of the STFT with logarithmic tiling in frequency domain and a win-

dow function with a duration inversely proportional to the frequency. This modification

provides a higher time resolution at higher frequencies.

For a time-series data x(t), the conventional STFT can be expressed as

X(τ, f) =

∫ ∞

−∞
dt x(t)w(t− τ)ei2πft, (2.127)

where w(t− τ) is a time-domain window function centered on time τ . Q transform intro-

duces a window function with a duration inversely proportional to the frequency,

σt =
C

f
, (2.128)

where C is a constant value. From the uncertainty relationship, the bandwidth is written

as

σf =
C ′

σt
= f

C ′

C
, (2.129)

where C ′ is another constant value. We define the quality factor Q with the ratio of central

frequency to bandwidth,

Q =
f

σf
=
C

C ′ . (2.130)
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By choosing a window function w(t− τ, f,Q) centered on time τ with a duration propor-

tional to Q and inversely proportional to the frequency f , Q transform is defined by

X(τ, f,Q) =

∫ ∞

−∞
dt x(t)w(t− τ, f,Q)ei2πft. (2.131)

This can be written in another way as

X(τ, f,Q) =

∫ ∞

−∞
dt

∫ ∞

−∞
dϕ

∫ ∞

−∞
dϕ′ x̃(ϕ′)w̃∗(ϕ, f,Q)ei2π(f+ϕ−ϕ′)te−i2πϕτ

=

∫ ∞

−∞
dϕ

∫ ∞

−∞
dϕ′ x̃(ϕ′)w̃∗(ϕ, f,Q)δ(f + ϕ− ϕ′)e−i2πϕτ

=

∫ ∞

−∞
dϕ x̃(ϕ+ f)w̃∗(ϕ, f,Q)e−i2πϕτ . (2.132)

The standard window function in GW field is the Connes window [114], given by

w̃(ϕ, f,Q) =


(

315

128
√
11

Q

f

)1/2
[
1−

(
ϕQ

f
√
11

)2
]2

if |ϕ| < f
√
11

Q
,

0 otherwise.

(2.133)

The discrete Q transform is defined in the same way as the continuous version, as

X[m, l,Q] =
N−1∑
n=0

x[n]w[n−m, l,Q]ei2πnl/N . (2.134)

It can also be written as

X[m, l,Q] =
1

N

N−1∑
k=0

x̃[k + l]w̃∗[k, l, Q]e−i2πmk/N (2.135)

from Eq. (2.132). Therefore, the Q transform at a specific frequency is computed by

performing a standard Fourier transform of the time series shifted in frequency, multiplying

by a frequency-domain window function, and applying an inverse Fourier transform. In

practice, Eq. (2.135) is more efficient than Eq. (2.134) in that the Fourier transform of the

original time series only needs to be computed once. We then compute the inverse Fourier

transform only for the logarithmically spaced frequencies of interest [113].

Figure 2.12 shows the Q-transformed time-frequency map of the GW150914 strain at

the H1 detector. The plot shows the inspiral signal with increasing frequency.
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FIG. 2.12. Time-frequency representation of GW150914 at the H1 detector. The original
strain time series is filtered with a 20-350 Hz band-pass filter and whitened.
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Chapter 3

Deep Learning

This chapter introduces deep learning techniques which will be used in the research

presented in Chapters 5 and 6. Particularly, we focus on explaining neural networks for su-

pervised learning. We also review recent applications of machine learning to gravitational-

wave data analysis.

3.1 Neural network

A neural network is a function that transforms input data into output data by passing

it through a sequence of interconnected layers. In a neural network with l layers, the

output xl for an input x0 can be expressed as

xl =
(
f (l) ◦ f (l−1) ◦ · · · ◦ f (1)

)
(x0), (3.1)

where f (i) represents the function applied by the ith layer of the network and ◦ represents

the composite of functions. Various types of layers are commonly employed within neural

networks.

3.1.1 Common layers

Fully connected layer

A fully connected layer, also known as a dense layer, is a fundamental component used

in typical neural networks. Mathematically, it is defined by

fdense : RDin → RDout ; x 7→ σ(Wx+ b), (3.2)

where W ∈ RDout×Din and b ∈ RDout represent the weight matrix and bias vector, respec-

tively. The function σ, referred to as the activation function, introduces non-linearity into

the transformation process. One commonly used activation function is the rectified linear

unit (ReLU) [115], defined as ReLU(x) = max(0, x).

Convolutional layer

A convolutional layer is a type of neural network layer that specializes in extracting

features from input data, commonly used in image recognition tasks. In a two-dimensional

convolutional layer, given a filter K ∈ RK×K×Cin×N and an input X ∈ RHin×Win×Cin ,
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the output of the layer with kernel size K, stride S, and padding P has the form Y ∈
RHout×Wout×N . Here, Hout and Wout are expressed as

Hout =

⌊
Hin −K + 2P

S
+ 1

⌋
, Wout =

⌊
Win −K + 2P

S
+ 1

⌋
. (3.3)

where ⌊·⌋ denotes the floor function. The (i, j, n) component of the output of the convo-

lutional layer is calculated as

Yi,j,n =
K−1∑
k=0

K−1∑
l=0

Cin−1∑
c=0

X̃iS+k,jS+l,cKk,l,c,n. (3.4)

Here, X̃ ∈ R(Hin+2P )×(Win+2P )×Cin represents the padded input, defined by

X̃i,j,c =

Xi−P,j−P,c if 0 ≤ i− P < Hin and 0 ≤ j − P < Win,

0 otherwise.
(3.5)

Padding is often used to make the output size the same as the input.

Pooling layer

In a CNN, pooling layers are frequently used with convolutional layers. They play

a role in reducing the spatial dimensions of the input data while retaining important

information. Commonly, two types of pooling—max pooling and average pooling—are

used. The output of a max-pooling layer with kernel size K, stride S, and padding P for

an input X ∈ RHin×Win×Cin is calculated as

Yi,j,n = max
k=0,...,K−1

max
l=0,...,K−1

X̃iS+k,jS+l,n, (3.6)

while the output of an average-pooling layer is calculated as

Yi,j,n =
1

K2

K−1∑
k=0

K−1∑
l=0

X̃iS+k,jS+l,n. (3.7)

The padded input X̃ is defined in Eq. (3.5).

Dropout layer

A dropout layer [116] is a regularization technique used to prevent overfitting. During

training, the dropout layer randomly sets a fraction p of input units to zero. This technique

helps the network learn robust features. Mathematically, the dropout process involves

generating binary masks,

m1, . . .mDin i.i.d. ∼ Bernoulli(1− p) (3.8)

and taking element-wise multiplication between the masks and the input,

y = m · x. (3.9)
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Batch normalization layer

In neural networks, batch normalization [117] is a technique that performs normal-

ization for each mini-batch during training. A mini-batch refers to a subset of a data

set that is processed together during one iteration of training. Instead of processing the

entire dataset at once, which can be computationally expensive, the training data set is

divided into smaller batches. These batches are randomly sampled from the dataset, and

the model parameters are updated based on the gradients computed from each batch.

For an input comprised of n-dimensional vectors and a mini-batch size of m, denoted

as x ∈ Rm×n, the output of the batch normalization layer is expressed as

yij = γj
xij − µj√
σ2j + ϵ

+ βj , (3.10)

where γj and βj are trainable parameters of the layer. The mean µj and variance σ2j for

each dimension j of the input are computed as

µj =
1

m

m∑
i=1

xij , (3.11)

σ2j =
1

m

m∑
i=1

(xij − µj)
2. (3.12)

ϵ is a small value to avoid division by zero.

3.1.2 Training process

Loss function

In the previous section, we defined neural networks and introduced various types of

layers. In machine learning, the process of fixing the parameters within layers is called

training. This process is performed iteratively using a training set, and predefined loss

function, which measures the discrepancy between the predicted output of the network and

the actual value for a given input. Suppose we have a data set {(X1, y1), . . . , (Xm, ym)}
and the predicted value for the ith input is ŷi. In a regression problem, mean squared

error function, defined by

L =
1

m

m∑
i=1

(yi − ŷi)
2, (3.13)

is commonly used as the loss function. In a classification task, cross-entropy loss function

is favored. For C-class classification, the cross-entropy loss is mathematically defined as

L = − 1

m

m∑
i=1

C∑
j=1

y
(j)
i log ŷ

(j)
i . (3.14)

Here, the output yi is expressed as a one-hot vector with a size of C, where y
(j)
i = δjCi .

Ci denotes the class of ith sample.
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The parameters in a network are updated many times by a chosen optimization algo-

rithm to reduce the loss value. During this process, the same training set is used repeatedly.

This number of iterations is called an epoch. However, if we rely on one training set to

optimize the network parameters, the performance of the model on unknown data sets

may become low. This problem is called overfitting. To avoid it, usually an additional

data set, called validation set, is prepared. Throughout the training phase, the validation

data set is used to evaluate the model’s performance on unseen data by monitoring the

loss value for the validation set.

Optimizer

Most of the optimization algorithms used in neural networks are based on the gradient

descent method. In this method, the parameters θ at the ith iteration is determined using

the gradients of a loss function L computed with the current parameters:

θ(i+1) = θ(i) − η∇L
(
θ(i)
)
. (3.15)

Here, η represents the predetermined parameter known as the learning rate, which controls

how far the parameters are moved. Small learning rates lead to precise optimization but

may require many steps to converge the loss function. On the other hand, large learning

rates lead to fast optimization but have the risk of overshooting and missing the minima.

Thus, tuning the learning rate is important to improve the model.

The crucial step in updating the model parameters via Eq. (3.15) is to compute gra-

dients of the loss function with respect to the parameters of interest. Backpropagation is

a fundamental technique in the training of neural networks that systematically computes

gradients with respect to each parameter using the chain rule of derivatives. The chain

rule is applied to compute gradients layer by layer, starting from the output layer and

moving backward through the network.

In Eq. (3.15), since computing the loss function over the entire data set is computa-

tionally costly, a technique called stochastic gradient descent [118] has been developed.

This method involves randomly sampling mini-batches from the original dataset to com-

pute the loss function for the selected data and update the parameters based on the loss.

The use of mini-batches is not unique to the stochastic gradient descent, but is a common

practice in other optimization algorithms.

One method to avoid overfitting is regularization, in which a penalty term is added to

the loss function when updating the parameters with the gradient descent. Two commonly

used regularization techniques are L1 and L2 regularizations. For L1 regularization, the

update equation in the gradient descent method is given by

θ(i+1) = θ(i) − η∇
{
L
(
θ(i)
)
+ λ

∥∥∥θ(i)
∥∥∥
1

}
, (3.16)

where the p-norm ∥ · ∥p is defined by

∥x∥p =
∑
i

|xi|p. (3.17)
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For L2 regularization, the equation becomes

θ(i+1) = θ(i) − η∇
{
L
(
θ(i)
)
+ λ

∥∥∥θ(i)
∥∥∥
2

}
. (3.18)

In both regularizations, the hyperparameter λ controls the strength of regularization.

While both L1 and L2 regularizations works to suppress overfitting, L2 regularization is

preferred due to its easier computation of derivatives.

Several advanced optimization techniques have been developed to make the loss con-

verged faster, which is outlined below. More comprehensive review of optimizers can be

found in Ref. [119].

• Momentum. The stochastic gradient descent has difficulties when traveling across

ravines—regions where the curvature is much more steeper in one dimension com-

pared to others—that it oscillates across the slopes, resulting in slow convergence [119].

Momentum [120] helps accelerate the stochastic gradient descent by taking past up-

dates into consideration. The updating equations are given by

v(i) = γv(i−1) + η∇L
(
θ(i)
)
, (3.19)

θ(i+1) = θ(i) − v(i), (3.20)

where the hyperparameter γ is usually set to 0.9 or a similar value [119].

• Adagrad. In the stochastic gradient descent and the M omentum method, all

parameters are updated with the same learning rate, but it is expected that using a

different learning rate for each parameter can speed up convergence. Based on this

idea, Adagrad [121] introduces a technique where the learning rate is adjusted using

the magnitude of the gradients of each parameter. In this method, the parameters

are updated by

g(i) = ∇L
(
θ(i)
)
, (3.21)

θ(i+1) = θ(i) − η√
G(i) + ϵ

⊙ g(i), (3.22)

where ϵ is a small value to avoid zero division, and ⊙ denotes the Hadamard product.

The jth component of G(i) is defined as

G
(i)
j =

∑
k≤i

(
g
(k)
j

)2
. (3.23)

• RMSProp. RMSProp [122] is another optimizer that incorporates an adaptive

learning rate. The algorithm uses the following update equations:

g(i) = ∇L
(
θ(i)
)
, (3.24)

v(i) = βv(i−1) + (1− β)g(i) ⊙ g(i), (3.25)

θ(i+1) = θ(i) − η√
v(i) + ϵ

⊙ g(i). (3.26)
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The parameter β is a decay rate, commonly set around 0.9, controlling the contri-

bution of the past gradients to the leaning rate.

• Adam. Adam [123] is one of the most popular algorithms today due to its stability.

It incorporates both ideas from the momentum and the RMSProp. In this method,

the updating equations are

g(i) = ∇L(θ(i)), (3.27)

m(i) = β1m
(i−1) + (1− β1)g

(i), (3.28)

v(i) = β2v
(i−1) + (1− β2)g

(i) ⊙ g(i), (3.29)

m̂(i) =
m(i)

1− βi1
, (3.30)

v̂(i) =
v(i)

1− βi2
, (3.31)

θ(i+1) = θ(i) − η√
v̂(i) + ϵ

⊙ m̂(i). (3.32)

The values m(i) and v(i) are estimates of the first and the second moments. m̂(i) and

v̂(i) are bias-corrected first and second moment estimates. The authors proposed the

default parameters as β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

3.1.3 CNN architectures

Convolutional neural networks have shown promising performance, particularly in im-

age recognition and computer vision tasks. They are designed to adaptively learn spatial

features through convolutional and pooling layers, and based on extracted features, fully

connected layers make predictions. Various CNN architectures have been proposed over

the years. Among them, AlexNet [124] is one of the most influential CNN architectures

in this field. It has revolutionized the field of deep learning by achieving overwhelming

accuracy in the 1000-class classification task on the ImageNet dataset [125] using the deep

architecture along with techniques such as data augmentation, dropout, ReLU layers, and

the use of GPUs. VGGNet [126] is an improved version of the AlexNet with 16 or 19

layers. It is still used as a starting point for many image classification tasks.

These models demonstrated promising performance, but increasing the number of lay-

ers often led to the vanishing or exploding gradients problems. In response to this chal-

lenge, He et al. [127] proposed the residual neural network (ResNet), one of the most widely

used CNN architectures today. The ResNet introduced several residual blocks, which con-

sists of skip connections. The output of a residual block for an input x is expressed as

y = σ(F (x) + x), (3.33)

where F represents the transformation by several layers, ensuring that the shape of the in-

put remains unchanged. The skip connection adds the original input x to the transformed

output F (x) and an activation function σ is applied to the sum. During backpropagation,
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the gradient of this block is calculated as

∂y

∂x
=

∂y

∂H

∂H

∂x
=

∂y

∂H

(
∂F

∂x
+ 1

)
, (3.34)

where H(x) = F (x) + x. This equation indicates that even if gradients within the layers

are small, the addition of the input allows for better gradient propagation. This concept

has made it possible to train deep neural networks with tens to hundreds of layers. The

specific architectures of ResNet are summarized in Table. 3.1.

TABLE. 3.1. ResNet architecures. The output sizes are shown for input with size 224×224.
Taken from Ref. [127]

layer name output size 34-layer 50-layer 101-layer

conv1 112× 112 7× 7, 64, stride 2

conv2 x 56× 56

3× 3 max pool, stride 2[
3× 3, 64
3× 3, 64

]
× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

conv3 x 28× 28

[
3× 3, 128
3× 3, 128

]
× 4

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

conv4 x 14× 14

[
3× 3, 256
3× 3, 256

]
× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23

conv5 x 7× 7

[
3× 3, 512
3× 3, 512

]
× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

1× 1 average pool, 1000-d fc, softmax

3.2 Visualization technique

Machine learning predictions can often be opaque and difficult to comprehend, re-

sembling a black box. In response to this challenge, explainable artificial intelligence has

emerged as a prominent field. For CNNs, various visualization methods have been pro-

posed to interpret the predictions of the models. Some of the most representative ones

are introduced here.

3.2.1 Integrated gradients

Integrated gradients method [128] is a technique for computing the contributions of

each input pixel to the predictions by approximating integrals from the output to the

inputs along a straight line path. This algorithm is applicable to many neural networks.

Let F be a transformation of a neural network, x be the input, and x′ be the baseline

input. The feature attribution map is calculated by examining the path from the baseline

x′ to the input x and accumulating the network’s gradients along this path. The integrated
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gradients along the ith dimension for an input x are defined by

IGi(x) = (xi − x′i)

∫ 1

0

∂F (x′ + α(x− x′))

∂xi
dα. (3.35)

3.2.2 Class activation mapping

Class activation mapping (CAM) [129] is a technique used to visualize and understand

the regions of an input that contribute to the prediction of a particular class by a CNN.

This method provides insights into the parts of the input that the model is focusing on

when making its prediction.

CAM generates a map by computing the weighted combination of the feature maps

of the last convolutional layer of the CNN. These feature maps capture the high-level

representations of the input learned by the network. By examining the weights associated

with each feature map, CAM can highlight the regions of the input image that are most

relevant to the prediction of a specific class. The process of generating a CAM map is as

follows:

1. Forward pass: The input is passed through the CNN, and the activations of the last

convolutional layer are computed. These activations represent the high-level features

learned by the network.

2. Global average pooling: The feature maps obtained from the last convolutional

layer are aggregated using global average pooling. This step reduces the spatial

dimensions of the feature maps to a single value per channel, effectively summarizing

the information contained in each feature map.

3. Weighted combination: The aggregated feature maps are then combined with the

weights to produce a class activation map. The resulting map highlights the regions

of the input image that are most relevant for predicting the target class.

This procedure of calculating the CAM maps is illustrated in Fig. 3.1. By visualizing the

class activation map overlaid on the input, one can gain insights into which parts of the

image are important for the model’s decision-making process.

3.2.3 Grad-CAM

Grad-CAM, an extension introduced by Selvaraju et al. [130], is a generalized version

of the class activation mapping. Notably, the original CAM is exclusively applicable to

networks that incorporate a global average pooling layer at the end. Grad-CAM overcomes

this limitation by by extracting gradients from the final convolutional layer of the neural

network and using them to generate a class-discriminative localization map.

Suppose that for a given input, the score for class c of the trained model is yc, and the

kth output matrix of the last convolutional layer is Ak. To obtain the Grad-CAM map of

class c, we first compute the gradients of the score yc with respect to the (i, j) component

of the kth feature map Ak. We then take the global average of these gradients:

αc
k =

1

Z

∑
i,j

∂yc

∂Ak
ij

, (3.36)
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FIG. 3.1. Procedure for generating class activation maps. Image taken from Ref. [129].

where Z is the number of pixels in the feature map Ak. The Grad-CAM map of the class

c is computed as linear sum of Ak with αc
k as weights. The resulting map of class c is

expressed as

Lc
Grad−CAM = ReLU

(∑
k

αc
kA

k

)
. (3.37)

The ReLU function is applied to extract only features that have a positive contribution to

the score. Since convolutional layers and pooling layers make the size of the feature map

smaller than the input, Grad-CAM map is finally interpolated to make it the same size as

the input.

3.2.4 Grad-CAM++

While Grad-CAM takes a global average of the gradient matrix when calculating the

weight αc
k in Eq. (3.36), Chattopadhay et al. [131] proposed a method to fully include the

importance of each pixel in the gradient matrix by taking its weighted average for the

weight:

αc
k =

∑
i,j

αkc
ij ReLU

(
∂yc

∂Ak
ij

)
. (3.38)

The ReLU function is used to account for features that increase the activation of the

output neuron rather than suppress the activation of the output neuron. The weights αkc
ij

can be derived as follows.

