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Abstract

The gravitational wave is a ripple in spacetime travelling at the speed of light. This

phenomenon was predicted by A. Einstein in 1916 and first directly detected by LIGO

in 2015. In this thesis, we constructed Convolutional Neural Networks (CNNs) to an-

alyze the gravitational wave data from compact binary coalescence, which was gen-

erated by PyCBC software package. We used the CNN to detect gravitational waves

in a noisy background. Then we analyzed the data from LIGO, Virgo, and KAGRA to

localize the gravitational wave source, by applying a four- channel CNN. As a result,

we confirmed that the CNN algorithm significantly reduces the analysis time cost and

also has a strong noise resistance. The localization result also shows the importance of

adding KAGRA to the present detector network. Adopting the CNN algorithm and a

four-detector network at the same time will contribute to the realization of the multi-

messenger astronomy.
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Chapter 1

Introduction

Gravitational Waves(GW) are generated from accelerating objectives and extend-

ing or shrinking the space. GW can be detected by GW detectors distributed in ground

and space. The first direct observation of GW was achieved in 2015. LIGO observato-

ries confirmed this GW signal was emitted from a binary black hole. The observation

of GW150914 started the study of GW astronomy. In 2017, LIGO&Virgo detected the

GW signal from a binary neutron star merger event named GW170817. EM follow-up

was also observed due to the alerts from LIGO and GLAST. The joint observation of

one binary coalescence started the study of multi-messenger astronomy.

In the study of multi-messenger astronomy, the observation of GW and EM signal

is especially important. From the point of view of EM observation, a precise and effi-

cient of GW source localization is demanded. Low latency GW alert would promote

the EM telescopes to obtain more signals.

Currently, a GW detector network has been constructing around the world, con-

sists of LIGO in America, Virgo in Europe, KAGRA in Japan, and LIGO-India in India.

The simultaneous observation of multiple detectors will benefit the accurate GW local-

ization.

Due to the detectors are located differently, GW detection time of detectors varies.

Time lags among the network are depending on the incoming direction of GW. Thus

the direction of GW can be measured using time lags. Theoretically, more detectors

can locate GW more accurately.

The current data analysis algorithm of the GW signal is based on Matched Fil-

tering. This algorithm compares the detected signal with a GW waveform template

library, then selects the most similar template as the optimal waveform. However, the

matched filtering requires a lot of time and computing resources to find the GW signal
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in the massive data.

In this thesis, we introduce a data analysis algorithm based on Convolutional Neu-

ral Network(CNN) to analyze the generated GW waveforms. This algorithm can detect

and localize the GW signal in several ten nanoseconds, which significantly saved the

computing time.

This thesis is organized as follows: Chapter 2 introduces the theory of GW and

noise signals in GW detectors. Chapter 3 talks about the Matched Filtering algorithm

and the data analysis methods used by LIGO&Virgo, sky localization pipelines are also

included. Chapter 4 talks about the principle and function of CNN. How to implement

a GPU-accelerated CNN on a computer is also introduced.

Chapter 5 summarized the previous research of GW data analysis based on neural

networks, then talked about a CNN model suitable for the detection of GW. A GW data

analysis library, PyCBC, was used to generate waveforms and noises. After repeated

training and testing, the CNN was able to distinguish GW waveforms from noises.

Chapter 6 talked about the localization of GW using another CNN model. The pros and

cons of introducing KAGRA to the detector network were investigated by conducting

multiple simulation experiments.

Chapter 7 tested and verified the CNN models by conducting a real data injec-

tion experiment. Real data provided by LIGO&Virgo data center was imported then

analyzed by CNN. The generalization ability and robustness of CNN were verified.

Chapter 8 concluded this thesis, and give future prospects of the research.

In conclusion, this thesis described the superiority of CNN algorithm in the GW

data analysis, and the necessity of introducing KAGRA to the detector network. Ap-

plying the CNN algorithm to the four-detector network will serve multi-messenger

astronomy better.
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Chapter 2

Gravitational Wave

2.1 Einstein Equation

According to Einstein’s general relativity[1], the line element ds between two

points in the space-time is defined as:

ds2 = gµνdxµdxν (2.1)

Here the gµν is the metric tensor, representing spacetime’s structure distorted by the

gravity field. The gµν obeys the Einstein equation

Gµν =
8πG

c4 Tµν (2.2)

On one hand, G on the right is the gravitational constant, and Tµνis the energy mo-

mentum tensor. Tµν is a tensor given by the material in space-time. Tµν = 0 when the

spacetime is vaccum. On the other hand, the Gµν on the left is the Einstein tensor. It

can be written like this:

Gµν = Rµν −
1
2

gµνR (2.3)

In this equation, Rµν is Ricci tensor and R is Ricci scalar. They come from Riemann

curvature tensor Rα
µαν:

Rµν = Rα
µαν (2.4)

R = gµνRµ
µ (2.5)