In a CNN with a global pooling layer, the final score yc for a class c can be written as

a linear combination of its feature maps Ak:

yc =
∑
k

αc
k

∑
i,j

Ak
ij . (3.39)
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Combining Eqs. (3.38) and (3.39), we have

yc =
∑
k

∑
a,b

αkc
ab ReLU

(
∂yc

∂Ak
ab

)∑
i,j

Ak
ij . (3.40)

We take partial derivative with respect to Ak
ij on both sides of this equation. Without

loss of generality, we can neglect the ReLU activation in the derivation as it only works as

a threshold for allowing the gradients to flow back [131]. The first and second derivatives

are calculated as

∂yc

∂Ak
ij

=
∑
a,b

αkc
ab

∂yc

∂Ak
ab

+
∑
a,b

Ak
abα

kc
ij

∂2yc

(∂Ak
ij)

2
, (3.41)

∂2yc

(∂Ak
ij)

2
= 2αkc

ij

∂2yc

(∂Ak
ab)

2
+
∑
a,b

Ak
abα

kc
ij

∂3yc

(∂Ak
ij)

3
, (3.42)

respectively. From the second equation, we obtain

αkc
ij =

∂2yc

(∂Ak
ij)

2

2 ∂2yc

(∂Ak
ij)

2 +
∑

a,bA
k
ab

∂3yc

(∂Ak
ij)

3

. (3.43)

The CAM method using these weights is known as Grad-CAM++, since it can be consid-

ered as a generalization of Grad-CAM. The saliency map for Grad-CAM++ is expressed

in the same way as for Grad-CAM, using weights in Eq. (3.38) and feature maps, as

Lc
Grad−CAM++ = ReLU

(∑
k

αc
kA

k

)
. (3.44)

3.2.5 Score-CAM

Wang et al. [132] proposed a gradient-free CAM method called Score-CAM. It solves

the problem of gradient-based CAM methods, namely the gradient is unstable, easily

disturbed by noise, and can vanish or explode in deep networks. To generate a Score-

CAM map, feature maps are used to mask an input image. Let Hk be the k-th feature

map, up-sampled to the same size as the input and normalized to [0, 1]. Given an input

image X, the weight for the k-th feature map is computed as the difference between the

score of the masked image X ◦Hk and the score of the baseline image Xb:

αk = f(X ◦Hk)− f(Xb), (3.45)

where f(·) denotes the output of the CNN and ◦ denotes the Hadamard product. A black

image is used as a baseline image. The Score-CAM map of class c is then computed as

linear sum of the c-th value of αk and the feature map Ak as

Lc
Score−CAM = ReLU

(∑
k

αc
kA

k

)
. (3.46)
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The flow of calculating the Score-CAM map is illustrated in Fig. 3.2.

FIG. 3.2. Pipeline of Score-CAM. Image taken from Ref. [132].

3.2.6 Guided backpropagation

Guided Backpropagation [133] stands as another gradient-based visualization technique

that visualizes the effect of each pixel of the input on the output of the model. The guided

backpropagation map is computed by modifying the standard backpropagation algorithm

to only propagate positive gradients while backpropagated through the ReLU functions.

Let f li be the ith output matrix of the lth layer which is followed by a ReLU layer:

f l+1
i = ReLU(f li ) = max(f li , 0). (3.47)

In the normal backpropagation, the backpropagated value at layer l is calculated as

Rl
i =

∂f l+1
i

∂f li
· ∂f

out

∂f l+1
i

(3.48)

= Θ(f li ) ·Rl+1
i , (3.49)

where Θ is the Heaviside step function. On the other hand, guided backpropagation only

allows the propagation of positive gradients:

Rl
i = Θ(f li ) ·Θ(Rl+1

i ) ·Rl+1
i . (3.50)

R0 is the output image of the same size as input, which expresses the features of the input

image that activate neurons in higher layers.

The authors of Ref. [130] proposed the Guided Grad-CAM technique, which can pro-

duce high-resolution maps. Grad-CAM maps are highly class-discriminative, but not

high-resolution. In contrast, guided backpropagation maps are high-resolution, but not
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class-discriminative [133]. The Guided Grad-CAM map takes advantage of both methods

by taking element-wise multiplication of these two maps.

3.3 Machine learning in gravitational-wave astronomy

Following the remarkable development of machine learning in the fields of image recog-

nition and natural language processing, the filed of physics, including GWs, has also seen

the application of machine learning over the past decade. Recent applications of machine

learning for GW data analysis will be outlined below. More comprehensive review can be

found in Refs. [41, 42].

3.3.1 Signal detection

Various machine learning-based algorithms have been studied to detect different types

of signals, including CBCs, CCSNe, continuous waves, and stochastic backgrounds.

Compact binary coalescence

Machine learning-based methods have been studied as an alternative to the traditional

matched-filtering technique, which becomes computationally expensive when consider-

ing a large number of signal parameters. In a seminal study, George and Huerta [44]

trained a one-dimensional CNN for distinguishing between pure noise and BBH signals.

They demonstrated the CNN’s ability to identify simulated BBH signals in Gaussian

noise. Gabbard et al. [134] also performed a similar study around the same time. In

Ref. [135], the authors pointed out that machine learning models are not suited to claim

statistically significant detections of GW events, but can be useful for real time trigger

generation. Some studies proposed models inspired by or combined with the matched-

filtering techniques [136, 137]. Recently, a mock data challenge of machine learning-based

BBH detection models was conducted [138] and compared with the traditional PyCBC

pipeline [37, 139]. In their study, machine learning-based models showed comparable per-

formance to the matched-filtering technique in Gaussian noise, but struggled against real

detector noise. Subsequently, Nousi et al. [140] reported that their model outperformed

the PyCBC pipeline even in the real detector noise of O3.

For the detection of BNS signals, Krastev et al. [45, 141] demonstrated CNN-based

approaches to search for BNS and BHH signals in 10 sec real detector data. Their model

recovered all BBH signals in GWTC-1 as well as the BNS event, GW170817. In Refs. [142,

143], only inspiral parts of BNS signals are input to CNNs to provide early warnings

before mergers. Aveiro et al. [144] applied ‘you only look once’ (YOLO) object detection

model [145] to detect BNS signals in a spectrogram.

There are fewer studies focusing on NSBH signals compared to BBH and BNS signals.

In Refs. [146, 147], CNN models were built for detecting all signal types of CBC events,

including NSBH mergers.
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Core-collapse supernova

Recent multi-dimensional numerical simulations have enabled the training of machine-

learning models for detecting CCSNe by using the simulated signals and insights gained

from them. The first attempt was made by Astone et al. [46]. They used phenomeno-

logical signals of g-mode to train CNN models [46], surpassing the coherent WaveBurst

pipeline [148, 149] in their dataset. This method was further updated in Ref. [47] by us-

ing advanced phenomenological waveforms and CNN models. In other studies [150–152],

CNNs were trained using CCSN signals from various numerical simulations. Classifica-

tion of equation of states using simulated magnetorotational signals were carried out in

Refs. [153, 154]. Powell et al. [155] compared various methods including CNNs for classi-

fying multiple explosion mechanisms.

Continuous wave

Detecting GWs from isolating neutron stars is a challenging task due to their small

amplitude, which requires the processing of long duration data, resulting in high com-

putational cost. In Ref. [156], the authors explored Doppler parameter estimation using

a conditional variational autoencoder for rapid follow-up analyses. In another study by

Yamamoto and Tanaka [157], a combination of an excess-power method and a CNN was

employed for an all-sky search in O(107) sec-long data. End-to-end deep learning-based

methods have been developed in Refs. [158–160].

Stochastic background

There are not so many studies that use machine learning to search for stochastic GW

backgrounds. Among various candidates for stochastic backgrounds, search methods for

those from stellar-mass BBH mergers have been investigated in Refs. [161, 162].

3.3.2 Parameter estimation and sky localization

Parameter estimation, including sky localization of GW sources, has relied on Bayesian

techniques such as the Markov-chain Monte Carlo method. However, as the number of

signal parameters increases, the computational cost becomes prohibitive. Typically, the

full parameter estimation of CBC signals can take hours to days. Reducing the compu-

tational cost of sky localization is particularly important for NSBH and BNS signals to

enable multi-messenger observations.

As an alternative to the current method, machine learning based methods have been

explored to reduce the latency. Although regression and classification models can be

applied to these tasks [1, 163], methods to estimate the posterior distribution are often

preferred. Gabbard et al. [48] used a conditional variational autoencoder to estimate

posterior distributions of BBH parameters. Another popular model for this purpose is the

normalizing flow [164]. It works by transforming a simple initial distribution, such as a

Gaussian, into a more complex distribution through a series of invertible mappings. The

DINGO software [49, 50] has been developed using this method. Chatterjee et al. [165]

also used a normalizing flow for fast sky localization not only for BBH signals but also
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for NSBH and BNS signals. Additionally, they demonstrated the sky localization of BNS

signals before their merger time [166]. These machine learning-based sky localization

methods have the potential to improve multi-messenger astronomy in the future.

3.3.3 Glitch study

The detector output has many non-Gaussian and non-stationary noise transients,

known as glitches. These are caused by instrumental and environmental disturbances

from many different sources, some known and some yet to be identified. It is of great

importance to detect and subtract these noise transients to reduce the false alarm rate in

the search for GWs. Glitches can sometimes overlap with GW signals, making it difficult

to accurately estimate signal parameters. A notable example of this occurred during the

GW170817 event at the LIGO Livingston detector, where a loud glitch overlapped with

the GW signal, as shown in Fig. 3.3. This example emphasizes the importance of identify-

ing and mitigating glitches from detector data. It is also essential to know the frequency

and nature of glitches to improve the sensitivity of detectors.

The Gravity Spy project [51, 53] is a noteworthy initiative in this field and has played

a key role in studying glitches. In this project, spectrogram images of glitches identified

by the Omicron software [167] are labelled with 22 different classes based on their source

or shape (e.g. ‘Blip’, ‘Koi Fish’, and ‘Scattered Light’). Various supervised learning mod-

els have been proposed to classify the glitches in this dataset. For instance, Bahaadini

et al. [52] showcased the effectiveness of using merged images of different time durations

to address the different time scales of glitches. Powell et al. [168] used a generative adver-

sarial network [169] to produce fake glitches from the Gravity Spy dataset and trained a

classifier of them, achieving 99% classification accuracy. Sakai et al. [170, 171] proposed

an unsupervised learning model for clustering glitches. This not only reduced annotation

costs, but also potentially revealed the existence of new classes not present in the Gravity

Spy dataset.
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FIG. 3.3. The glitch overlapped with the GW170817 event in the LIGO Livingston data.
Figure taken from Ref. [20].
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Chapter 4

Hilbert-Huang Transform

The Hilbert-Huang transform [56] stands as a powerful signal processing technique for

exploring non-stationary and nonlinear signals by providing high-resolution time-frequency

representations. This chapter navigates through the fundamental aspects of the Hilbert-

Huang transform, primarily following Refs. [56, 172].

4.1 Analytic signal

Signals are real in nature; however, by defining a complex signal that corresponds

to the real signal, we can determine an instantaneous frequency of the signal. Here, we

introduce the concept of an analytic signal and delve into its properties concerning the

determination of instantaneous amplitude and instantaneous frequency.

Let z(t) be a complex signal whose real part is the original signal s(t), while the

imaginary part si(t) is determined in a specific way:

z(t) = s(t) + isi(t) = a(t)eiϕ(t). (4.1)

By fixing the imaginary part, we can define the instantaneous amplitude a(t) and the

instantaneous phase ϕ(t) as

a(t) =
√
s(t)2 + si(t)2, (4.2)

ϕ(t) = tan−1

(
si(t)

s(t)

)
. (4.3)

To define the imaginary part effectively, consider the conjugate symmetry of the spectrum

for real signals,

s̃(−ω) = s̃∗(ω). (4.4)

Since |s̃(ω)|2 is symmetric, the average angular frequency is always zero,

⟨ω⟩ = 1

2π

∫ ∞

−∞
dω ω|s̃(ω)|2 = 0, (4.5)

which is not intuitive. To address this, we define a complex signal by considering only the

positive frequencies. Thus, the Fourier transform of the complex signal is expressed as

z̃(ω) = 2s̃(ω)Θ(ω), (4.6)
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where Θ is the Heaviside step function. The factor 2 ensures that the real part is equal to

the original signal. The inverse Fourier transform of this complex signal yields

z(t) =
1

2π

∫ ∞

−∞
dω z̃(ω)e−iωt

=
1

π

∫ ∞

−∞
dω s̃(ω)Θ(ω)e−iωt

=
1

π

∫ ∞

−∞
dω s̃(ω)

1

2
(1 + sgn(ω))e−iωt

=
1

2π

∫ ∞

−∞
dω s̃(ω)e−iωt +

1

2π

∫ ∞

−∞
dω s̃(ω)sgn(ω)e−iωt (4.7)

= s(t) + s(t) ∗ i

πt
(4.8)

= s(t) + i
1

π
PV

∫ ∞

−∞
dt′

s(t′)

t− t′
, (4.9)

where sgn(·) denotes the sign function, ∗ denotes the convolution, and PV denotes the

Cauchy principal value. This imaginary part is known as the Hilbert transform of the

original signal,

H[s(t)] =
1

π
PV

∫ ∞

−∞
dt′

s(t′)

t− t′
. (4.10)

Therefore, the analytic signal can be written as

A[s(t)] = s(t) + iH[s(t)]. (4.11)

For a complex signal z(t), the average angular frequency is calculated as

⟨ω⟩ = 1

2π

∫ ∞

−∞
dω ω|z̃(ω)|2

=
1

2π

∫ ∞

−∞
dt z∗(t)

∫ ∞

−∞
dt′ z(t′)

∫ ∞

−∞
dω ωei(t

′−t)ω

=
1

2πi

∫ ∞

−∞
dt z∗(t)

∫ ∞

−∞
dt′ z(t′)

∫ ∞

−∞
dω

∂

∂t′
ei(t

′−t)ω

=
1

i

∫ ∞

−∞
dt z∗(t)

∫ ∞

−∞
dt′ z(t′)

∂

∂t′
δ(t− t′)

=
1

i

∫ ∞

−∞
dt z∗(t)ż(t). (4.12)

Expressing it in polar form yields

⟨ω⟩ = 1

i

∫ ∞

−∞
dt a(t)e−iϕ(t)

(
ȧ(t)eiϕ(t) + ia(t)ϕ̇(t)eiϕ(t)

)
=

∫ ∞

−∞
dt

(
ϕ̇(t)− i

ȧ(t)

a(t)

)
a(t)2. (4.13)
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The second term must be zero for ⟨ω⟩ to be real. As a result, ⟨f⟩ can be written as

⟨f⟩ = 1

2π

∫ ∞

−∞
dt ϕ̇(t)|z(t)|2

=
1

2π

〈
dϕ(t)

dt

〉
. (4.14)

Therefore, defining instantaneous frequency (IF) by

IF(t) =
1

2π

dϕ(t)

dt
(4.15)

is a natural choice.

For practical demonstration, let us calculate the instantaneous frequency of the sum

of two sinusoids,

z(t) = a1e
−iω1t + a2e

−iω2t. (4.16)

The Fourier transform of z(t) results in

z̃(ω) = 2π(a1δ(ω − ω1) + a2δ(ω − ω2)). (4.17)

The instantaneous frequency is then calculated as

f(t) = − 1

4π

{
(ω1 + ω2)− (ω1 − ω2)

a22 − a21
a(t)2

}
, (4.18)

where

a(t) =
√
a21 + a22 + 2a1a2 cos(ω1 − ω2)t. (4.19)

Figure 4.1 plots the instantaneous frequency in Eq. (4.18) for a1 = 1, a2 = −2, ω1 =

2π× 3, and ω2 = 2π× 5. Although the individual sinusoids have constant frequencies, the

calculated instantaneous frequency varies with time. Furthermore, despite the spectrum

of the analytic signal being zero for negative frequencies, the calculated instantaneous

frequency can be negative. These observations imply that the instantaneous frequency

defined by Eq. (4.15) does not always satisfy our intuition.
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FIG. 4.1. Instantaneous frequency of the sum of two sinusoids described by Eq. (4.16) for
a1 = 1, a2 = −2, ω1 = 2π × 3, and ω2 = 2π × 5.
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4.2 Empirical mode decomposition

We encountered an example in which the instantaneous frequency defined by Eq. (4.15)

does not have a physically meaningful component. In response, Huang et al. [56] empir-

ically established conditions under which meaningful instantaneous frequencies can be

extracted from signals. These conditions are:

(i) The number of extrema and the number of zero crossings must either equal or differ

by, at most, one.

(ii) The mean values of the upper and lower envelopes, determined using local maxima

and minima, must be zero across all data points.

A function meeting these conditions is termed the intrinsic mode function. The process

of decomposing a signal into intrinsic mode functions is referred to as the sifting process.

The procedure to extract the ith intrinsic mode function, denoted as ci(t), from a signal

x(t) is as follows:

1. Let g(t) = x(t)−
∑

j<i cj(t).

2. Identify the maxima and minima of g(t).

3. Generate the upper envelope u(t) and the lower envelope l(t) of g(t) using the cubic

spline interpolation (see Appendix E).

4. Calculate the mean values of u(t) and l(t):

m(t) =
u(t) + l(t)

2
. (4.20)

5. Subtract m(t) from g(t).

6. Verify if g(t) meets the convergence criterion. We adopt the stoppage criterion based

on the Cauchy-convergence test employing a predetermined value ϵ [56, 173]:∑
j |m(tj)|2∑
j |g(tj)|2

< ϵ. (4.21)

If the stoppage criterion is not met, repeat steps 2 to 6 for the updated g(t). Once

the conditions are fulfilled, the resulting g(t) is designated as the ith intrinsic mode

function.

After several intrinsic mode functions have been extracted, the process terminates if the

residue becomes monotonic or exhibits only one extremum. Consequently, we obtain the

decomposition

x(t) =
∑
i

ci(t) + r(t). (4.22)

The sequential steps from 1 through 5 and the resulting intrinsic mode functions for a test

signal are plotted in Figs. 4.2 and 4.3, respectively.
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FIG. 4.2. Excerpt of sequential steps in extracting the first intrinsic mode function from
a test signal.
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FIG. 4.3. Test signal (top) and the extracted two intrinsic mode functions (middle and
bottom) using the sifting process.

4.3 Hilbert spectral analysis

After extracting the intrinsic mode functions using the empirical mode decomposition

from a signal, we can further analyze the signal’s time-varying spectral characteristics by

computing the analytic signal for each intrinsic mode function, along with determining the

instantaneous amplitude and the instantaneous frequency. As previously explained, for

the ith intrinsic mode function, ci(t), the instantaneous amplitude ai(t) and instantaneous

frequency fi(t) are calculated as

ai(t) =
√
ci(t)2 +H[ci(t)]2, (4.23)

fi(t) =
1

2π

d

dt
tan−1

(
H[ci(t)]

ci(t)

)
. (4.24)

Since the instantaneous amplitude and instantaneous frequency of each intrinsic mode

function are obtained as functions of time, it is possible to visualize these information

in a three-dimensional space of time, frequency, and amplitude. In particular, one can
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construct a time-frequency map by

H(t, f) =
∑
i

ai(t)δ(f − fi(t)). (4.25)

This representation is termed the Hilbert spectrum, and the methodology employed to

generate it is known as the Hilbert spectral analysis. The process of deriving the Hilbert

spectrum from a signal through empirical mode decomposition and Hilbert spectral anal-

ysis is referred to as the Hilbert-Huang transform.

Figure 4.4 shows the instantaneous amplitude and the instantaneous frequency of each

intrinsic mode function of the test signal used in the previous section. Figure 4.5 exhibits

the time-frequency maps of the test signal computed using both the short-time Fourier

transform (STFT) and the Hilbert-Huang transform. The time and frequency resolutions

of the STFT map are 0.01 and 0.5, respectively. These resolutions are constrained by

the uncertainty relationship. In contrast, the Hilbert-Huang transform computes the in-

stantaneous amplitude and instantaneous frequency for each data point, offering superior

resolution compared to the STFT.
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FIG. 4.4. Instantaneous amplitude and instantaneous frequency of the intrinsic mode
functions of the test signal.
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(a) Short-time Fourier transform
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FIG. 4.5. Time-frequency maps of the test signal generated using the short-time Fourier
transform and the Hilbert-Huang transform.

4.4 Advanced techniques

4.4.1 Ensemble empirical mode decomposition

Despite its effectiveness in decomposing signals into intrinsic mode functions, the em-

pirical mode decomposition faces several challenges that can limit its accuracy and reliabil-

ity in certain situations. One major drawback is mode mixing, wherein different intrinsic

modes get combined, making it challenging to extract individual meaningful components

accurately. To address this challenge, a noise-assisted method, known as the ensemble

empirical mode decomposition, was introduced as an enhancement to provide more ro-

bust signal decomposition [174]. The method involves enhancing a signal by incorporating

white Gaussian noise to create multiple samples and derive the intrinsic mode functions

from each sample. The subsequent step is to compute the average of these intrinsic mode

functions across different noise-added samples. The algorithmic steps for the ensemble

empirical mode decomposition are as follows:

1. Generate N sequences, denoted as nk(t) for k = 1, . . . , N , where each sequence

represents a Gaussian noise with a mean of zero and a predetermined standard

deviation σ.

2. Construct an ensemble of noise-added data by adding the noise sequences to the

target data s(t). Formally, the kth data is represented as

sk(t) = s(t) + nk(t). (4.26)

3. Apply the empirical mode decomposition to each sk(t) to obtain the intrinsic mode

functions, along with the residue rk(t),

sk(t) =
∑
i

ci,k(t) + rk(t). (4.27)

Here, ci,k(t) is the ith intrinsic mode function of sk(t).
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4. Determine the definitive intrinsic mode functions and residue by taking the ensemble

mean,

ci(t) =
1

N

N∑
k=1

ci,k(t), r(t) =
1

N

N∑
k=1

rk(t). (4.28)

The process of the Hilbert-Huang transform with the ensemble empirical mode decompo-

sition is illustrated in Fig. 4.6.

Time-frequency
map

Empirical mode decomposition

Average

Hilbert spectral analysis
Add white Gaussian noise

FIG. 4.6. Schematic diagram of the ensemble empirical mode decomposition. IAk and
IFk denote the instantaneous amplitude and the instantaneous frequency of kth intrinsic
mode function ck(t), respectively.

4.4.2 Complementary ensemble empirical mode decomposition

In the ensemble empirical mode decomposition, the residue resulting from the addition

of white noise, defined as the difference between the original data and the reconstructed

data, is proportional to 1/
√
N , where N represents the number of trials used to derive

the ensemble intrinsic mode functions. An alternative approach was proposed by Yeh

et al. [175], wherein white noise is added in pairs—both positive and negative—to the

original data, thereby generating two sets of ensemble intrinsic mode functions. The

final intrinsic mode function is the ensemble of both the intrinsic mode functions with

positive and negative noises. This method reduce the computational costs and the residue

originated from white noises. The algorithmic steps of this technique is as follows:

1. Generate N sequences, denoted as nk(t) for k = 1, . . . , N , where each sequence

represents a Gaussian noise with a mean of zero and a predetermined standard

deviation σ.



Chapter 4. Hilbert-Huang Transform 59

2. Construct an ensemble of noise-added data s
(+)
k (t) and noise-subtracted data s

(−)
k (t)

to the target data s(t) for k = 1, . . . , N .

s
(+)
k (t) = s(t) + nk(t), (4.29)

s
(−)
k (t) = s(t)− nk(t). (4.30)

3. Apply the empirical mode decomposition to each s
(+)
k (t) and s

(−)
k (t) to obtain the

intrinsic mode functions, along with the residue r
(±)
k (t),

s
(+)
k (t) =

∑
i

c
(+)
i,k (t) + r

(+)
k (t), (4.31)

s
(−)
k (t) =

∑
i

c
(−)
i,k (t) + r

(−)
k (t). (4.32)

Here, c
(±)
i,k (t) is the ith intrinsic mode function of s

(±)
k (t).

4. Determine the definitive intrinsic mode functions and residue by

ci(t) =
1

2N

N∑
k=1

(
c
(+)
i,k (t) + c

(−)
i,k (t)

)
, r(t) =

1

2N

N∑
k=1

(
r
(+)
k (t) + r

(−)
k (t)

)
. (4.33)

4.5 Hilbert-Huang transform in gravitational-wave astron-

omy

Unlike the STFT or the wavelet transform, which are susceptible to time-frequency un-

certainty, the Hilbert-Huang transform is able to generate a high-resolution time-frequency

representation. This characteristic makes it particularly effective for analyzing non-stationary

and nonlinear signals, making it a valuable tool for GW analysis without assumptions on a

waveform model. In addition to the application to signal detection, its ability to compute

an instantaneous frequency with a function of time makes it a valuable tool for studying

underlying physics behind the GW waveforms.

The first application of the Hilbert-Huang transform in GW data analysis was per-

formed by Camp et al. [176]. They computed the instantaneous frequency of the inspiral of

a supermassive black hole merger and demonstrated the effectiveness of the Hilbert-Huang

transform to burst GW analysis. Detection method of BBH mergers using the Hilbert-

Huang transform was developed in Ref. [177]. They incorporated multiple techniques such

as Bayesian blocking and kernel density estimation to detect and characterize low-SNR

signals. In the subsequent study, Stroeer et al. [178] used instantaneous frequency and

amplitude to determine the relative timing delay of signals in multiple detectors. Taka-

hashi et al. [179] investigated the optimal parameters for the ensemble empirical mode

decomposition and method for extracting local extrema by using sine-Gaussian test sig-

nals. It was concluded that the stoppage criterion highly affects the accuracy of extracted

instantaneous frequency.

Since the first detection of GW events, several studies explored the application the

Hilbert-Huang transform to real detected data. Sakai et al. [170] successfully extracted
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the GW150914 signal from observed data by applying a bandpass filter and a bandstop

filter before the ensemble empirical mode decomposition. Various observed signals in O1

through O3 were analyzed in Ref. [180]. Among the analyzed signals, they reported that

they could not extract the two BNS signals, GW170817 and GW190425, due to their small

amplitudes. These results are consistent with another study in Ref. [181].

Applications to analyze post-merger signals of CBC events have been explored in sev-

eral studies. Kaneyama et al. [182] analyzed post-merger BNS signals and demonstrated

the classification of equation of states by accurately estimating the frequency. This method

was improved by Yoda et al. [173] by using Akima spline interpolation [183] instead of the

conventional cubic spline interpolation in the empirical mode decomposition. Estimating

starting times and frequencies of quasinormal modes from BBH ringdown was performed

in Ref. [171]. The method was compared to other approaches such as neural networks and

autoregressive models in Ref. [184].

For analyzing GW signals from CCSNe, Takeda et al. [57] used the Hilbert-Huang

transform to extract GWs associated with the SASI. They estimated the starting time

and the frequencies of the SASI mode from a simulated signal of neutrino-driven super-

nova explosion. Hu et al. [181] also analyzed neutrino-driven CCSN signals and indicated

the existence of the SASI mode in the time-frequency map. Yuan et al. [185] used the

ensemble empirical mode decomposition to both neutrino-driven and magnetorotational

CCSN signals to reconstruct waveforms.
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Chapter 5

Visualizing Convolutional Neural

Network for Classifying

Gravitational Waves from

Core-Collapse Supernovae

This chapter is a reprint of the paper [2] with minor modifications in formatting.

Figure 5.2 has been regenerated to match the dimensions of this thesis.

Abstract

In this study, we employ a convolutional neural network to classify gravitational waves

originating from core-collapse supernovae. Training is conducted using spectrograms de-

rived from three-dimensional numerical simulations of waveforms, which are injected onto

real noise data from the O3 observation of both Advanced LIGO and Advanced Virgo.

To gain insights into the decision-making process of the model, we apply class activation

mapping techniques to visualize the regions in the input image that are significant for the

model’s prediction. The class activation maps reveal that the model’s predictions predom-

inantly rely on specific features within the input spectrograms, namely the g-mode and

low-frequency modes. The visualization of convolutional neural network models provides

interpretability to enhance their reliability and offers guidance for improving detection

efficiency.

5.1 Introduction

The first detection of gravitational waves (GWs) from a bianry black hole merger by

the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) [5]

in 2015 marked the beginning of GW astronomy [6]. Throughout three observing runs

(O1, O2, and O3), Advanced LIGO and Advanced Virgo [18] reported 90 GW events [31–

34]. As of May 2023, the international GW network, now including KAGRA [19], has

begun its fourth observing run (O4) with improved sensitivity.

All of the GW events detected so far are exclusively from compact binary coalescences.

However, short-duration GW bursts arising from core-collapse supernovae (CCSNe) are
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expected to be detected by the current and next-generation GW detectors, such as the

Einstein Telescope [66] and the Cosmic Explorer [68]. CCSNe, resulting from massive star

explosions leading to neutron stars or stellar-mass black holes, stand as one of the most

energetic astrophysical events in the Universe, emitting electromagnetic waves, neutrinos,

and GWs. While electromagnetic waves from CCSNe are frequently observed, neutrinos

have only been detected from SN1987A [38, 39]. GWs are expected to carry information

about the inner core’s dynamics, providing vital insights into the explosion mechanism

which remains elusive. The primary conundrum lies in discerning how a stalled shock wave

is revived to cause a star to explode. Currently, there are two prevailing theories [91]: the

neutrino-driven mechanism [186], in which shock waves are revived by neutrinos stored

behind the shock wave heating the surrounding matter, and the magnetorotational mecha-

nism [187], in which the rapid rotation of the progenitor causes explosions driven by strong

magnetic fields. The typical GW detection range for neutrino-driven signals is expected

to be around 10 kpc, while the detection range for magnetorotational signals is expected

to be above 100 kpc [188].

Due to the stochastic nature of GW signals from CCSNe, the conventional matched-

filtering technique, which relies on specific waveform templates, is unsuitable. Alternative

detection methods based on the time-frequency representation have been devised in re-

sponse. In particular, the coherent WaveBurst pipeline [148, 149] detects and reconstructs

burst GW signals by searching for excess power in a time-frequency map, with minimal

reliance on a specific source model.

Predicting GW signals from CCSNe remains a formidable challenge. However, recent

advancements in theoretical research and multidimensional numerical simulations have

revealed certain signal properties. For neutrino-driven CCSNe, the dominant emissions

arise from the g-mode oscillation of the proto-neutron star surface. These frequencies

progressively increase over time, ranging from a few hundred Hz to a few kHz. Additionally,

at low frequencies (≲ 200 Hz), GW emissions associated with hydrodynamics instabilities

including neutrino-driven convection and standing accretion shock instability (SASI) [94]

are observed in some simulations. Insights obtained from these simulations are pivotal in

enhancing methods for CCSNe detection and analysis.

In recent years, machine learning techniques, especially deep learning, have gained

traction in a variety of scientific fields due to their capacity for recognizing intricate pat-

terns and extracting meaningful features from large data sets. This ability has been

especially noted in areas such as computer vision and natural language processing. Its ap-

plication in GW research has followed, with numerous implementations and explorations,

as highlighted in a comprehensive review in Ref. [41] and the foundational efforts by

George and Huerta [44, 189]. In the field of CCSNe analysis, Astone et al. [46] leveraged

convolutional neural networks (CNNs) to detect CCSNe within Gaussian noise, using g-

mode phenomenological waveforms for training, outperforming the coherent WaveBurst

pipeline. Consecutive studies by Iess et al. [150, 152] involved the training of both one-

and two-dimensional CNNs and long short-term memory networks [190] to identify seven

distinct CCSN waveforms embedded in real noise and glitches, with their models achieving

98% classification accuracy at 1 kpc with a three-detector network. Additionally, Chan

et al. [151] employed one-dimensional CNNs to investigate both magnetorotational and
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neutrino-driven signals in Gaussian noise, recording a true alarm probability of 80% for

magnetorotational signals from sources at 60 kpc and 55% for neutrino-driven signals

from sources at 10 kpc with a fixed false alarm probability of 10%. In another study,

Edwards [153] used two-dimensional CNNs to classify 18 different equations of state from

pure magnetorotational CCSN signals, attaining an accuracy of 72%. López et al. [47]

refined phenomenological waveforms originally used by Astone et al. [46], achieving a 60%

true alarm probability for signals located at 15 kpc with a 5% false alarm rate.

Although deep learning exhibits strong performance on a wide range of tasks, its intri-

cate models, characterized by a large number of parameters, pose challenges in elucidating

their decision-making processes. To address this, the field of explainable artificial intel-

ligence [55] has surged, aiming to make model decisions transparent and interpretable.

Within the context of CNNs, efforts have been made to develop techniques that attempt

to understand the decision-making process by reverse mapping the output of the network

into the input space to identify the specific input components that were discriminative in

producing the output. Class activation mapping (CAM) [129] is one such method, which

computes a weighted sum of the outputs of the last convolutional layer using the outputs

of the global average pooling layer after the last convolutional layer as weights. It helps

identify the regions in the input image that were important for a prediction, but the model

needs to be modified to include a global average pooling layer, which may result in lower

accuracy. Grad-CAM [130] was introduced as a solution to this limitation of CAM, offer-

ing the advantage of not requiring any modifications to the network architecture by using

gradient information from the prediction for weighted parameters. Subsequently, Grad-

CAM++ [131], a generalization of Grad-CAM, and Score-CAM [132], a gradient-free

CAM method, were developed to generate more accurate saliency maps than Grad-CAM.

These techniques to analyze deep learning models are commonly used in fields such as elec-

trocardiogram signal analysis [191] and X-ray diagnosis [192]; however, for GW analysis,

they have only been used in Ref. [193] to the best of our knowledge.

In this study, we first take an approach similar to Ref. [152] and train a two-dimensional

CNN model to classify CCSNe signals using short-time Fourier-transformed spectrograms

as input for simplicity. We use nine types of waveforms from recent three-dimensional

numerical simulations and O3 real noise to train and validate our model. In the test,

signals from sources between 1 and 10 kpc are considered, and the performance of the

model for sources at each distance is discussed. To interpret the model, we use three CAM

methods to generate saliency maps and evaluate them using two metrics: average drop

and average increase. The best CAM method is then applied to correctly classified and

also misclassified samples to visualize the regions in the input spectrogram that influence

the predictions of our model.

The remainder of this chapter is organized as follows. Section 5.2 describes our data

sets, the CNN model, and the CAM techniques. In Sec. 5.3, we discuss the classification

performance of our model, and apply multiple visualization techniques to interpret the

model. We summarize and conclude this chapter in Sec. 5.4.
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5.2 Method

Our CNN model is trained to classify strains at the three detectors LIGO Hanford (H1),

LIGO Livingston (L1), and Virgo (V1) into ten classes: noise and nine different CCSN

waveforms. In this section, we first provide an overview of the data used in this study,

including a brief summary of the CCSN simulation data and the preprocessing strategy to

generate our training, validation, and test sets. Subsequently, our CNN architecture and

the theory of the visualization technique of the model are explained.

5.2.1 Data set

CCSN waveforms

Modeling the stellar core collapse, bounce, and subsequent post-bounce evolution is

very complicated and computationally expensive. However, remarkable advancements in

three-dimensional numerical simulations of neutrino-driven explosions have been achieved

by several groups in recent years. Specific details of the waveform depend on various

properties of the progenitor, such as the mass, angular velocity, and equation of state of

the dense matter. Both the general relativity approximation and the handling of neutrino

transport critically influence simulations. From the available simulation data under a

variety of conditions, we select nine types of waveforms from four recent three-dimensional

numerical simulations [194–197]. All of them allow us to compute the GW amplitude in

any observer direction from the quadrupole moment.

Powell and Müller [194] performed simulations using the general-relativistic neutrino

hydrodynamics code CoCoNuT-FMT [198]. We use two waveforms from the models he3.5

and s18. The progenitor of he3.5 is an ultra-stripped star evolved from a helium star

with an initial mass of 3.5 M⊙. The simulation is stopped at 0.7 s after core bounce.

The GW is dominated by excitation of g-modes in the proto-neutron star with a peak

frequency around 900 Hz. Model s18 is a single star with a zero-age main-sequence mass

of 18 M⊙. The simulation was stopped 0.89 s after core bounce. The GW emission is

similar to model he3.5, with g-modes oscillations of the proto-neutron star with a peak

frequency around 900 Hz.

Radice et al. [195] studied eight models using the Eulerian radiation-hydrodynamics

code FORNAX [199]. We use waveforms from the models s13 and s25 corresponding

to progenitors of 13 and 25 M⊙ zero-age main-sequence, respectively. The simulation is

ended at 0.77 s in s13 and 0.62 s in s25 after bounce. Both waveforms are characterized

by f - and g- modes with a peak frequency around 1400 Hz in s13 and 1100 Hz in s25. In

addition, the s25 waveform has a clear SASI mode around 100 Hz.

From the simulation by Powell and Müller [196], we use the three models m39, y20,

and s18np. Model m39 is a rapidly rotating 39 M⊙ Wolf-Rayet star with an initial surface

rotation velocity of 600 km s−1. It produces a neutrino-driven explosion without magnetic

fields. The other two are nonrotating models of 20 M⊙ Wolf-Rayet star and an 18 M⊙

zero-age main-sequence star. The simulation is ended at 0.98, 1.2, 0.56 s after core bounce

in models m39, y20, and s18np, respectively. All three models show GW emission asso-

ciated with prompt convection shortly after bounce as well as f -mode oscillations of the

proto-neutron star. In model s18np, the absence of strong perturbations from convective
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oxygen burning, in contrast to s18, prevents the shock from being revived and leads to

the development of strong SASI activity, with a frequency reaching ∼ 400 Hz by the end

of the simulation.

Powell et al. [197] performed simulations using three equation of states: LS220 [200],

SFHx, and SFHo [201]. The progenitor models are 85 and 100 M⊙ Population III zero-

age main-sequence stars. We use the z85 sfhx and z100 sfho models. The simulation is

ended at 0.59 s in z85 sfhx and 0.62 s in z100 sfho. Both waveforms show typical g-mode

emission with a peak frequency of ∼ 700 Hz. In the z85 sfhx model, the frequency of the

SASI emission increases up to the point of shock revival, reaching ∼ 200 Hz, and decreases

afterwards. In the z100 sfho model, which does not explode, the frequency of the SASI

emission continues to increase by the end of the simulation, reaching ∼ 400 Hz.

Figure 5.1 shows the amplitude spectral density of the plus mode of each waveform at

1 kpc from the polar direction. The amplitude of the m39 waveform is the largest of these

waveforms. Waveforms that have peaks around 100 Hz such as s25 and s13 indicate that

they have SASI-induced GW modes.
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FIG. 5.1. Amplitude spectral density of the plus mode of each waveform at 1 kpc. The
observer is in the polar direction.

Data processing

Our data sets are generated from the simulation data outlined in the previous section.

A crucial step in this process is the computation of the GW amplitude. This is accom-

plished by uniformly sampling the direction of radiation (θ, ϕ) and using the formulae for
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the plus and cross polarization

h+ =
1

D

G

c4
(Q̈θθ − Q̈ϕϕ), (5.1)

h× =
1

D

2G

c4
Q̈θϕ, (5.2)

where Q is the traceless quadrupole moment and D is the distance between a source and

Earth. As the sampling of the simulation is usually not uniform in time, we resample data

uniformly with a sampling rate of 4096 Hz. A high-pass filter with a cutoff frequency of

11 Hz and a Tukey window with α = 0.1 are applied to the resampled signals. Each signal

is then truncated or padded with zeros to make the length 1 second. In order to make

the model robust, we randomly time shift the signals so that the time of the core bounce

is between 0 and 0.15 s. For the training and validation sets, the signals are scaled using

an optimal matched filter signal-to-noise ratio (SNR), as the amplitudes of the simulated

signals are quite different. The SNR is defined as

ρ =

√
4

∫ fmax

fmin

df
|h̃(f)|2
Sn(f)

, (5.3)

where h̃(f) is the Fourier transform of the signal and Sn(f) is the one-sided power spectral

density of the noise. The network SNR of the detectors H1, L1, and V1, given by

ρnet =
√
ρ2H1 + ρ2L1 + ρ2V1, (5.4)

is used to scale the signals. We generate samples with network SNRs from 20 to 50 for

training and validation sets. For the test set, the signals are scaled to have distances

between 1 and 10 kpc. Sky location is also randomly selected and the GW amplitude h(t)

is computed, taking into account the antenna pattern functions F+ and F× and the delay

in arrival time of each detector with the following equation:

h(t) = F+(α, δ, ψ, t)h+(t+∆t) + F×(α, δ, ψ, t)h×(t+∆t), (5.5)

where α is the right ascension, δ is the declination, and ψ is the polarization angle. ∆t

is the delay in arrival time between the detector and the center of the Earth. We use the

PyCBC software library [202] to carry out these computations.

Noise used in this study is O3 real data of Advanced LIGO and Advanced Virgo,

obtained from the Gravitational Wave Open Science Center [203]. Data from GPS time

1238236470 to 1238252308 is used for the training set, 1238265720 to 1238354855 is used for

the validation set, and 1238404064 to 1238457121 is used for the test set. Data around the

event time reported in the second Gravitational Wave Transient Catalog [32] are excluded.

After a signal is injected into the noise, each sample is whitened with the power spectral

density computed using Welch’s method [204] and then short-time Fourier transformed

with a window size of 0.0625 seconds to produce a spectrogram. The spectrogram is

normalized to [0, 1] before input to the network.

We generated 60 000 samples for the training and validation sets, and 100 000 samples

for the test set. The test set has 1000 samples for each class and each distance. Sample
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spectrograms in the training set are shown in Fig. 5.2.
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FIG. 5.2. Sample whitened spectrograms of each class at the H1 detector in the training
set. Each signal sample is observed in the polar direction and scaled to have an SNR of
40. The bounce time is fixed at 0.1 s.

5.2.2 CNN model

Our CNN model consists of two convolutional layers of kernel size 3, each followed

by a max-pooling layer of size 2 and a ReLU layer. The outputs of these layers are fed

into two fully connected layers, and finally the softmax layer outputs a size-10 vector

whose elements represent a probability of each class. The model has 427 378 trainable

parameters in total. This model is shallower than the one used in Ref. [152]. However,

its classification performance is comparable to the previous study, prompting us to adopt

this model. Reducing the number of layers also helps us generate higher-resolution CAM

maps.

The model is trained using categorical cross entropy as the loss function and Adam

optimizer [123] with a learning rate of 5 × 10−4 to update the weights. In the training,

we adopt curriculum learning [205] as a strategy to enhance the model and accelerate the

training by starting from inputting high-SNR samples and gradually adding lower-SNR

samples. We train the model on a single GPU (NVIDIA GeForce RTX3090) for 120 epochs

with a mini-batch size of 128.
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5.2.3 Visualization

After training the model, we use CAM techniques to generate saliency maps. These

maps show the regions in the input that influenced the model’s prediction. In this study,

we select three CAM methods—Grad-CAM, Grad-CAM++, and Score-CAM—which are

widely used today to interpret CNN models. All of these CAM techniques are applied to

the convolutional layer prior to the final max-pooling layer in our model.

Grad-CAM

Grad-CAM is a gradient-based visualization technique that highlights the important

regions of an input image that the model is looking at while making a prediction. Suppose

that for a given input, the prediction score for class c before the softmax layer of the

trained model is yc, and the kth output matrix of the last convolutional layer is Ak. To

obtain the Grad-CAM map of class c, we first compute the gradients of the score yc with

respect to the (i, j) component of the kth feature map Ak. We then take the global average

of these gradients:

αc
k =

1

Z

∑
i,j

∂yc

∂Ak
ij

, (5.6)

where Z is the number of pixels in Ak. This weight αc
k represents the importance of the

feature map k for the class c.

The Grad-CAMmap of the class c is computed as a linear sum of Ak with αc
k as weights.

The ReLU function is applied to extract only features that have a positive contribution

to the prediction score. The resulting map of class c is expressed as

Lc
Grad−CAM = ReLU

(∑
k

αc
kA

k

)
. (5.7)

Since convolutional layers and pooling layers make the size of the feature map smaller

than the input, the Grad-CAM map is finally interpolated to make it the same size as the

input.

Grad-CAM++

While Grad-CAM takes a global average of the gradient matrix when calculating the

weight αc
k in Eq. (5.6), Chattopadhay et al. [131] proposed a method to fully include the

importance of each pixel in the gradient matrix by taking its weighted average for the

weight:

αc
k =

∑
i,j

αkc
ij ReLU

(
∂yc

∂Ak
ij

)
. (5.8)

The ReLU function is used to account for features that increase the activation of the

output neuron rather than suppress the activation of the output neuron. The weights αkc
ij



Chapter 5. Visualizing CNN for Classifying GWs from CCSNe 70

can be theoretically derived using higher-order derivatives:

αkc
ij =

∂2yc

(∂Ak
ij)

2

2 ∂2yc

(∂Ak
ij)

2 +
∑

a,bA
k
ab

∂3yc

(∂Ak
ij)

3

. (5.9)

This method is known as Grad-CAM++, since it can be considered as a generalization

of Grad-CAM. The saliency map for Grad-CAM++ is expressed in the same way as for

Grad-CAM, using weights in Eq. (5.8) and feature maps, as

Lc
Grad−CAM++ = ReLU

(∑
k

αc
kA

k

)
. (5.10)

Score-CAM

Wang et al. [132] proposed a gradient-free CAM method called Score-CAM. It solves

the problem of gradient-based CAM methods, namely that the gradient is unstable, easily

disturbed by noise, and can vanish or explode in deep networks. To generate a Score-CAM

map, feature maps are used to mask an input image. Let Hk be the kth feature map,

up-sampled to the same size as the input and normalized to [0, 1]. Given an input image

X, the weight for the kth feature map is computed as the difference between the score of

the masked image X ⊙Hk and the score of the baseline image Xb:

αk = f(X ⊙Hk)− f(Xb), (5.11)

where f(·) denotes the output of the CNN and ⊙ denotes the Hadamard product. A black

image is used as a baseline image. The Score-CAM map of class c is then computed as a

linear sum of the cth value of αk and the feature map Ak as

Lc
Score−CAM = ReLU

(∑
k

αc
kA

k

)
. (5.12)

5.3 Results and discussion

5.3.1 Classification performance

Figure 5.3 shows the evolution of the categorical cross entropy loss function during the

training. Initially, we input samples with SNRs between 40 and 50. In the subsequent

40 epochs, samples with SNRs between 30 and 40 are input, leading to the temporary

increase in the loss at epoch 40. In the last 40 epochs, as we input samples with SNRs

between 20 and 30, a similar temporary increase in loss is observed at epoch 80. From the

loss curves, we confirm that there is no significant overfitting to the training data.

Classification accuracy is defined as the proportion of correctly classified samples out

of the total number of samples. After training, the model achieves a classification accuracy

of 97.8% on a validation set consisting of uniformly sampled signals with SNRs between

20 and 50. On the test set, our model shows an accuracy of 98.4% for signals with sources

from 1 kpc, which is comparable to the results of the previous study [152], despite some
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FIG. 5.3. Loss curves for the training and validation sets. During the first 40 epochs,
we input samples with SNRs between [40, 50], followed by [30, 40] SNR samples in the
subsequent 40 epochs, and [20, 30] SNR samples in the last 40 epochs.
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FIG. 5.4. True positive rate of each waveform in the test set against source distance.

differences in the condition that we used O3 noise instead of O2 noise and performed ten-

class classification instead of eight-class classification. In Fig. 5.4, we plot a true positive

rate for each waveform in the test set against distance. A true positive rate, also known

as the sensitivity of a class c, is defined as the ratio of the number of samples correctly

classified into class c to the number of samples of class c in the test set. For signals

from sources at 1 kpc, each waveform has a true positive rate greater than 90%, and this

decreases monotonically with the distance of the source, having an average true positive

rate of 26.1% at 10 kpc. For the m39 waveform, because the amplitude of the strain is

much larger than the others due to its rapid rotation and high explosion energy, the true

positive rate for sources at 10 kpc is 99.2%.

The performance of a multiclass classifier is also expressed by a confusion matrix, which

shows the number of samples classified into each class. Figure 5.5 plots the confusion

matrices normalized for each class and the distribution of the network SNR for signals
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from sources at 1, 5, and 10 kpc. We can see from the confusion matrices that as the

distance increases, the amplitude of the signal becomes smaller and the number of samples

misclassified as noise increases. The accuracy for signals at 10 kpc is 33.2%, and our model

cannot identify most of these signals, except for the m39 waveforms, whose SNR is much

higher than others with a median value of 47.9.
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FIG. 5.5. Confusion matrices of the test set (left) and violin plots of network SNR of each
waveform (right) from sources with distances of 1, 5, and 10 kpc.
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5.3.2 Dimensionality reduction

Before implementing CAM techniques, we used the t-distributed stochastic neigh-

bor embedding (t-SNE) [206] algorithm to see if the convolutional layers in the model

can extract the features in the input to classify samples. The t-SNE algorithm is a

dimensionality-reduction technique that minimizes the Kullback-Leibler divergence be-

tween two probability distributions: one representing pairwise similarities between data

points in the original high-dimensional space and another representing pairwise similarities

in a lower-dimensional space. In our CNN model, each sample is compressed into a vector

with a length of 2112 before the dense layers. The t-SNE algorithm is used to map this

vector into two-dimensional space to make it interpretable for humans. We visualize the

dimensionally reduced feature maps of the test set, whose signals are coming from sources

at 1 kpc, for which our model shows a good classification accuracy. The visualized data

are shown in Fig. 5.6. We can clearly see that there are ten clusters in the data set and

our model could extract meaningful features to classify these samples into ten classes. The

fact that some signal samples are also found in the noise cluster and that s13 samples are

found in other clusters, especially in the noise cluster, is consistent with the results of the

confusion matrix in Fig. 5.5(a).
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FIG. 5.6. Features of the test samples at 1 kpc extracted by CNN and mapped into two-
dimensional space by the t-SNE algorithm.

5.3.3 Saliency maps

To quantitatively evaluate different CAM methods, we use two metrics—average drop

and average increase [131]—which focus on the change in a model’s score caused by the

explanation map. An explanation map for a target class c is generated as element-wise
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multiplication of a saliency map Lc with an original image X:

Ec = Lc ⊙X. (5.13)

Average drop measures the percentage decrease in a model’s score for a target class c

when inputting only the explanation map, instead of the original image. It is expressed as

Average drop = 100 · 1

N

∑
i

max(0, yci − oci )

yci
, (5.14)

where yci is the score for class c on the ith original image and oci is the score on the expla-

nation map. The lower this value, the more effective the visualization method, since the

explanation map includes more of the relevant information for making a correct prediction.

Average increase measures the number of samples in the data set, and the model’s

confidence increases when providing only the explanation map as input. It is expressed as

Average increase = 100 · 1

N

∑
i

Θ(oci − yci ), (5.15)

where Θ is the Heaviside step function. Unlike the previous metric, the higher this value

is, the more effective the visualization method will be because there are more samples that

score higher when given the explanation map than when given the original image.

For the three visualization methods Grad-CAM, Grad-CAM++, and Score-CAM, the

two metrics described above are computed using signals from sources at 1 kpc in the

test set. The results are summarized in Table 5.1. Score-CAM shows the best results in

both metrics, meaning that it is the best visualization technique for our model among

the three CAM methods considered in this study. We also qualitatively compare these

methods by visualizing some samples. One example is shown in Fig. 5.7. The input image

is represented by a color image, with the red, green, and blue channels corresponding

to the H1, L1, and V1 spectrograms, respectively. All three saliency maps take large

values around the SASI mode around 100 Hz. At high frequencies, the Grad-CAM and

Grad-CAM++ maps only take slightly larger values around 1 kHz, whereas Score-CAM

has g-mode-like arch shapes around 1 kHz. This suggests that the visualization by Score-

CAM captures more of the input features that are discriminative for the prediction.

TABLE. 5.1. Results for evaluation of the explanations generated by Grad-CAM, Grad-
CAM++, and Score-CAM on the test set.

Method Grad-CAM Grad-CAM++ Score-CAM

Average Drop (%)
(Lower is better)

30.70 17.58 9.61

Average Increase (%)
(Higher is better)

1.30 1.40 1.96

As discussed above, we determine that the Score-CAM is the optimal method for

generating saliency maps for our model. We produce saliency maps by Score-CAM for

the inputs of each class, which can be seen in Fig. 5.8. In the input images, as in the

previous figure, the red, green, and blue channels corresponding to the H1, L1, and V1
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FIG. 5.7. Qualitative comparison of three CAM maps for the s25 sample at 1 kpc.

data, respectively. This means, for example, that in the reddish image such as the m39

sample in Fig. 5.8, the SNR at the H1 detector is smaller than that at the L1 and V1

detectors. All of the plotted signal samples are scaled to have an SNR of 40 and are

correctly classified by our model. We plotted several CAM maps for noise samples, in

addition to the one shown in this figure. However, the regions identified by the model

for labeling the spectrograms as ‘noise’ do not exhibit a clear distribution; instead, they

appear to be randomly distributed. In the he3.5 and s13 samples, we can see that the

model focuses on the g-mode arch shape, especially in their low- and high-frequencies

areas. In the s18 and y20 models, the models see all of the g-modes. In the s18np model,

the CAM map indicates that the model considers not only the g-mode but also prompt

convection and SASI. The s25 model has SASI activity, but its amplitude is not too large,

and the CAM map shows that the model’s prediction is based on the prompt convection

and the high-frequency g-mode. In the m39, z85 sfhx, and z100 sfho models, the CAM

maps take large values at high frequencies in the g-mode. In addition, in the z85 sfhx and

z100 sfho models, the low-frequency SASI mode, whose frequency increases with time, is

also visible in the CAM maps. To summarize these outcomes, we found that the model

looks at the g-mode in all signal waveforms, and also looks at SASI and prompt convection

in some signal waveforms when classified.

Additionally, we plot saliency maps of the misclassified samples. Figure 5.9 shows a

spectrogram of the s25 signal sample and the Score-CAM map, which the model classified

as s18np. An example spectrogram of the correct class s18np is also shown. The SNR

of this signal is 85, which is quite large, and the g-mode and the prompt convection

are visible, but there is a glitch in the strain at the L1 detector. The Score-CAM map

shows that the model focuses on the prompt convection and the glitch, which are used to

determine that the signal is s18np. Because of this glitch, the model predicted the signal

as s18np, whose g-mode frequency increases in a shorter period of time. Another example

is plotted in Fig. 5.10. This sample contains a s13 signal with an SNR of 48, and there

are no glitches, but the model classified it as y20. We can see a SASI-induced GW mode

around 100 Hz from 0.2 to 0.4 s, but the Score-CAM map indicates that the model only

looks at a portion of the g-mode and does not see the low-frequency mode.

From the misclassified samples and the Score-CAM maps, it is found that the perfor-

mance of the model is sometimes affected by glitches, and does not fully take advantage

of the characteristics of the signals. The former could be resolved by generating training

sets that contain more glitches, and the latter could be resolved by using a time-frequency

representation that is better able to reflect the various features of the CCSN signals.
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FIG. 5.8. Input spectrograms and Score-CAM maps of correctly classified samples. The
SNR of each signal sample is 40.

5.4 Conclusions

In this study, we trained a two-dimensional CNN model to classify CCSN GW signals

immersed in real noise of O3 observation data. Our model showed a comparable result

to the previous study [152] for signals from sources with distances of 1 kpc. To interpret

the trained model, we used the t-SNE algorithm and mapped the extracted features by

the convolutional layers into a two-dimensional space. The dimension-reduced features

show that the convolutional filters could extract meaningful features that are significant

for classifying the signals. To gain insights into the decision-making process of the model,

we applied the CAM technique to visualize the regions in the inputs that were influential

to the predictions. Three methods—Grad-CAM, Grad-CAM++, and Score-CAM—were

considered and we concluded that Score-CAM is the best for our model in terms of the

average drop and average increase metrics. The Score-CAM maps of correctly classified

signal samples revealed that the model’s predictions were heavily affected by a part of the

entire g-mode in the spectrogram of each signal. In some waveform models such as s18np,

s25, z85 sfho, and z100 sfho, their CAM maps suggest that the prompt convection or
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FIG. 5.9. s25 sample classified as s18np. (a) Input spectrogram. The red, green, and
blue channels correspond to the H1, L1, and V1 data, respectively. There is a glitch in
the L1 data. (b) Score-CAM map. (c) Example spectrogram of a s18np sample.
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FIG. 5.10. s13 sample classified as y20. (a) Input spectrogram. The red, green, and blue
channels correspond to the H1, L1, and V1 data, respectively. (b) Score-CAM map. (c)
Example spectrogram of a y20 sample.

SASI-induced GW mode also affects the model’s prediction.

It is important to note that ∼ 4% of the pure noise test samples are identified as signal,

which means that our model produces a false alarm every ∼ 25 s, making it unsuitable as

a detection pipeline. Since this study is the first to focus on the interpretability of CNN

models in GW data analysis and serves as a first step in showcasing the effectiveness of

the CAM techniques, we did not prioritize its viability as a detection methodology. To

utilize machine learning models for a future detection pipeline, it is crucial to lower the

false alarm rate. Using the CAM techniques can potentially enhance the efficacy of CNN

models for this purpose.

In this analysis, a time-frequency map was created from the short-time Fourier trans-

form, but its resolution is limited by the uncertainty relationship between time and fre-

quency. In future studies, we would like to improve the accuracy of the CNN model

by using methods such as the Hilbert-Huang transform [57], which can generate higher-

resolution time-frequency maps, and to confirm that the CNN can also utilize several more

GW modes to classify CCSN signals.
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Chapter 6

Comparative Study of 1D and 2D

CNN Models with Attribution

Analysis for Gravitational Wave

Detection from Compact Binary

Coalescences

This chapter is a reprint of the paper [3] with minor modifications in formatting.

Abstract

Recent advancements in gravitational wave astronomy have seen the application of con-

volutional neural networks (CNNs) in signal detection from compact binary coalescences.

This study presents a comparative analysis of two CNN architectures: one-dimensional

(1D) and two-dimensional (2D) along with an ensemble model combining both. We trained

these models to detect gravitational wave signals from binary black hole (BBH) mergers,

neutron star-black hole (NSBH) mergers, and binary neutron star (BNS) mergers within

real detector noise. Our investigation entailed a comprehensive evaluation of the detection

performance of each model type across different signal classes. To understand the mod-

els’ decision-making processes, we employed feature map visualization and attribution

analysis. The findings revealed that while the 1D model showed superior performance

in detecting BBH signals, the 2D model excelled in identifying NSBH and BNS signals.

Notably, the ensemble model outperformed both individual models across all signal types,

demonstrating enhanced detection capabilities. Additionally, input feature visualization

indicated distinct areas of focus in the data for the 1D and 2D models, emphasizing the

effectiveness of their combination.

6.1 Introduction

The era of gravitational wave (GW) astronomy was inaugurated with the first di-

rect detection of GWs from a binary black hole (BBH) merger by the Advanced Laser

Interferometer Gravitational-wave Observatory (Advanced LIGO) [5] in 2015 [6]. This
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groundbreaking discovery was followed by the first joint observation of GWs and electro-

magnetic counterparts from a binary neutron star (BNS) merger, achieved by Advanced

LIGO, Advanced Virgo [18], and other telescopes, paving the way for multi-messenger

astronomy [21]. Over the course of three observing runs (O1, O2, and O3), 90 GW events

from compact binary coalescences (CBCs) were reported [31–34]. These events included

two neutron star-black hole (NSBH) mergers [30] and two BNS mergers [20, 207]. The

detection of GWs, alongside electromagnetic waves and neutrinos from these mergers, is

vital for understanding the physical properties of neutron star interiors, which are reflected

in their equation of state. Now, with the commencement of the fourth observing run in

May 2023, which includes the participation of KAGRA [19], expectations are high for

more GW detections from binary systems with neutron stars.

Traditionally, GWs from CBC sources have been analyzed using the matched-filtering

technique [37] with theoretical approximants, phenomenological models, and templates

derived from numerical simulations [58, 105]. In this technique, the signal-to-noise ratio

(SNR) is computed by correlating the detector’s strain data with each template in a large

bank that covers a wide parameter space, taking into account variations in source masses

and/or spins. This method, however, can be computationally intensive, especially for

complex GW signals that incorporate elements such as higher-order modes, precession, or

orbital eccentricity. This complexity underscores the need for more efficient algorithms to

manage the growing volume of GW data.

In response to this challenge, deep learning approaches, particularly convolutional neu-

ral networks (CNNs), have been increasingly applied in the GW field. These applications

range from parameter estimation of CBC sources [48, 50] to sky localization [1, 163, 208]

and classification of transient noises [51, 53, 209]. The effectiveness of CNNs in detecting

GWs from BBH mergers was first demonstrated in 2018 by George and Huerta [44] and

Gabbard et al. [134]. These initial studies have since been expanded to include more sophis-

ticated models that use real detector noise and account for various signal complexities like

the spin effect, precession, higher-order modes, or eccentricity [135, 136, 138, 140, 189, 210–

219]. There are also some studies targeting BNS [45, 141–144, 220–222] or NSBH sig-

nals [146, 147, 223–225], which are more challenging than BBH signals due to their longer

duration and smaller amplitude.

Two main types of CNNs have been employed in this research: one-dimensional (1D)

CNNs, which process whitened time-series data, and two-dimensional (2D) CNNs, which

analyze time-frequency maps. Although most studies have favored 1D CNNs [44, 45, 134,

135, 140, 141, 143, 147, 189, 210–212, 215–217, 220–222, 224, 225], a subset has opted for

2D CNNs [142, 144, 146, 213, 214, 219, 223]. 1D CNNs are preferred for their efficiency

in not generating time-frequency maps, thereby reducing processing time. On the other

hand, 2D CNNs excel at capturing the temporal evolution of GW frequencies in their

input. For the analysis of GWs from core-collapse supernovae, Iess et al. [152] conducted

a comparative study of 1D and 2D CNNs, alongside long short-term memory networks.

Their approach involved combining these models by averaging their outputs. However,

to our knowledge, a similar comprehensive comparison of various CNN architectures for

CBC sources has not been extensively explored.
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A common method for analyzing and interpreting CNNs involves pinpointing the seg-

ments of input data that significantly influence the model’s predictions. This analysis can

be performed using class activation mapping techniques [129] or by assessing the contribu-

tion of each input feature to the model’s output. In our prior research [2], we applied CAM

techniques to a CNN classifier designed for GWs from core-collapse supernovae. This in-

vestigation revealed that the model primarily focused on specific GW modes within the

input spectrogram to make predictions.

In the current study, we train both 1D and 2D CNN models to detect and classify GWs

from CBC sources. We then develop an ensemble model that combines these two CNN

types. Our analysis includes a detailed comparison of the detection performance of these

models across each type of CBC signals. To distinguish the different aspects that 1D and

2D models focus on within the input, we employ the integrated gradients technique [128].

This approach allows us to identify the influential regions in the input that guide the

models’ predictions, revealing distinct areas of focus between the 1D and 2D models.

This chapter is organized as follows. Section 6.2 details our data sets, the architec-

ture of the CNN models, and the theoretical background of the CNN analysis methods.

Section 6.3 presents the classification performance and a comprehensive analysis of our

trained models. Finally, we conclude our findings in Sec. 6.4.

6.2 Method

Our CNN models are trained to classify strains at three detectors LIGO Hanford (H1),

LIGO Livingston (L1), and Virgo (V1) into four distinct classes: BBH, NSBH, BNS, and

pure noise. This section provides a detailed description of the data sets used for both

training and testing our models. Following this, we describe the architecture and training

procedures of the CNN models. Lastly, we address the dimensionality reduction technique

implemented in our study, as well as the methodology employed for computing feature

attribution, which are crucial for interpreting the models’ decision-making processes.

6.2.1 Data set

To train and test our model, we used non-precessing CBC signals and injected them

into noise obtained from O3 real data at H1, L1, and V1, which are available at the

Gravitational Wave Open Science Center [203].

Signal and noise generation

To construct our data sets, non-precessing CBC signals were generated using the

LIGO Algorithm Library Suite [226]. Specifically, BBH signals were simulated using the

SEOBNRv4 approximant [86], based on the effective-one-body method, while NSBH and

BNS signals were generated using the SpinTaylorT4 approximant [227], a time-domain

post-Newtonian model incorporating spin effects. For BBH signals, component masses

were uniformly sampled in the range of 5 to 80 M⊙. NSBH signals had NS masses sam-

pled between 1 and 2 M⊙, and BH masses between 5 and 35 M⊙. The component masses

of BNS signals ranged uniformly from 1 to 2 M⊙. The individual components have spins
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aligned with the orbital angular momentum, uniformly distributed between 0 and 0.99.

These waveforms were sampled at a rate of 4096 Hz. We used four-second data segments,

with the merger event uniformly placed between 3.8 and 3.9 sec. Although NSBH and

BNS signals are typically longer than 4 sec, we found this segment length is sufficient to

discriminate between different classes. The use of shorter-segment signals also reduces the

memory requirements for training models. The sky position of the source, defined by dec-

lination and right ascension, was randomly selected, and GW amplitude calculations were

performed considering the antenna pattern functions and time delays across detectors.

These computations utilized the PyCBC library [202].

For noise samples and background noise for signal samples, real strain data from GPS

time 1238163456 to 1238659072 was used for the training set, 1238663168 to 1239162880

was used for the validation set, and 1239166976 to 1239875584 was used for the test set.

Data around the GW event time reported in the GWTC-2.1 catalog [33] were excluded.

Preprocessing

After the signal samples were truncated to four-second segments, they were scaled

based on the computed optimal matched-filter SNR, defined as

ρ =

√
4

∫ fmax

fmin

df
|h̃(f)|2
Sn(f)

, (6.1)

where h̃(f) is the Fourier transform of the truncated signal and Sn(f) is the one-sided

power spectral density of the noise, estimated using Welch’s method [204]. The integration

was performed from a cutoff frequency of 20 Hz up to the Nyquist frequency. The training

and validation signals were scaled so that the network SNR of the three detectors, given

by

ρnet =
√
ρ2H1 + ρ2L1 + ρ2V1, (6.2)

followed a uniform distribution between 8 and 24, while the SNRs of the test signals

ranged from 3 to 24. After each signal was injected in noise, we whitened the sample in

frequency domain using the power spectral density. For the input to the 2D CNN model,

we generated time-frequency maps using the Q transform [113] of the whitened samples,

defined by

X(τ, ϕ,Q) =

∫ ∞

−∞
df x̃(f + ϕ)w̃∗(f, ϕ,Q)e−2πifτ , (6.3)

where Q is the quality factor, and the Connes window functions is used as the window

function [114].

The final data set comprised 408,000 training samples, 408,000 validation samples, and

528,000 test samples. Each data set had an equal distribution of 25% BBH, 25% NSBH,

25% BNS, and 25% pure noise samples. Representative samples from each class in the

training set are displayed in Fig. 6.1.
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FIG. 6.1. Example strain data at H1 detector in the training set. The upper figures show
the whitened time-series data used as input to the 1D model, and the lower figures show
the time-frequency maps for the 2D model. The component masses of the BBH signal are
51.3 M⊙ and 50.9 M⊙, whereas in the NSBH sample, the respective masses are 33.3 M⊙
and 1.83 M⊙, and the masses of the BNS sample are 1.54 M⊙ and 1.40 M⊙. The single-
detector SNR of each signal is 15, and the merger time is fixed at 3.9 s.

6.2.2 Model

1D CNN

One-dimensional CNN consists of 1D convolutional filters. Let xci be the ith value of

the cth channel of the input series and ymi be the ith value of the mth channel of the

output. The output of a 1D convolutional filter is given by

ymi =

C−1∑
c=0

K−1∑
k=0

wm
k x

c
i+k + bm, (6.4)

where K is the kernel size and C is the number of input channels. Weight parameters w

and bias parameters b are learned during training processes.

Our 1D CNN model takes a three-channel whitened time series at H1, L1, and V1

as input. Our implementation uses a 54-layer deep residual neural network (ResNet-54)

which was proposed in Ref. [140]. ResNet is a type of deep CNN architecture that uses

residual blocks to address the vanishing gradient problem commonly encountered in deep

networks. It achieves this by adding skip connections between layers, enabling the network

to learn residual functions and make training deep networks more efficient [127]. Details

of the ResNet-54 model architecture can be found in Ref. [140].

For input normalization, a deep adaptive input normalization layer [228] is employed in

this analysis as used in Ref. [140] to address non-stationary noise that appears in real detec-

tor noise. In this layer, unlike conventional normalization, shifting and scaling parameters

for normalizing the input are optimized during the training. Including the parameters in

the normalization layer, the model has a total of 1,935,698 trainable parameters.

The employed architecture is one of the state-of-the-art models in BBH detection that

surpassed the matched-filtering pipeline in a specific condition [140]. Alternatively, we

also employed the CNN architecture used in Ref. [147] designed to detect all types of CBC
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signals; however, it did not show a better performance than the ResNet-54 model in our

data sets.

2D CNN

Two-dimensional CNN consists of 2D convolutional filters. Let xci,j be the (i, j) com-

ponent of the cth channel of the input image and ymi,j be the (i, j) component of the cth

channel of the output. The output of a 2D convolutional filter is given by

ymi,j =

C−1∑
c=0

K−1∑
k=0

L−1∑
l=0

wm
k,lx

c
i+k,j+l + bm (6.5)

where (K,L) is the kernel sizes and C is the number of input channels. Weight parameters

w and bias parameters b are learned during training processes.

The ResNet-50 model [127], a variant of ResNet with proven efficacy in image recogni-

tion tasks, forms the basis of our 2D CNN. This model processes three-channel images of

time-frequency maps and includes 23,508,548 trainable parameters. We adopt this model

because it is one of the most widely used 2D CNNs in GW signal detection and has a

similar number of layers to our 1D model. Its efficiency has been validated in previous

studies [142, 146, 223].

Ensemble model

In our ensemble approach, we combine the outputs of the 1D and 2D CNN models

to enhance predictive performance. This is achieved by first training a fully connected

neural network, which takes as input a concatenated vector of features extracted from the

trained 1D and 2D models. The input vector, with a dimension of 10240, is processed

through a hidden layer of 200 units, outputting a four-dimensional vector. The network

incorporates a Leaky ReLU layer [229] and a dropout layer [230] with a 0.25 dropout rate

for regularization. The ensemble network comprises 2,049,004 trainable parameters.

For the final model output, we employ a weighted average of the predictions from the

1D, 2D, and ensemble network. The weights, optimized for accuracy on the validation set,

are set at 0.4 for each of the 1D and 2D CNNs and 0.2 for the ensemble network. The

ensemble model is illustrated in Fig. 6.2.

Training process

Both the 1D and 2D CNN models, as well as the ensemble network, were developed

using the PyTorch library [231] and trained on four NVIDIA Tesla V100 GPUs. All

models were trained using categorical cross entropy as the loss function and Adam op-

timizer [123] with an initial learning rate of 10−3. The learning rate was controlled by

PyTorch’s ReduceLROnPlateau method. During the training of the 1D and 2D CNNs, we

implemented the curriculum learning technique [205]. This method involves initially train-

ing with high SNR samples and progressively incorporating lower SNR samples, thereby

improving learning efficiency and model performance.
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FIG. 6.2. Illustration of the ensemble model. The final output is the weighted average of
the outputs from the 1D CNN, 2D CNN, and ensemble network.

The 1D CNN underwent 300 epochs of training with a mini-batch size of 1024. In

contrast, the 2D CNN was trained for 45 epochs using a mini-batch size of 36. The

ensemble network’s training lasted for 25 epochs with a mini-batch size of 256.

6.2.3 t-distributed stochastic neighbor embedding

To understand the ability of 1D and 2D convolutional filters to extract meaningful

features from the input for classification, we analyzed feature maps from the final convo-

lutional layer. Given the high-dimensional nature of these feature maps, we utilized the

t-distributed stochastic neighbor embedding (t-SNE) technique [206] for dimensionality

reduction.

In the original space, the conditional probability pj|i that a data point xi would pick a

data point xj as its neighbor is modeled as a Gaussian distribution centered at xi, defined

as

pj|i =
exp
(
−∥xi − xj∥2/2σ2i

)∑
k ̸=i exp

(
−∥xi − xk∥2/2σ2i

) , (6.6)

where σi is the standard deviation. We define the joint probability pij as the symmetrized

conditional probabilities, which can be expressed as pij = (pj|i + pi|j)/2n, where n is the

number of data points. In the low-dimensional space, the Student t distribution with one
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degree of freedom, defined by

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1

, (6.7)

is used to quantify the similarity of data points. The optimal low-dimensional representa-

tions are obtained by minimizing the Kullback-Leibler divergence of the distributions pij

and qij , given by

C =
∑
i,j

pij log
pij
qij
. (6.8)

The value of σi in Eq. (6.6) is determined by selecting the hyperparameter called perplex-

ity, which is defined as 2 to the power of the Shannon entropy. The perplexity can be

interpreted as a measure of the number of valid neighbors, and typical values are between

5 and 50 [206]. We set the perplexity at 25.

6.2.4 Integrated gradients

To discern which aspects of the inputs significantly influence the predictions in our

trained 1D and 2D models, we employed the integrated gradients method [128]. While

class activation mapping techniques [129, 130] are commonly used for such analysis, they

often yield low-resolution saliency maps, especially in deep models. To circumvent this

limitation, the integrated gradients method provides high-resolution feature attribution

maps, proving advantageous for our analysis.

The integrated gradients method is grounded in two axioms that attribution methods

should satisfy: (i) sensitivity, where any difference in one feature between the input and

the baseline resulting in different predictions should receive a non-zero attribution, and (ii)

implementation invariance, where the attributions for two functionally equivalent networks

should be always identical.

Consider a function F that represents a network and let x be the input and x′ be the

baseline input. The feature attribution map is calculated by examining the path from the

baseline x′ to the input x and accumulating the network’s gradients along this path. A

point on this path can be expressed as x′ + α(x − x′) where α varies from 0 to 1. The

integrated gradients along the ith dimension for an input x are defined as

IGi(x) = (xi − x′i)

∫ 1

0
dα

∂F (x′ + α(x− x′))

∂xi
. (6.9)

In practice, this integration is approximated using the Riemann sum, described as

IGi(x) ≈ (xi − x′i)

N∑
k=1

∂F (x′ + k
N (x− x′))

∂xi

1

N
. (6.10)

Here N represents the number of interpolation steps. For accurately approximating the

integral, a step size ranging from 20 to 300 is typically effective [128]. In our implemen-

tation, we chose N = 30 steps. The Captum library [232] was utilized to compute the

attribution maps using the integrated gradients method.
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6.3 Results and discussion

6.3.1 Model performance
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FIG. 6.3. ROC curves of the three models for BBH, NSBH, and BNS signals at a fixed
network SNR of 8.

To evaluate the performance of our three models (1D, 2D, and the ensemble model),

we first examined the receiver operating characteristic (ROC) curves for each signal type.

The ROC curve plots the true alarm probability against the false alarm probability at

various classification thresholds. As depicted in Fig. 6.3, the ROC curves for each type of

GW signal at a fixed network SNR of 8 show distinctive sensitivities.

It was observed that all models exhibited the highest sensitivity to BBH signals, fol-

lowed by NSBH and BNS signals. This trend aligns with expectations considering the

relative amplitude of each signal type. Notably, the ensemble model demonstrated supe-

rior performance across all signal types. For BBH signals, the performance ranking was

ensemble, followed by the 1D and then the 2D model. In contrast, for NSBH and BNS

signals, the 2D model outperformed the 1D model. This variation in performance can be

attributed to the transient nature of BBH signals, which are more effectively captured by

the 1D convolution in time-series data. Conversely, the smaller amplitudes of NSBH and

BNS signals, which are more challenging to identify in time-series data, render the 2D

model more effective. This difference highlights the effectiveness of combining the 1D and

2D models.

We further calculated the detection sensitivity for each signal type as a function of

network SNR. Figure 6.4 shows the sensitivity curves for the three models at a fixed

false alarm probability of 0.001. The 1D model’s sensitivity is on par with that reported

in Ref. [147], where the model was trained using single-detector input. Their model’s

sensitivity saturates at a single-detector SNR of ρL1 ≥ 8 for BBH signals, at ρL1 ≥ 10

for NSBH signals, and at ρL1 ≥ 13 for BNS signals. However, our 1D model reaches
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FIG. 6.4. Sensitivity curves of the three models for BBH, NSBH, and BNS signals at a
fixed false alarm probability of 0.001.

saturation for BBH signals at ρnet ≥ 12, for NSBH signals at ρnet ≥ 17, and for BNS

signals at ρnet ≥ 22. Given that the network SNR of three detectors is roughly
√
3 times

that of a single-detector SNR, the performance of our 1D model is consistent with their

model. The ensemble model further enhances this performance, lowering the saturation

SNRs to 10 for BBH signals, 14 for NSBH signals, and 21 for BNS signals.

6.3.2 Feature map

We extract feature maps from the final convolutional layers. Since these vectors are fed

into fully connected layers to make predictions, these feature maps represent the character-

istics of each class. Figures 6.5 and 6.6 display the t-SNE projections of the feature maps

for the trained 1D and 2D models, respectively. For these visualizations, we randomly

selected 200 samples from the test set. In the figures, the size of each marker representing

a signal sample is proportional to its SNR. Smaller markers indicate lower SNR signals,

while larger markers correspond to higher SNR signals.

Figure 6.5 shows that the high-SNR BBH and NSBH samples are distinctly separated

from the noise cluster, indicating effective classification of these signals by the 1D model.

However, BNS samples are observed to be closer to the noise cluster, suggesting less clear

differentiation for this signal type. Low-SNR signals across all types are more diffusely

distributed within the noise cluster. In contrast, Fig. 6.6 indicates that the 2D model has

an improved ability to separate not only the BBH and NSBH signals but also the BNS

signals from the noise cluster. This indicates that the 2D model may be more proficient

at identifying features of BNS signals compared to the 1D model.

Additionally, we explored embedding the feature maps into a three-dimensional space.

However, this analysis revealed similar features to those observed in the two-dimensional

embeddings.
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FIG. 6.5. Two-dimensional representations of feature maps of the 1D model by t-SNE.
The marker size of signal sample corresponds to the SNR.
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FIG. 6.6. Two-dimensional representations of feature maps of the 2D model by t-SNE.
The marker size of signal sample corresponds to the SNR.

6.3.3 Attribution map

To understand how input features contribute to model predictions, we generated at-

tribution maps for each type of signal using the integrated gradients method. For this

analysis, a single signal was randomly selected from the test set, and ten distinct noise

samples were added to create ten different input samples. Attribution maps were produced

for each input sample, and their average was computed to discern universal characteristics

of the attribution.

Figures 6.7, 6.8, and 6.9 present the attribution maps for a BBH, NSBH, and BNS

signal, respectively, as identified by the 1D and 2D models. Each signal had a fixed
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FIG. 6.7. Attribution maps of the 1D and 2D models for a BBH signal and corresponding
input samples at H1 detector. The red dashed line shows the time of coalescence.

network SNR of 20, and the attribution maps for both models were normalized to a [0, 1]

range. The bottom plots in Figs. 6.7, 6.8, and 6.9 show the values of integrated gradients

summed over all frequencies for each time bin for 1D and 2D model, respectively. The

values are normalized to a maximum integrated gradients of one for each model.

In Fig. 6.7, the 1D model shows significant contributions from data at the coalescence

time of the BBH signal. In contrast, the 2D model’s attribution map indicates that the

2D model focuses on the entire inspiral signal. Both the 1D and 2D models exhibit similar

characteristics when integrated-gradients values are temporally aggregated. However, the

2D model sees data at more broader time frame than the 1D model.

As for the NSBH signal, the 1D model exhibits multiple peaks in the integrated gradi-

ents values before the coalescence, with the peak values progressively increasing, shown in

Fig. 6.8. Since the model not only detects the signal but also classifies it into three classes,

the data prior to the time of coalescence seem to be more significant than the data at the

time of coalescence for determining that the signal is NSBH, not BBH. In the 2D model,

the feature contribution of the entire inspiral is large, as in the case of the BBH signal.

Similar characteristics of the NSBH sample are seen in the BNS sample in Fig. 6.9, but

in the case of 1D attribution map of the BNS sample, peaks are also seen at earlier times

and the overall values of the integrated gradients are generally identical. This indicates

that the model focuses on various parts of the input time series data, which is reasonable
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FIG. 6.8. Attribution maps of the 1D and 2D models for a NSBH signal and corresponding
input samples at H1 detector. The red dashed line shows the time of coalescence.

because the inspiral signal is longer than the other signals. The 2D attribution map of the

BNS sample shows that the 2D model accurately captures the BNS chirp signal on the

input spectrogram, and it demonstrates the consistent performance of the 2D model for

BNS events. The temporally aggregated attribution maps have similar characteristics for

each signal type for the 1D and 2D models, but the 2D model shows a greater emphasis

on longer signal durations than the 1D model.

In summary, from the attribution maps, we observe that the 1D model places greater

emphasis on the time preceding coalescence, especially as the waveform lengthens, with

significant contributions from specific moments in the inspiral phase. Conversely, the 2D

model assesses the entire chirp waveform in the spectrogram, classifying based on the

shape of the chirp, i.e., the temporal evolution of its frequency.

6.4 Conclusions

In this study, we explored the application of three distinct models: a 1D CNN, a

2D CNN, and an ensemble model for detecting and classifying GWs from CBC sources.

The 1D model, trained on whitened time-series data, excelled in identifying BBH signals,

while the 2D model, trained on Q-transformed spectrograms, showed superior performance
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FIG. 6.9. Attribution maps of the 1D and 2D models for a BNS signal and corresponding
input samples at H1 detector. The red dashed line shows the time of coalescence.

with NSBH and BNS signals. Overall, the ensemble model demonstrated the most robust

classification capability across all signal types.

The effectiveness of combining 1D and 2D models was further reinforced through fea-

ture map visualization using the t-SNE technique and attribution map analysis via the

integrated gradients method. We observed that the 1D model tends to focus on data

preceding the merger time, especially as signal duration increases. In contrast, the 2D

model scrutinizes the entire chirp waveform, capturing the intricacies of GW signals more

comprehensively. These differences in focus and performance between the models highlight

the benefits of their integration.

While our study presents results based on a specific selection of architectures for 1D

and 2D CNNs, it is important to recognize that the field offers a wide variety of CNN

architectures. Future research exploring additional architectures may provide a more

comprehensive understanding and validation of the conclusions drawn in this study.

We discussed the performance of the models by fixing a false alarm probability at

0.001, but given that each data sample is 4 s long, this would result in roughly one false

positive every hour, making our method insufficient for real application. Efficiency could

be enhanced by incorporating a subsequent model, such as a binary classifier differentiating

BBH signals from noise, to further reduce the false alarm probability. Validation is also

required to address unbalanced data, considering the source population.
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Our classification models hold potential for analyzing long continuous data through

a sliding window approach. Although our models were trained to identify GW signals

occurring between 3.8 and 3.9 s within four-second segments, sliding input window with a

step size, for example, of 0.1 s, allows us to detect signals at any time point in principle.

However, this approach may lead to encountering multiple triggers within a single event,

requiring further tuning, which will be addressed in future studies.
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Chapter 7

Using Hilbert-Huang Transform

for Parameter Estimation of

Proto-Neutron Stars from Their

Gravitational Waves

Abstract

Core-collapse supernovae are potential multi-messenger events detectable by current

and future gravitational-wave detectors. The gravitational-wave signals emitted during

these events are expected to provide insights into the explosion mechanism and the inter-

nal structures of neutron stars. In recent years, several studies have empirically derived the

relationship between gravitational-wave modes originating from the oscillations of proto-

neutron stars and the parameters of these stars. This study applies the Hilbert-Huang

transform to extract the frequencies of these modes and infer the physical properties of

proto-neutron stars. The results exhibit comparable accuracy to a short-time Fourier

transform-based estimation, highlighting the potential of this approach as a new method

to extract physical information from gravitational-wave signals from core-collapse super-

novae.

7.1 Introduction

Nearby core-collapse supernova (CCSN) explosions are expected sources for ground-

based gravitational-wave (GW) detectors. While the explosion mechanism is not yet fully

elucidated, most stars are believed to undergo neutrino-driven explosions [91, 233]. Cur-

rent detectors, such as Advanced LIGO, are predicted to detect explosions occurring within

our galaxy, up to a distance of approximately 10 kpc [188]. The Einstein Telescope [66] is

one of the proposed ground-based detectors, consisting of three interferometers with 10 km

arms arranged in a triangular formation. Such future detectors are anticipated to enable

the detection of supernova events from galaxies such as the Large Magellanic Cloud.

Over the past decade, significant progress has been made in the multi-dimensional

numerical simulation of CCSN explosions. In the neutrino-driven signals, the primary

source of GW emission is the g-mode, which represents the oscillation of proto-neutron
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stars, and the non-spherical flow of hot matter. The frequencies of the former mode

progressively increase from around 100 Hz up to several kHz, while the latter represents

a low-frequency mode around 100 Hz. The temporal evolution of these modes carries

valuable physical information about proto-neutron stars, and their observation contributes

to the field of asteroseismology.

In recent years, a relationship between the frequency of g-modes and the mass and

radius of proto-neutron stars has been investigated through numerical simulations. In

the study by Torres-Forné et al. [234, 235], relationships between each g/f/p-mode and

the mass and radius of the proto-neutron stars, as well as the shock mass and radius,

were calculated. These relationships are universal, as they do not depend on the equation

of state or the progenitor mass. Similar universal relationships have also been explored

in Ref. [236]. Using these relationships, the parameter estimation of proto-neutron stars

has been performed in Refs. [237, 238] by using short-time Fourier transform (STFT) to

extract g-mode frequencies.

To infer the physical properties of GW sources, accurate extraction of GW frequencies

is essential. For this purpose, the use of Hilbert-Huang transform [56] has been studied in

the GW field. Compared to the conventional STFT, time-frequency maps generated by

the Hilbert-Huang transform are not affected by the trade-off relationship between tem-

poral duration and bandwidth, resulting in high-resolutions both in time and frequency.

Several studies showcased the effectiveness of the Hilbert-Huang transform in determin-

ing the frequencies of GWs, including those from post-merger binary neutron star coales-

cences [173, 182], and the mode induced by the standing accretion shock instability (SASI)

in a CCSN [57].

In this study, we conduct a basic investigation using the Hilbert-Huang transform to

enhance the estimation of M/R2 from the g-mode GW signal, where M and R denote the

mass and radius of a proto-neutron star. We use a simulated GW signal from a CCSN

explosion and inject it into simulated Gaussian noise of the Einstein Telescope. Initially,

we apply the method to the raw GW signal, and subsequently, we examine noise-added

signals from various distances, conducting a comparative evaluation of accuracy with an

approach based on the STFT.

The remainder of this chapter is structured as follows. In Sec. 7.2, we describe the

simulation data used in this analysis. In Sec. 7.3, we explain our Hilbert-Huang transform-

based parameter estimation method. Our results are presented in Sec. 7.4. We discuss

the results in Sec. 7.5 and conclude this chapter in Sec. 7.6.

7.2 Simulation data

We use the GW signal of the he3.5 model derived from a three-dimensional numerical

simulation by Powell and Müller [194]. The progenitor is an ultra-stripped star evolved

from a helium core with an initial mass of 3.5 M⊙. An ultra-stripped star is a stellar rem-

nant resulting from the extreme stripping of outer layers in a binary star system [239]. The

simulation was performed with the neutrino hydrodynamics code CoCoNuT-FMT [198].

The shock is revived at 0.4 s and the simulation was stopped at 0.7 s after core bounce.

The GW signal is dominated by the 2g2-mode with a peak frequency of ∼ 800 Hz. The
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FIG. 7.1. The plus mode GW signal of the he3.5 model in time-domain (left) and in time-
frequency domain (right). The time-frequency map is produced using short-time Fourier
transform. The source is placed at 8 kpc, and the signal is observed from the equatorial
plane.
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FIG. 7.2. Amplitude spectral density of the he3.5 GW signal from 8 kpc and the de-
sign sensitivities of Advanced LIGO and the Einstein Telescope. The design sensivitiy of
Advanced LIGO is obtained from Ref. [240]. We use the design sensitivity of the ‘ET-D’
configuration [241] for the Einstein Telescope.

model does not exhibit low-frequency GW emission from the SASI, due to the small core

mass and the rapid drop in the accretion rate [194]. The plus mode of the GW signal is

plotted in Fig. 7.1. In Fig. 7.2, we plot the amplitude spectral density of the characteris-

tic strain at 8 kpc, along with the design sensitivity curves for Advanced LIGO and the

Einstein Telescope.

For the remainder of the analysis, the observer direction is fixed in the equatorial plane,

and the sky position is set at the Galactic Center. We sample GW signals and detector

noises from the Einstein Telescope at a sampling rate of 4096 Hz and apply a 100-1200

Hz band-pass filter. The selected frequency band is reasonable considering the g-mode

frequency shown in the spectrogram in Fig. 7.1. Additionally, we apply a notch filter

around 420 Hz to eliminate noise, which is represented as a sensitivity peak in Fig. 7.2.

We set the time origin when the GW amplitude is at its maximum.
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7.3 Parameter estimation method

7.3.1 Signal reconstruction

Since the Hilbert-Huang transform is susceptible to degradation from noise, we per-

form signal reconstruction before applying the Hilbert-Huang transform to the GW signal

injected into detector noise. For signal reconstruction, we employ the coherent Wave-

Burst [149, 242], an excess-power algorithm designed for the detection and reconstruction

of GWs with minimal assumptions on the waveform morphologies.

In this algorithm, a time-series data is whitened and converted to a time-frequency

domain using the Wilson-Daubechies-Meyer wavelet transform [243] with several different

time-frequency resolutions. Pixel energy is maximized over all sky positions, and pixels ex-

ceeding a specified threshold are retained for each time-frequency map. Subsequently, clus-

tering of neighboring pixels is performed for coincident pixels in the multi-resolution time-

frequency maps, and coherent clusters across multiple detectors serve as triggers. Each

trigger undergoes evaluation using the constrained maximum likelihood method [244]. For

accepted events, waveforms can be reconstructed by applying the inverse wavelet trans-

form to the selected pixels. We use the internal parameters and thresholds employed in

the LIGO-Virgo targeted search for CCSNe during the O1 and O2 runs [245]. Figure 7.3

shows the selected pixels and the reconstructed signal of the he3.5 GW waveform at a

distance of 17 kpc, injected into the Einstein Telescope noise.

(a) STFT of noise-added signal
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(b) Noise-added and original signals
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(d) Reconstructed signal

FIG. 7.3. Example of reconstruction by the coherent WaveBurst. The original signal is
placed at 17 kpc and the detector noise of the Einstein Telescope is added to the signal.
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7.3.2 Hilbert-Huang transform

We employ the complementary ensemble empirical mode decomposition [175] to de-

compose signals into intrinsic mode functions. The decomposition process of a signal x(t)

is as follows.

1. Generate N time-series sequences {nk(t)} (k = 1, . . . , N), where each sequence rep-

resents white Gaussian noise with mean zero and standard deviation σ.

2. Construct noise-added data s
(+)
k (t) and noise-subtracted data s

(−)
k (t) to the target

data s(t) for k = 1, . . . , N :

s
(±)
k (t) = s(t)± nk(t). (7.1)

3. Apply empirical mode decomposition [56] to each s
(±)
k (t) to obtain intrinsic mode

functions {c(±)
i,k (t)}, along with the residue r

(±)
k (t):

s
(±)
k (t) =

∑
i

c
(±)
i,k (t) + r

(±)
k (t). (7.2)

4. Determine the definitive intrinsic mode functions and residue by

ci(t) =
1

2N

N∑
k=1

(
c
(+)
i,k (t) + c

(−)
i,k (t)

)
, r(t) =

1

2N

N∑
k=1

(
r
(+)
k (t) + r

(−)
k (t)

)
. (7.3)

The specific parameters used in this analysis are listed in Table 7.1. After extracting

intrinsic mode functions, the instantaneous amplitude ai(t) and instantaneous frequency

fi(t) of each ci(t) are computed by the formulae

ai(t) =
√
ci(t)2 +H[ci(t)]2, (7.4)

fi(t) =
1

2π

d

dt
tan−1

(
H[ci(t)]

ci(t)

)
, (7.5)

where H[·] denotes the Hilbert transform,

H[ci(t)] =
1

π
PV

∫ ∞

−∞
dt′

ci(t
′)

t− t′
. (7.6)

TABLE. 7.1. Parameters used for the complementary ensemble empirical mode decompo-
sition.

Number of Gaussian noise samples N = 1000
Standard deviation of Gaussian noise σ = 0.8
Stoppage criterion ϵ = 7× 10−4
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7.3.3 Solving universal relation

To infer the physical properties of proto-neutron stars, we employ the universal relation

for the 2g2 mode [234, 235]:

f(t) = 5.88× 105x(t)− 86.2× 106x2(t) + 4.67× 109x3(t), (7.7)

where f(t) is the frequency of the 2g2-mode, and x(t) represents the proto-neutron star

mass M(t) in solar masses divided by the square of the radius R(t) in kilometers. To

determine x(t), we solve Eq. (7.7) for each time using the obtained instantaneous frequency.

The solutions to the cubic equations are computed via the eigenvalues of the companion

matrix (refer to Appendix F). Finally, we take the average of the estimated values from

three detectors of the Einstein Telescope.

7.4 Results

We first present our analyzed results for the raw he3.5 GW signal. Subsequently,

we show the results for the GW signal injected in the Einstein Telescope noise. In the

analysis, we generate 100 different Gaussian noise sequences for each distance.

7.4.1 Raw signal

We first applied our approach to the raw signal sample. As the sample does not

contain detector noise, we did not apply the coherent WaveBurst reconstruction in this

case. Figure 7.4 is the obtained time-frequency map from the Hilbert-Huang transform for

the raw he3.5 signal at a distance of 8 kpc. Additionally, we included the time-frequency

map generated using STFT for comparison. In the STFT time-frequency map, a white line

corresponds to the frequency with the maximum amplitude for each time bin. This white

line and the instantaneous frequency of the first mode in the Hilbert-Huang transform

exibit a similar frequency evolution, characterized by a rise from ∼ 500 Hz up to ∼ 1000

Hz. The extracted intrinsic mode functions, as well as the instantaneous amplitude and

frequency of the first mode are plotted in Fig. 7.5. Since the instantaneous amplitudes of

the other modes are small compared to that of the first mode, we focus only on the first

mode.

(a) Short-time Fourier transform
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FIG. 7.4. Time-frequency maps of the raw he3.5 signal from a distance of 8 kpc. The
white line in (a) represents the frequency with the maximum amplitude for each time bin.
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FIG. 7.5. Results of the Hilbert-Huang transform of the raw he3.5 signal. (a) The first
four intrinsic mode functions. Each mode is overlaid on the original signal. (b) The
instantaneous amplitude and frequency of the first mode.
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FIG. 7.6. Estimates of M/R2 of the proto-neutron star from the raw he3.5 signal.

From these frequencies, we solved the universal relation in Eq. (7.7) for each time. Fig-

ure 7.6 shows the computed M/R2 for each of the extracted frequency from the maximum

amplitude in the STFT map, and the instantaneous frequency of the first mode in the

Hilbert-Huang transform. The true values are obtained from the numerical simulation.

The estimates from the STFT map display some irregularities, yet the values closely ap-

proximate the true ones across all time. The estimates from the Hilbert-Huang transform

are larger than the true values up to 0.1 s, but beyond that point, they are closer to the

true values compared to those from STFT. We also compared the two estimates using the
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root mean squared error (RMSE), defined as

RMSE =

√
1

N

∑
i

(yi − ŷi)2, (7.8)

where N is the total number of samples, yi represents the true values, and ŷi is the

estimated values. The ratio of the RMSE for the Hilbert-Huang transform to that of

STFT was 0.956. This implies that the Hilbert-Huang transform exhibits approximately

4.4% lower error compared to STFT, based on the RMSE values.

7.4.2 Signal in detector noise

For signals injected into detector noise, we first measure how well the reconstructed

waveforms match the original waveform. For reconstructed waveform {wk} and injected

waveform {hk}, the network overlap is defined by [246]

Onet =

∑K
k=1(wk|hk)√∑K

k=1(wk|wk)
√∑K

k=1(hk|hk)
(7.9)

where K is the number of detectors, i.e. K = 3 in this analysis, and (·|·) denotes a

noise-weighted inner product defined using the one-sided power spectral density S(f) of

the detector noise:

(a|b) = 4Re

∫ ∞

0
df

ã(f)b̃∗(f)

S(f)
. (7.10)

The network overlap takes a value between −1 and 1. If Onet = 1, the reconstructed

waveforms perfectly match the injected waveforms. A value of Onet = 0 indicates no

match, while Onet = −1 implies perfect anti-correlation. Figure 7.7 shows the distri-

butions of the network overlap for each distance or network signal-to-noise ratio (SNR),

ρnet = (
∑K

k=1(hk|hk))1/2. To plot this, we simulated 100 different detector noises and re-

constructed the injected waveform in each noise. The plot exhibits the expected behavior:

as the distance increases, the overlap decreases, and the variance increases.
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FIG. 7.7. Distributions of the network overlap as a function of distance or network SNR.
Each boxplot was generated with 100 different noise realizations.
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FIG. 7.8. Distributions of the root mean squared error as a function of distance for the
three methods. ‘CWB+HHT’ denotes the use of the coherent WaveBurst reconstruction
and the Hilbert-Huang transform. ‘CWB+STFT’ refers to the use of the coherent Wave-
Burst reconstruction and the extraction of frequencies from the reconstructed STFT map.
‘STFT’ denotes the extraction of frequencies from the original STFT map. The white
circles in the plot denote the outliers.

We estimated M/R2 of the proto-neutron stars with three methods. The RMSE for

each method is shown in Fig. 7.8. In this plot, the method ‘CWB+HHT’ denotes the use

of the coherent WaveBurst reconstruction and the Hilbert-Huang transform. The second

method, ‘CWB+STFT’, refers to the application of the coherent WaveBurst reconstruction

and the extraction of frequencies from the reconstructed STFT map, considering the

maximum amplitude for each time bin. The third method, ‘STFT’ denotes the extraction

of frequencies from the original STFT map. For distances less than 5 kpc, the STFT-

based method without reconstruction achieves the smallest error. However, as the distance

increases, it experiences significantly increased errors, due to the influence of noise other

than the g-mode signal. As the distance increases, the two methods employing the coherent

WaveBurst reconstruction reduce the effect of noise, through the extraction of coherent

g-mode signals across multiple detectors. At shorter distances, the estimates from the

Hilbert-Huang transform have larger errors than those from the STFT, but this trend

reverses as the distance becomes larger. Figure 7.9 presents the average values of the

RMSE for each distance using these two methods. From this figure, the STFT-based

method outperforms for distances less than ∼ 15 kpc, while at greater distances, HHT

surpasses. Based on these results, we conclude that these two methods provide comparable

estimations for M/R2. Additionally, in Fig. 7.10, we plot the RMSE against the network

overlap for the estimates from the Hilbert-Huang transform. For samples with a network

overlap smaller than around 0.6, the RMSE is significantly larger. From these findings, it

is evident that accurate waveform extraction is crucial for estimating M/R2.
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FIG. 7.9. Average of the root mean squared error for each distance.
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FIG. 7.10. Root mean squared error against the network overlap for the estimates
derived from the Hilbert-Huang transform.

7.5 Discussion

The estimates from the raw signal using the Hilbert-Huang transform exhibited an

overestimation of the true values during the initial 0.1 s. The presence of the 2g1 mode

is considered as a potential cause. The universal relation for the 2g1 mode is expressed

as [234, 235]

f(t) = 8.67× 105x(t)− 5.19× 107x2(t). (7.11)

Using the simulated values ofM/R2 and the universal relations for the 2g1 and
2g2 modes,

we plotted the frequencies of these two modes on the STFT map of the raw signal, as

shown in Fig. 7.11. Additionally, Fig. 7.12 displays the computed instantaneous frequency

of the first mode in the Hilbert-Huang transform, as well as the frequencies of these two

modes. During the time when the frequency of the estimated 2g1 mode is within the

considered band (100-1200 Hz), the frequency of the first mode in the Hilbert-Huang
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FIG. 7.11. Two modes calculated using the universal relations from the simulated
M/R2. The time-frequency map is derived from the raw he3.5 signal.
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FIG. 7.12. Instantaneous frequency of the first intrinsic mode function along with the
2g1 and 2g2 modes derived from the simulated M/R2.

transform is higher than that of the 2g2 mode. Therefore, during this time period, the

first mode extracted in the Hilbert-Huang transform may be the mixed mode of these

two modes. The handling of this mixed mode or potential split mode will be discussed in

future research.

7.6 Conclusions

In this study, we demonstrated the use of the Hilbert-Huang transform for estimating

M/R2 of proto-neutron stars from their g-mode GW signals. We first applied it to the raw

signal and confirmed the effectiveness of our method to extract the g-mode frequencies.

We then tested our approach, the combination of the coherent WaveBurst reconstruction

and the Hilbert-Huang transform, for the signal injected into the detector noise at the
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Einstein Telescope. Our new approach showed comparable results to the STFT-based one

in terms of the RMSE.

While our approach may not have demonstrated significantly better accuracy than

STFT, having two independent methods that yield comparable accuracy is valuable in

real-world applications where the actual value is unknown. To validate the efficacy of

our method further, testing with additional simulation data is necessary. For waveform

reconstruction, we utilized the coherent WaveBurst algorithm, which does not assume a

waveform model in advance. Additionally, we would like to compare it with a reconstruc-

tion method that assumes a specific waveform model, as demonstrated in Ref. [238].

7.7 Appendix: Sample data and results

We randomly selected one sample from each of the 100 datasets at each distance and

plotted the estimates of M/R2 along with the STFT map in Figs. 7.13 to 7.17.
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FIG. 7.13. Test samples in STFT maps and the estimates of M/R2 at distances of 1 and
3 kpc.
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FIG. 7.14. Test samples in STFT maps and the estimates of M/R2 at distances of 5, 7,
9, and 11 kpc.
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FIG. 7.15. Test samples in STFT maps and the estimates of M/R2 at distances of 13, 15,
17, and 19 kpc.
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FIG. 7.16. Test samples in STFT maps and the estimates of M/R2 at distances of 21, 23,
25, and 27 kpc.
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FIG. 7.17. Test samples in STFT maps and the estimates of M/R2 at a distance of 29
kpc.
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Chapter 8

Conclusions

8.1 Summary of research results

This thesis explored the applications of novel techniques, including deep learning and

the Hilbert-Huang transform, to the analysis of gravitational-wave (GW) data. In the

study presented in Chapter 5, a convolutional neural network (CNN) model was trained

using time-frequency maps to classify GW signals from core-collapse supernovae (CCSNe)

within the detector noise of the third observing run. The model’s interpretability was

enhanced through the t-distributed stochastic neighbor embedding and the class activation

mapping (CAM) techniques. Notably, this study represents the first application of CAM

techniques to GW signal analysis in this field. Visualization via CAM techniques revealed

the model’s reliance on specific features in the spectrogram, especially the g-mode.

Chapter 6 investigated the distinctions between one-dimensional and two-dimensional

CNNs for detecting GWs from compact binary coalescences (CBCs). The 1D model

demonstrated superior performance in identifying binary black hole signals, while the 2D

model excelled with the other two types of signals. The computations of feature importance

revealed the unique strengths of the 1D and 2D models, highlighting the benefits of their

integration. The ensemble model, combining the strengths of both individual models,

demonstrated robust classification across all signal types.

In Chapter 7, the Hilbert-Huang transform was applied to estimate M/R2 from the

g-mode GW signals, where M and R denote the mass and the radius of proto-neutron

stars. The method was validated on raw signals and tested on signals injected into de-

tector noise, showing comparable results to short-time Fourier transform (STFT)-based

approach, highlighting its potential as a new method for such parameter estimations.

8.2 Future prospects

Here, we discuss the future prospects for each of the three studies described in this

thesis.

8.2.1 Core-collapse supernova detection and classification

As mentioned in Chapter 5, the CAM visualization indicated that certain low-frequency

modes were not utilized by the model for predictions. Additional or alternative time-

frequency maps from wavelet and the Hilbert-Huang transforms should be considered. If

applying the Hilbert-Huang transform, it is necessary to suppress noise or reconstruct
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waveforms beforehand, and the methodology for these processes should be carefully con-

sidered.

Preparing enough samples for training and validating a model for GWs from CCSN

explosions is challenging due to the absence of observations. Furthermore, the availability

of multi-dimensional simulation data is limited. To improve the detection model, machine

learning techniques can be used to generate new waveforms for the training set. Multiple

groups have already studied the use of a generative adversarial network [169] for glitch

noise generation [168, 247, 248]. GW signals from CCSNe could be generated in a similar

way.

8.2.2 Compact binary coalescence detection and classification

The evaluation of our models outlined in Chapter 6 is not complete. Given that CBC

events have been detected over 100 times, we can assess the validity of our method using

the observed data. Our classification model can be employed using a sliding window

approach for long-duration data. It is important to consider the sliding steps and the

treatment of triggers. Additionally, applying the model to background noise is crucial for

computing the false alarm rate.

In the field of GW detection, machine learning has two primary objectives: to speed up

the identification of signals and to detect signals that may be missed by other pipelines. In

the latter scenario, training models focused on complex signals that incorporate physical

effects of interest, such as eccentricity, precession, and higher-order modes, may discover

events that were previously missed.

8.2.3 Parameter estimation of proto-neutron star

The study discussed in Chapter 7 requires further investigation. First, we need to

validate our approach using a wider range of simulated signals. While we utilized the co-

herent WaveBurst algorithm for waveform reconstruction, exploring alternative methods

is essential. For instance, the BayesWave algorithm [249–251] is another method that can

reconstruct GW signals from noise and glitches without any prior waveform morpholo-

gies. Reconstruction with an assumption on the signal model was performed in Ref. [238]

through Bayesian parameter estimation using an asymmetric chirplet signal model [252]

and the non-central chi-squared likelihood method [253]. Comparing these reconstruction

methods before applying the Hilbert-Huang transform can provide valuable insights. Al-

though we employed the Einstein Telescope detectors, exploring other detectors, including

current ones and the Cosmic Explorer, adds an interesting dimension to the analysis.

In Chapter 7, we mentioned the potential occurrence of mode mixing in the first intrin-

sic mode function, which requires further consideration. If the 2g1 mode is indeed present

in the GW signal we used, it may be possible, by tuning the parameters of the ensemble

empirical mode decomposition, to extract an intrinsic mode function that expresses the
2g1 mode for the initial 0.1 s and then transitions to the 2g2 mode. In such a scenario,

the first 0.1 s of the 2g2 mode would appear in the second intrinsic mode function, which

means that the 2g2 mode is split in two intrinsic mode functions. The challenge lies in

how to connect the two split modes in this case.
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Moreover, it is necessary to investigate whether our method can extract multiple modes

when using other simulation data in which multiple modes appear. The method we used

for comparison, which extracts the frequencies from the maximum amplitude at each time

bin of the STFT image, cannot extract multiple modes; HHT is considered advantageous

in this respect. Furthermore, it would be beneficial to explore whether the estimation of

M/R2 using multiple modes improves the accuracy compared to using a single mode.
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Appendix A

Expansion of Ricci Tensor

Here, we compute the expansion of the Ricci tensor up to the second order around

the background spacetime, following the procedure outlined in Ref. [254]. The results are

used in expanding the Einstein-Hilbert action, as shown in Eq. (2.8).

We write the metric tensor gµν as the sum of the background g
(B)
µν and the perturbative

term hµν ,

gµν = g(B)
µν + hµν . (A.1)

We expand the Ricci tensor and the Christoffel symbol in terms of the hµν as

Rµν = R(B)
µν +R(1)

µν +R(2)
µν +O(h3), (A.2)

Γα
µν = Γ(B)α

µν + Γ(1)α
µν + Γ(2)α

µν +O(h3). (A.3)

The connection Γα
µν and the Riemann tensor Rµν are defined for the metric gµν , while

Γ(B)α
µν and R

(B)
µν are defined for the background metric g

(B)
µν . Covariant derivatives with

respect to the metric gµν is denoted by ‘;’, and covariant derivative with respect to the

metric g
(B)
µν is denoted by ‘—’. For instance,

Aµ
;α = Aµ

,α +AνΓµ
να, (A.4)

Aµ
|α = Aµ

,α +AνΓ(B)µ
να. (A.5)

The raising and lowering of indices for hµν are performed using g(B)µν as follows,

g(B)µνhνρ = hµρ. (A.6)

We first note that gµν is expanded as

gµν = g(B)µν − hµν + hµαhα
ν − hµαhα

βhβ
ν +O(h4). (A.7)

This expansion can be confirmed by proving gρµg
µν = δρ

ν . In practice,

gρµg
µν = (g(B)

ρµ + hρµ)(g
(B)µν − hµν + hµαhα

ν − hµαhα
βhβ

ν)

= (δρ
ν − hρ

ν + hρ
αhα

ν − hρ
αhα

βhβ
ν) + (hρ

ν − hρµh
µν + hρµh

µαhα
ν)

= δρ
ν +O(h4). (A.8)
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We define Sµ
βγ as the difference between the Christoffel symbol Γµ

βγ and the background

Christoffel symbol Γ(B)µ
βγ :

Sµ
βγ = Γµ

βγ − Γ(B)µ
βγ . (A.9)

From the transformation law for the Christoffel symbol,

Γµ′
β′γ′ =

∂xµ
′

∂xµ
∂xβ

∂xβ′
∂xγ

∂xγ′ Γ
µ
βγ +

∂xµ
′

∂xα
∂2xα

∂xβ′∂xγ′ , (A.10)

Γ(B)µ′
β′γ′ =

∂xµ
′

∂xµ
∂xβ

∂xβ′
∂xγ

∂xγ′ Γ
(B)µ

βγ +
∂xµ

′

∂xα
∂2xα

∂xβ′∂xγ′ , (A.11)

the transformation of Sµ
βγ becomes

Sµ′
β′γ′ =

∂xµ
′

∂xµ
∂xβ

∂xβ′
∂xγ

∂xγ′ S
µ
βγ . (A.12)

Thus, Sµ
βγ is a tensor, and Sαβγ is calculated as

Sαβγ = gανS
ν
βγ

= gανΓ
ν
βγ − (g(B)

αν + hαν)Γ
(B)ν

βγ

=
1

2
(hαβ,γ + hαγ,β − hβγ,α)− hανΓ

(B)ν
βγ . (A.13)

Using the identity

hαβ|γ + hαγ|β − hβγ|α = hαβ,γ − hνβΓ
(B)ν

αγ − hανΓ
(B)ν

βγ

+ hαγ,β − hνγΓ
(B)ν

αβ − hανΓ
(B)ν

γβ

− hβγ,α + hνγΓ
(B)ν

βα + hβνΓ
(B)ν

γα

= hαβ,γ + hαγ,β − hβγ,α − 2hανΓ
(B)ν

βγ , (A.14)

we obtain the following:

Sαβγ =
1

2
(hαβ|γ + hαγ|β − hβγ|α), (A.15)

Sµ
βγ =

1

2
gµα(hαβ|γ + hαγ|β − hβγ|α). (A.16)

Next, we proceed to compute the Riemann tensor. The Riemann tensor Rα
βγδ for the

metric gµν and the background Riemann tensor R(B)α
βγδ for the background metric g

(B)
µν

are defined as

Rα
βγδ = Γα

βδ,γ − Γα
βγ,δ + Γα

µγΓ
µ
βδ − Γα

µδΓ
µ
βγ , (A.17)

R(B)α
βγδ = Γ(B)α

βδ,γ − Γ(B)α
βγ,δ + Γ(B)α

µγΓ
(B)µ

βδ − Γ(B)α
µδΓ

(B)µ
βγ . (A.18)
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The purtabative term of the Riemann tensor can be expressed using S as

Rα
βγδ −R(B)α

βγδ = (Γα
βδ,γ − Γ(B)α

βδ,γ)− (Γα
βγ,δ − Γ(B)α

βγ,δ)

+ Γα
µγΓ

µ
βδ − Γα

µδΓ
µ
βγ − (Γ(B)α

µγΓ
(B)µ

βδ − Γ(B)α
µδΓ

(B)µ
βγ)

= Sα
βδ,γ − Sα

βγ,δ + Sα
µγS

µ
βδ − Sα

µδS
µ
βγ

+ Γα
µγΓ

(B)µ
βδ + Γµ

βδΓ
(B)α

µγ − 2Γ(B)α
µγΓ

(B)µ
βδ

− Γα
µδΓ

(B)µ
βγ − Γµ

βγΓ
(B)α

µδ + 2Γ(B)α
µδΓ

(B)µ
βγ (A.19)

= Sα
βδ|γ − Sα

βγ|δ + Sα
µγS

µ
βδ − Sα

µδS
µ
βγ . (A.20)

Thus, the Ricci tensor is expressed as

Rµν −R(B)
µν = Sα

µν|α − Sα
µα|ν + Sα

βαS
β
µν − Sα

βνS
β
µα. (A.21)

We compute each term in the right-hand side of this equation.

Sα
µν|α =

1

2
{gαβ(hβµ|ν + hβν|µ − hµν|β)}|α

=
1

2
{(g(B)αβ − hαβ)(hβµ|ν + hβν|µ − hµν|β)}|α

=
1

2
(hαµ|ν + hαν|µ − hµν

|α − hαβhβµ|ν − hαβhβν|µ + hαβhµν|β)|α (A.22)

Sα
µα|ν =

1

2
(hαµ|α + hαα|µ − hµα

|α − hαβhβµ|α − hαβhβα|µ + hαβhµα|β)|ν (A.23)

Since S is proportional to h, the linear term in h of the Ricci tensor comes from the first

two terms of the right-hand side of Eq. (A.21). We obtain

R(1)
µν = S(1)α

µν|α − S(1)α
µα|ν

=
1

2
(−h|µν − hµν|α

α + hαµ|ν
α + hαν|µ

α). (A.24)

Next, we computeR
(2)
µν . The contributions from the first and second terms in Eq. (A.21)

are given by

S(2)α
µν|α − S(2)α

µα|ν

= −1

2
hαβ |α(hβµ|ν + hβν|µ − hµν|β)−

1

2
hαβ(hβµ|να + hβν|µα − hµν|βα)

+
1

2
hαβ |ν(hβµ|α + hβα|µ − hµα|β) +

1

2
hαβ(hβµ|αν + hβα|µν − hµα|βν)

=
1

2
hαβ(hαβ|µν + hµν|αβ − hαµ|νβ − hαν|µβ) +

1

2
hαβ|µh

αβ
|ν

− 1

2
hαβ |β(hαµ|ν + hαν|µ − hµν|α). (A.25)
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The third and fourth terms in Eq. (A.21) are computed as

Sα
βαS

β
µν =

1

2
gαρ(hρβ|α + hρα|β − hβα|ρ)

1

2
gβρ(hρµ|ν + hρν|µ − hµν|ρ)

=
1

4
(hαβ|α + hαα|β − hβα

|α)(hβµ|ν + hβν|µ − hµν
|β) +O(h3) (A.26)

Sα
βνS

β
µα =

1

4
(hαβ|ν + hαν|β − hβν

|α)(hβµ|α + hβα|µ − hµα
|β) +O(h3). (A.27)

Thus,

S(1)α
βαS

(1)β
µν − S(1)α

βνS
(1)β

µα

=
1

4
h|β(h

β
µ|ν + hβν|µ − hµν

|β)− 1

4
hαβ|µh

αβ
|ν −

1

2
hν

α|β(hβµ|α − hαµ|β) (A.28)

Therefore, the final result for R
(2)
µν is given by

R(2)
µν =

1

2

[
1

2
hαβ|µh

αβ
|ν + hαβ(hαβ|µν + hµν|αβ − hαµ|νβ − hαν|µβ)

+hν
α|β(hαµ|β − hβµ|α)−

(
hαβ |β − 1

2
h|α
)
(hαµ|ν + hαν|µ − hµν|α)

]
. (A.29)
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Appendix B

Gravitational-Wave Calculation in

Arbitrary Directions

Here, we derive the explicit forms of the plus and cross polarizations of GW signals

radiated in arbitrary directions. The resulting equations are important in calculating

GW signals from the quadrupole moments of CCSNe obtained through 3D numerical

simulations.

The quadrupole formula of GWs is given by

hij(x, t) =
2G

c4r
Q̈ij

(
t− r

c

)
. (B.1)

Let us start by deriving the amplitude of a GW propagating in z direction. The matrix

Pij defined by Eq. (2.36) is then

Pij =

1 0 0

0 1 0

0 0 0

 . (B.2)

We can transform the quadrupole moments into the transverse traceless gauge using the

Lambda tensor defined in Eq. (2.35) as

Λij,klQ̈kl =

(
PikPjl −

1

2
PijPkl

)
Q̈kl

= (PQ̈P )ij −
1

2
Pij(Q̈xx + Q̈yy)

=

(Q̈xx − Q̈yy)/2 Q̈xy 0

Q̈xy −(Q̈xx − Q̈yy)/2 0

0 0 0


ij

(B.3)

The plus and cross polarizations are then defined by

h+ =
G

c4r
(Q̈xx − Q̈yy), (B.4)

h× =
2G

c4r
Q̈xy. (B.5)

Here, the right-hand side is evaluated at a time t − r/c. Next, let us compute the GW

signal propagating in an arbitrary direction n. We define θ and ϕ as illustrated in Fig. B.1.
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FIG. B.1. Schematic diagram of the definition of angles θ and ϕ.

The rotation matrix from the direction z to n is given by

R =

 sinϕ cosϕ 0

− cosϕ sinϕ 0

0 0 1


1 0 0

0 cos θ sin θ

0 − sin θ cos θ


=

 sinϕ cos θ cosϕ sin θ cosϕ

− cosϕ cos θ sinϕ sin θ sinϕ

0 − sin θ cos θ

 . (B.6)

Using this matrix, the quadrupole moments are transformed as

Q̈′
ij =

(
RTQ̈R

)
ij
, (B.7)

and the plus and cross polarizations are then expressed as

h+ =
G

c4r
(Q̈′

xx − Q̈′
yy), (B.8)

h× =
2G

c4r
Q̈′

xy. (B.9)

In practice, Q̈′
xx, Q̈

′
yy, and Q̈

′
xy can be obtained through straightforward matrix calcula-

tions:

Q̈′
xx = Q̈xx sin

2 ϕ+ Q̈yy cos
2 ϕ− Q̈xy sin 2ϕ, (B.10)

Q̈′
yy = (Q̈xx cos

2 ϕ+ Q̈yy sin
2 ϕ+ Q̈xy sin 2ϕ) cos

2 θ + Q̈zz sin
2 θ

− (Q̈xz cosϕ+ Q̈yz sinϕ) sin 2θ, (B.11)

Q̈′
xy =

1

2
(Q̈xx − Q̈yy) cos θ sin 2ϕ− Q̈xy cos θ cos 2ϕ− (Q̈xz sinϕ− Q̈yz cosϕ) sin θ. (B.12)
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By substituting these expressions into Eqs. (B.8) and (B.9), we obtain the expressions

h+ =
G

c4r
{Q̈xx sin

2 ϕ+ Q̈yy cos
2 ϕ− Q̈xy sin 2ϕ+ (Q̈xz cosϕ+ Q̈yz sinϕ) sin 2θ

− Q̈zz sin
2 θ − (Q̈xx cos

2 ϕ+ Q̈yy sin
2 ϕ+ Q̈xy sin 2ϕ) cos

2 θ}, (B.13)

h× =
G

c4r
{(Q̈xx − Q̈yy) cos θ sin 2ϕ− 2Q̈xy cos θ cos 2ϕ

− 2(Q̈xz sinϕ− Q̈yz cosϕ) sin θ}. (B.14)



120

Appendix C

Newtonian Approximation of

Gravitational Waves from Binary

Systems

Let us compute the inspiral GW signal of a compact binary system in a circular orbit.

For simpility, we model each star as a point mass and use the Newtonian approximation.

The positions of the two point masses rotating in the xy-plane with an angular fre-

quency ωs and a distance R are given by

(x1, y1, z1) =

(
− m2

m1 +m2
R sin(ωst),

m2

m1 +m2
R cos(ωst), 0

)
, (C.1)

(x2, y2, z2) =

(
m1

m1 +m2
R sin(ωst), −

m1

m1 +m2
R cos(ωst), 0

)
. (C.2)

The components of the mass quadrupole moments for this system are then calculated as

Qxx = m1x
2
1 +m2x

2
2 = µR2 1− cos(2ωst)

2
, (C.3)

Qyy = m1y
2
1 +m2y

2
2 = µR2 1 + cos(2ωst)

2
, (C.4)

Qxy = m1x1y1 +m2x2y2 = −µR2 sin(2ωst)

2
, (C.5)

Qxz = Qyz = Qzz = 0. (C.6)

Here we introduced the reduced mass µ, defined by

µ =
m1m2

m1 +m2
. (C.7)

Assuming that ωs and R are constants, the second time derivatives of the quadrupole

moments become

Q̈xx = 2µR2ω2
s cos(2ωst), (C.8)

Q̈yy = −2µR2ω2
s cos(2ωst) = −Q̈xx, (C.9)

Q̈xy = 2µR2ω2
s sin(2ωst). (C.10)
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Substituting these results into Eqs. (B.13) and (B.14) yields

h+(t) =
1

r

4Gµω2
sR

2

c4
1 + cos2 θ

2
cos(2ωs(t− r/c)− 2ϕ) (C.11)

h×(t) = −1

r

4Gµω2
sR

2

c4
cos θ sin(2ωs(t− r/c)− 2ϕ) (C.12)

The angle θ is equivalent to the inclination angle (ι) between the orbit’s normal direction

and the line of sight. By shifting the time origin, certain terms in the equations can be

simplified, resulting in

h+(t) =
1

r

4Gµω2
sR

2

c4
1 + cos2 ι

2
cos(2ωst), (C.13)

h×(t) = −1

r

4Gµω2
sR

2

c4
cos ι sin(2ωst). (C.14)

These equations indicate that the GW frequency is twice that of the binary system’s

rotation. Using Kepler’s third law,

ω2
s =

G(m1 +m2)

R3
, (C.15)

and defining the chirp mass Mc,

Mc = µ3/5(m1 +m2)
2/5 =

(m1m2)
3/5

(m1 +m2)1/5
, (C.16)

each mode is represented as

h+(t) =
4

r

(
GMc

c2

)5/3(πfGW

c

)2/3 1 + cos2 ι

2
cos(2πfGWt), (C.17)

h×(t) =
4

r

(
GMc

c2

)5/3(πfGW

c

)2/3

cos ι sin(2πfGWt), (C.18)

where 2πfGW = 2ωs. These expressions tell us that the GW amplitude depends on the

chirp mass and not on the individual components in this approximation.

Up to this point, we have considered ωs and R as constant values. Next, we will

examine the influence of the changes in ωs and R due to the energy radiation. The energy

flux is calculated using Eq. (2.69):

dEGW

dt
=

4Gµ2ω6
sR

4

πc5

∫ π

0
dθ

{(
1 + cos2 θ

2

)2

+ cos2 θ

}
sin θ

=
32

5

c5

G

(
GMcωGW

2c3

)10/3

. (C.19)

Differentiating Kepler’s third law in Eq. (C.15) with respect to time, we obtain the rela-

tionship,

Ṙ = −2

3
Rωs

ω̇s

ω2
s

. (C.20)

Under the condition ω̇s ≪ ω2
s , |Ṙ| is significantly smaller than the orbital angular velocity
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ωsR. This allows us to apply the approximation of a slowly changing circular orbit. The

orbital energy is the sum of the kinetic and potential energies of the point masses, expressed

as

Eorbit = −Gm1m2

2R
(C.21)

= −
(
G2M5

c ω
2
GW

32

)1/3

(C.22)

Since the energy lost by the orbit is radiated as the GW, the energy flux of the GW can

be expressed as

dEGW

dt
= −dEorbit

dt
=

2

3

(
G2M5

c

32

)1/3

ω̇GW ω
−1/3
GW . (C.23)

Connecting this expression with the energy flux calculated from the quadrupole moments,

as given in Eq. (C.19), we obtain the differential equation for ωGW,

ω̇GW =
12

5
21/3

(
GMc

c3

)5/3

ω
11/3
GW . (C.24)

Solving this differential equation with the initial condition limt→tcoal ωGW(t) = ∞, we

obtain the solution:

ωGW(τ) =
1

4

(
5

τ

)3/8(GMc

c3

)−5/8

(C.25)

Here, tcoal is the coalescence time, and τ = tcoal − t.

To derive the amplitude of the GW while taking account for energy radiation, we need

to replace ωst in the particle positions in Eqs. (C.1) and (C.2) with

Φ(t) =

∫ t

t0

dt′ 2ωs(t
′)

=

∫ t

t0

dt′ ωGW(t′). (C.26)

Substituting the obtained ωGW(τ) and integrating, with τ = 0 corresponding to Φ = Φ0,

we get

Φ(τ) = −2

(
5GMc

c3

)−5/8

τ5/8 +Φ0. (C.27)

Under the condition ω̇s ≪ ω2
s , we can neglect the time derivatives of R and ωs when

computing the time derivatives of the quadrupole moments. Therefore, we simply need to

replace the phase with Φ in Eqs. (C.17) and (C.18). Finally, we obtain

h+(τ) =
1

r

(
GMc

c2

)5/4( 5

cτ

)1/4(1 + cos2 ι

2

)
cosΦ(τ), (C.28)

h×(τ) = −1

r

(
GMc

c2

)5/4( 5

cτ

)1/4

cos ι sinΦ(τ). (C.29)

Figure C.1 plots the calculated plus and cross modes of the inspiral GW signal with

r = 400 Mpc, Mc = 30M⊙, ι = 0, and Φ0 = 0. As the time approaches to the merger,
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FIG. C.1. Amplitudes of the plus and cross modes of the inspiral signal derived from
Newtonian approximation. We set r = 400 Mpc, Mc = 30M⊙, ι = 0, and Φ0 = 0.

both amplitude and frequency progressively increase. It is important to note that as the

two stars in the binary system approach each other, the Newtonian approximation become

less valid, and the effects of general relativity should be taken into account for accurately

modeling GW signals.
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Appendix D

Time-Frequency Uncertainty

Here, we derive the uncertainty relationship between time and frequency, following

Ref. [255]. Consider a signal x(t) with a finite energy E, given by

E =

∫ ∞

−∞
dt |x(t)|2 <∞. (D.1)

The central time and frequency of x(t) are defined as

⟨t⟩ = 1

E

∫ ∞

−∞
dt t|x(t)|2, (D.2)

⟨ω⟩ = 1

2πE

∫ ∞

−∞
dω ω|x̃(ω)|2, (D.3)

respectively. Similarly, the duration σt and bandwidth σf of the signal are defined by

σ2t =
1

E

∫ ∞

−∞
dt (t− ⟨t⟩)2|x(t)|2, (D.4)

σ2ω =
1

2πE

∫ ∞

−∞
dω (ω − ⟨ω⟩)2|x̃(ω)|2, (D.5)

respectively. The uncertainty relationship between time and frequency is expressed as

σtσω ≥ 1

2
. (D.6)

To prove this relationship, we assume that the signal x(t) is real, i.e. x∗(t) = x(t), and

the condition

lim
t→±∞

t|x(t)|2 = 0 (D.7)

holds. We can also assume ⟨t⟩ = ⟨ω⟩ = 0 without loss of generality. Firstly, using the

equation,

ẋ(t) =
−i
2π

∫ ∞

−∞
dω ωx̃(ω)e−iωt, (D.8)
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we have∫ ∞

−∞
dt |ẋ(t)|2 = 1

(2π)2

∫ ∞

−∞
dt e−i(ω−ω′)t

∫ ∞

−∞
dω ωx̃(ω)

∫ ∞

−∞
dω′ ω′x̃∗(ω′)

=
1

2π

∫ ∞

−∞
dω ωx̃(ω)

∫ ∞

−∞
dω′ ω′x̃∗(ω′)δ(ω − ω′)

=
1

2π

∫ ∞

−∞
dω ω2|x̃(ω)|2. (D.9)

Thus, we can evaluate σ2t σ
2
ω as

σ2t σ
2
ω =

1

E2

∫ ∞

−∞
dt |tx(t)|2

∫ ∞

−∞
dt |ẋ(t)|2 ≥ 1

E2

∣∣∣∣∫ ∞

−∞
dt tx(t)ẋ(t)

∣∣∣∣2. (D.10)

Here, we used the Cauchy-Schwarz inequality. The integrand of the right-hand side can

be computed as ∫ ∞

−∞
dt tx(t)ẋ(t) =

1

2

∫ ∞

−∞
dt t

d

dt
|x(t)|2

=
1

2

{[
t|x(t)|2

]∞
−∞ −

∫ ∞

−∞
dt |x(t)|2

}
= −E

2
. (D.11)

Therefore, we obtain

σ2t σ
2
ω ≥ 1

4
. (D.12)
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Appendix E

Cubic Spline Interpolation

Cubic spline interpolation is a widely used method in numerical analysis to approx-

imate a smooth curve passing through a set of given data points. Consider a data set

consisting of N + 1 data points: (x0, y0), . . . , (xN , yN ). The objective of cubic spline

interpolation is to construct a piecewise-defined function f(x) that consists of N cubic

polynomials, fi(x), defined over intervals [xi−1, xi], where i = 1, . . . , N . Each cubic poly-

nomial fi(x) takes the form,

fi(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di. (E.1)

The coefficients are chosen to ensure that the interpolating function passes through all the

given data points while maintaining continuity and smoothness. The four conditions that

each cubic polynomial must satisfy are as follows:

fi(xi−1) = yi−1 for i = 1, . . . , N (E.2)

fi(xi) = yi for i = 1, . . . , N (E.3)

f ′i(xi) = f ′i+1(xi) for i = 1, . . . , N − 1 (E.4)

f ′′i (xi) = f ′′i+1(xi) for i = 1, . . . , N − 1 (E.5)

These conditions specified for each cubic polynomial ensure the necessary continuity,

smoothness, and interpolation through the given data points. However, to fully determine

the 4N coefficients in total, two more equations are required. These additional equations

typically involve boundary conditions to fix the behavior of the spline at the endpoints of

the data set. A common type of boundary conditions used to complete the specification

of the cubic spline is called the natural boundary condition, wherein the second derivatives

at the endpoints of the data set are zero,

f ′′1 (x0) = 0, f ′′N (xN ) = 0. (E.6)
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Now we have 4N equations that are necessary to determine all the coefficients. From

Eqs. (E.2), (E.3), and (E.5), we obtain

ai =
vi − vi−1

6hi
, (E.7)

bi =
vi
2
, (E.8)

ci =
hi
6
(2vi + vi−1) +

yi − yi−1

hi
, (E.9)

di = yi, (E.10)

where vi = f ′′i (xi) and hi = xi − xi−1 for i = 1, . . . , N , and v0 = f ′′1 (x0). Inserting these

into Eq. (E.4) results in

hivi−1 + 2(hi + hi+1)vi + hi+1vi+1 = wi, (E.11)

where

wi = 6

(
yi+1 − yi
hi+1

− yi − yi−1

hi

)
(E.12)

for i = 1, . . . , N−1. From the natural boundary conditions Eq. (E.6), we have v0 = vN = 0.

The equations for {vi} can be represented in matrix form as
1 0 0 . . . 0

h1 2(h1 + h2) h2 . . . 0
...

. . .
. . .

. . .
...

0 . . . hN−1 2(hN−1 + hN ) hN

0 . . . 0 0 1




v0

v1
...

vN−1

vN

 =


0

w1

...

wN−1

0

 (E.13)

Computing the coefficients {ai, bi, ci, di} is now equivalent to solving this matrix equation

for v0, . . . , vN . The coefficient matrix on the left side of this equation is a tridiagonal

matrix, and this can be easily solved by computers. Once this matrix equation is solved,

we can obtain the interpolating functions by substituting the values of v0, . . . , vN into

Eqs. (E.7)-(E.10).
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Appendix F

Solution of Cubic Equations

Cubic equations have analytical solutions, known as Cardano’s formulae. The analyt-

ical solutions of cubic equations in the form a3x
3 + a2x

2 + a1x + a0 = 0 are expressed

as

xk = − a2
3a3

+ ωk 3

√
−q +

√
q2 + p3 + ω3−k 3

√
−q −

√
q2 + p3 (k = 0, 1, 2), (F.1)

where ω is a complex cube root of unity, and p and q are defined by

p =
3a3a1 − a22

9a23
, (F.2)

q =
27a23a0 − 9a3a2a1 + 2a32

54a33
. (F.3)

While Cardano’s formulae provide exact solutions, numerical methods are often pre-

ferred. One can construct a companion matrix C associated with the cubic equation

a3x
3 + a2x

2 + a1x+ a0 = 0 as

C =

0 0 −a0/a3
1 0 −a1/a3
0 1 −a2/a3

 . (F.4)

The eigenvalues λ of this matrix satisfy

det(λI − C) = λ3 +
a2
a3
λ2 +

a1
a3
λ+

a0
a3

= 0. (F.5)

Therefore, the eigenvalues of the companion matrix are the solutions of the cubic equation.

Efficient numerical methods, such as those provided by LAPACK [256], can be employed

to find these eigenvalues.
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[46] P. Astone, P. Cerdá-Durán, I. Di Palma, M. Drago, F. Muciaccia, C. Palomba,

and F. Ricci, New method to observe gravitational waves emitted by core collapse

supernovae, Phys. Rev. D 98, 122002 (2018).
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[86] A. Bohé et al., Improved effective-one-body model of spinning, nonprecessing binary

black holes for the era of gravitational-wave astrophysics with advanced detectors,

Phys. Rev. D 95, 044028 (2017).

[87] P. Ajith et al., A phenomenological template family for black-hole coalescence wave-

forms, Classical Quantum Gravity 24, S689 (2007).

[88] G. Pratten et al., Computationally efficient models for the dominant and subdom-

inant harmonic modes of precessing binary black holes, Phys. Rev. D 103, 104056

(2021).

[89] LIGO-Virgo-KAGRA Cumulative Detection plot - O1-O4a, Tech. Rep. G2302098-

v11 (LIGO Document, 2024).

[90] K. Kotake, K. Sato, and K. Takahashi, Explosion mechanism, neutrino burst and

gravitational wave in core-collapse supernovae, Rep. Prog. Phys. 69, 971 (2006).

http://dx.doi.org/10.1088/0264-9381/33/3/035010
http://dx.doi.org/10.1088/0264-9381/33/3/035010
http://dx.doi.org/10.1093/nsr/nwx116
http://dx.doi.org/10.1088/0264-9381/32/1/015014
http://gwplotter.com
http://dx.doi.org/10.1103/PhysRev.55.364
http://dx.doi.org/10.1103/PhysRev.55.364
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/PhysRevLett.70.113
http://dx.doi.org/10.1103/PhysRevD.52.6882
http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://dx.doi.org/10.1103/PhysRevLett.96.111101
http://dx.doi.org/10.1103/PhysRevLett.96.111102
http://dx.doi.org/10.1103/PhysRevLett.96.111102
http://dx.doi.org/10.1103/PhysRevD.59.084006
http://dx.doi.org/10.1103/PhysRevD.95.044028
http://dx.doi.org/10.1088/0264-9381/24/19/S31
http://dx.doi.org/10.1103/PhysRevD.103.104056
http://dx.doi.org/10.1103/PhysRevD.103.104056
http://dx.doi.org/10.1088/0034-4885/69/4/R03


REFERENCES 135

[91] H.-T. Janka, Explosion mechanisms of core-collapse supernovae, Annu. Rev. Nucl.

Part. Sci. 62, 407 (2012).

[92] E. Abdikamalov, G. Pagliaroli, and D. Radice, Gravitational waves from core-

collapse supernovae, in Handbook of Gravitational Wave Astronomy (Springer Sin-

gapore, Singapore, 2020) pp. 1–37.

[93] L. F. Roberts, G. Shen, V. Cirigliano, J. A. Pons, S. Reddy, and S. E. Woosley,

Protoneutron star cooling with convection: The effect of the symmetry energy, Phys.

Rev. Lett. 108, 061103 (2012).

[94] J. M. Blondin, A. Mezzacappa, and C. DeMarino, Stability of standing accretion

shocks, with an eye toward core-collapse supernovae, Astrophys. J. 584, 971 (2003).

[95] T. Kuroda, K. Kotake, and T. Takiwaki, A new gravitational-wave signature from

standing accretion shock instability in supernovae, Astrophys. J. Lett. 829, L14

(2016).

[96] P. D. Lasky, Gravitational waves from neutron stars: A review, Pub. Astron. Soc.

Aust. 32 (2015), 10.1017/pasa.2015.35.

[97] K. Riles, Searches for continuous-wave gravitational radiation, Liv. Rev. Rel. 26

(2023).

[98] R. Abbott et al. (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA

Collaboration), All-sky search for continuous gravitational waves from isolated neu-

tron stars using Advanced LIGO and Advanced Virgo O3 data, Phys. Rev. D 106,

102008 (2022).

[99] K. Wette, Searches for continuous gravitational waves from neutron stars: A twenty-

year retrospective, Astrop. Phys. 153, 102880 (2023).

[100] N. Christensen, Stochastic gravitational wave backgrounds, Rep. Prog. Phys. 82,

016903 (2018).

[101] E. Thrane, N. Christensen, and R. M. S. Schofield, Correlated magnetic noise

in global networks of gravitational-wave detectors: Observations and implications,

Phys. Rev. D 87, 123009 (2013).

[102] S. Atsuta et al., Measurement of Schumann resonance at Kamioka, J. Phys. Conf.

Ser. 716, 012020 (2016).

[103] B. Allen and J. D. Romano, Detecting a stochastic background of gravitational

radiation: Signal processing strategies and sensitivities, Phys. Rev. D 59, 102001

(1999).

[104] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Upper

limits on the stochastic gravitational-wave background from Advanced LIGO’s first

observing run, Phys. Rev. Lett. 118, 121101 (2017).

http://dx.doi.org/10.1146/annurev-nucl-102711-094901
http://dx.doi.org/10.1146/annurev-nucl-102711-094901
http://dx.doi.org/10.1007/978-981-15-4702-7_21-1
http://dx.doi.org/10.1103/PhysRevLett.108.061103
http://dx.doi.org/10.1103/PhysRevLett.108.061103
http://dx.doi.org/10.1086/345812
http://dx.doi.org/10.3847/2041-8205/829/1/L14
http://dx.doi.org/10.3847/2041-8205/829/1/L14
http://dx.doi.org/10.1017/pasa.2015.35
http://dx.doi.org/10.1017/pasa.2015.35
http://dx.doi.org/10.1007/s41114-023-00044-3
http://dx.doi.org/10.1007/s41114-023-00044-3
http://dx.doi.org/10.1103/PhysRevD.106.102008
http://dx.doi.org/10.1103/PhysRevD.106.102008
http://dx.doi.org/https://doi.org/10.1016/j.astropartphys.2023.102880
http://dx.doi.org/10.1088/1361-6633/aae6b5
http://dx.doi.org/10.1088/1361-6633/aae6b5
http://dx.doi.org/10.1103/PhysRevD.87.123009
http://dx.doi.org/10.1088/1742-6596/716/1/012020
http://dx.doi.org/10.1088/1742-6596/716/1/012020
http://dx.doi.org/10.1103/PhysRevD.59.102001
http://dx.doi.org/10.1103/PhysRevD.59.102001
http://dx.doi.org/10.1103/PhysRevLett.118.121101


REFERENCES 136

[105] J. D. E. Creighton and W. G. Anderson, Gravitational-Wave Physics and Astron-

omy: An Introduction to Theory, Experiment and Data Analysis (Wiley-VCH, New

York, 2011).

[106] J. Neyman and E. S. Pearson, On the problem of the most efficient tests of statistical

hypotheses, Phil. Trans. R. Soc. A 231, 289 (1933).

[107] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

Equation of state calculations by fast computing machines, J. Chem. Phys. 21, 1087

(1953).

[108] J. Skilling, Nested sampling, in Bayesian Inference and Maximum Entropy Methods

in Science and Engineering: 24th International Workshop on Bayesian Inference and

Maximum Entropy Methods in Science and Engineering , Vol. 735 (AIP, Garching,

Germany, 2004) pp. 395–405.

[109] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their

applications, Biometrika 57, 97 (1970).

[110] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-

6, 721 (1984).

[111] D. Gabor, Theory of communication. Part 1: The analysis of information, J. Inst.

Electr. Eng. 93, 429 (1946).

[112] J. C. Brown, Calculation of a constant Q spectral transform, J. Acoust. Soc. Am.

89, 425 (1991).

[113] S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis, Multiresolution tech-

niques for the detection of gravitational-wave bursts, Classical Quantum Gravity 21,

S1809 (2004).

[114] S. K. Chatterji, The search for gravitational wave bursts in data from the second

LIGO science run, Ph.D. thesis, Massachusetts Institute of Technology (2005).

[115] V. Nair and G. E. Hinton, Rectified linear units improve restricted Boltzmann ma-

chines, in Proceedings of the 27th International Conference on International Con-

ference on Machine Learning (Omnipress, Madison, WI, USA, 2010) pp. 807–814.

[116] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn.

Res. 15, 1929 (2014).

[117] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by

reducing internal covariate shift, in Proceedings of the 32nd International Conference

on Machine Learning , Vol. 37 (PMLR, Lille, France, 2015) pp. 448–456.

[118] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist.

22, 400 (1951).

http://dx.doi.org/10.1002/9783527636037
http://dx.doi.org/10.1002/9783527636037
http://dx.doi.org/10.1098/rsta.1933.0009
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1835238
http://dx.doi.org/10.1063/1.1835238
http://dx.doi.org/10.1063/1.1835238
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1109/tpami.1984.4767596
http://dx.doi.org/10.1109/tpami.1984.4767596
http://dx.doi.org/10.1049/ji-3-2.1946.0074
http://dx.doi.org/10.1049/ji-3-2.1946.0074
http://dx.doi.org/10.1121/1.400476
http://dx.doi.org/10.1121/1.400476
http://dx.doi.org/10.1088/0264-9381/21/20/024
http://dx.doi.org/10.1088/0264-9381/21/20/024
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1214/aoms/1177729586


REFERENCES 137

[119] S. Ruder, An overview of gradient descent optimization algorithms,

arXiv:1609.04747.

[120] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the importance of initialization

and momentum in deep learning, in Proceedings of the 30th International Conference

on Machine Learning (PMLR, Atlanta, Georgia, USA, 2013) pp. 1139–1147.

[121] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning

and stochastic optimization, J. Mach. Learn. Res. 12, 2121 (2011).

[122] G. Hinton, Neural networks for machine learning lecture notes.

[123] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization,

arXiv:1412.6980.

[124] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep

convolutional neural networks, Commun. ACM 60, 84 (2017).

[125] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ImageNet: A large-

scale hierarchical image database, in 2009 IEEE Conference on Computer Vision

and Pattern Recognition (IEEE, Miami, FL, USA, 2009) pp. 248–255.

[126] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale

image recognition, arXiv:1409.1556.

[127] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition,

in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(IEEE, Las Vegas, NV, USA, 2016) pp. 770–778.

[128] M. Sundararajan, A. Taly, and Q. Yan, Axiomatic attribution for deep networks,

in Proceedings of the 34th International Conference on Machine Learning (PMLR,

Sydney, NSW, Australia, 2017) pp. 3319–3328.

[129] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, Learning deep features

for discriminative localization, in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) (IEEE, Las Vegas, NV, USA, 2016) pp. 2921–2929.

[130] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,

Grad-CAM: Visual explanations from deep networks via gradient-based localization,

in 2017 IEEE International Conference on Computer Vision (ICCV) (IEEE, Venice,

Italy, 2017) pp. 618–626.

[131] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, Grad-

CAM++: Generalized gradient-based visual explanations for deep convolutional

networks, in 2018 IEEE Winter Conference on Applications of Computer Vision

(WACV) (IEEE, Lake Tahoe, NV, USA, 2018) pp. 839–847.

[132] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu,

Score-CAM: Score-weighted visual explanations for convolutional neural networks,

in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-

shops (CVPRW) (IEEE, Seattle, WA, USA, 2020) pp. 111–119.

http://arxiv.org/abs/1609.04747
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
http://jmlr.org/papers/v12/duchi11a.html
http://www.cs.toronto.edu/∼tijmen/csc321/slides/ lecture_slides_lec6.pdf
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1409.1556
http://dx.doi.org/10.1109/CVPR.2016.90
https://proceedings.mlr.press/v70/sundararajan17a.html
http://dx.doi.org/10.1109/CVPR.2016.319
http://dx.doi.org/10.1109/CVPR.2016.319
http://dx.doi.org/10.1109/ICCV.2017.74
http://dx.doi.org/10.1109/wacv.2018.00097
http://dx.doi.org/10.1109/wacv.2018.00097
http://dx.doi.org/10.1109/CVPRW50498.2020.00020
http://dx.doi.org/10.1109/CVPRW50498.2020.00020


REFERENCES 138

[133] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, Striving for sim-

plicity: The all convolutional net, arXiv:1412.6806.

[134] H. Gabbard, M. Williams, F. Hayes, and C. Messenger, Matching matched filtering

with deep networks for gravitational-wave astronomy, Phys. Rev. Lett. 120, 141103

(2018).

[135] T. D. Gebhard, N. Kilbertus, I. Harry, and B. Schölkopf, Convolutional neural net-

works: A magic bullet for gravitational-wave detection?, Phys. Rev. D 100, 063015

(2019).

[136] H. Wang, S. Wu, Z. Cao, X. Liu, and J.-Y. Zhu, Gravitational-wave signal recogni-

tion of LIGO data by deep learning, Phys. Rev. D 101, 104003 (2020).

[137] J. Yan, M. Avagyan, R. E. Colgan, D. b. u. Veske, I. Bartos, J. Wright, Z. Márka,

and S. Márka, Generalized approach to matched filtering using neural networks,

Phys. Rev. D 105, 043006 (2022).
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