4 Chapter 2. Gravitational Wave

Where the Riemann curvature tensor Rα
µαν is

Rγ
µρν =

∂Γγ
µν

∂xρ −
∂Γγ

µρ

∂xν
+ Γγ

αρΓα
µν − Γγ

βνΓβ
µρ (2.6)

The Γ item is Christoffel symbol. It can be defined using spacetime metric tensor:

Γε
µv =

1
2

gεσ
(

gσv,µ + gσµ,v − gµv,σ
)

(2.7)

To simplify the notation, the partial derivative is written in this way:

Aµ,v :=
∂

∂xv Aµ (2.8)

2.2 Linearization of the Einstein Equation

The spacetime is known as Minkowski space if no matter exists. The Energy mo-

mentum tensor Tµν is zero. So the solution of Einstein equation is

Gµν = 0 (2.9)

In other words, the spacetime is flat. When the matter exists, a perturbation hµν is

added to the flat space. And the metric tensor becomes:

gµν = ηµν + hµν (2.10)

Then the Christoffel symbol, Riemann curvature tensor, Ricci curvature tensor, and

Ricci scalar becomes:

Γλ
µν ∼

1
2

ηγα

(
∂hαµ

∂xν
+

∂hαν

∂xµ −
∂hµν

∂xα

)
(2.11)

Rµ
νδλ =

ηµσ

2
(hσλ,νδ + hνδ,σλ − hνλ,σδ − hσδ,νλ) (2.12)

Rνλ =
ηδσ

2
(hσλ,νδ + hνδ,σλ − hνλ,σδ − hσδ,νλ) (2.13)
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R =
ηνληδσ

2
(hσλ,νδ + hνδ,σλ − hνλ,σδ − hσδ,νλ) (2.14)

In this situation, the Einstein equation is written as

Gνλ =
1
2

[
hδ

λ,νδ + hδ
ν,λδ −�hνλ − h,νλ − ηνλ

(
hδσ

,δσ −�h
)]

The h and � in this equation are

h = ηµνhµν (2.15)

� = ηµν∂µ∂ν (2.16)

Define the trace deverce tensor h̃µν:

h̃µν = hµν −
1
2

ηµνh (2.17)

Because the hµν can be also expressed as

h̃µν = ηµνh̃µν = −h (2.18)

Replace the −h in the Eintsein equation with widetildeh:

Gνλ =
1
2

(
h̃δ

λ,νδ + h̃δ
ν,λδ −�h̃νλ − ηνλh̃δσ

,δσ

)
(2.19)

Consider the following Gauge conversion:

x′µ = xµ + ξµ(x) (2.20)

So the metric tensor is

g′µv =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ

=
(

δα
µ − ξα

µ

) (
δ

β
v − ξ

β
,v

) (
ηαβ + hαβ

)
= ηµv + hµν − ξµ,v − ξv,µ

(2.21)
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The perturbation is also transformed:

h′µν = g′µν − ηµν = hµν − ξµ,ν − ξν,µ (2.22)

h′ = h− 2ξσ
,σ (2.23)

In the meantime, the trace deverce tensor h̃µν is

h̃′µv = h′µv −
ηµv

2
h′ = h̃µv − ξµ,v − ξv,µ + ηµνξσ

,σ (2.24)

Note that the Riemann curvature tensor is invariant to this gauge transformation. Be-

cause we have

h̃′µv,µ = h̃µ
v,µ −�ξv (2.25)

If we choose one ξµ that satisfies wave equation, h̃′µv,µ = 0 can be satisfied. This condi-

tion is named a harmonic condition. From now on, we omit all the ′ in the equations,

which means the harmonic condition is always satisfied. In this harmonic condition,

Einstein tensor can be written as:

Gµv = −1
2
�h̃µv (2.26)

Bring the 2.2 to 2.26 can get the following equation:

�h̃µν = −16πG
c4 Tµν (2.27)

2.3 Solution of Einstein euqation

Linearized Einstein equation solution is 2.27. In a flat spacetime, the energy mo-

mentum tensor Tµν is zero. Thus, we can transform the 2.27 further:

�h̃µν = 0 (2.28)

Here we consider the h̃µν a plane wave:

h̃µν = aµν exp
(

ikλxλ
)

(2.29)
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Combine 2.28 and 2.29 we can get

�aµν exp
(

ikλxλ
)
= aµνηλσ∂λ∂σ exp

(
ikλxλ

)
= ηλσkλkσaµν exp

(
ikλxλ

)
= 0

(2.30)

To satisfy the equation

ηλσkλkσaµν = 0 (2.31)

We have to let

ηλσkλkσ = 0 (2.32)

Similarly, bringing 2.29 to the harmonic condition equation(1.28) will get this result:

ηλvkvaµλ = 0 (2.33)

Therefore, a plane wave represents by 2.29 will have such solution:

Aµνkν = 0 (2.34)

kµkµ = 0 (2.35)

Here, 2.34 represents the amplitude of the plane wave is vertical to wave travelling

direction. This indicates that the gravitational wave is a transverse wave. The 2.35

represents gravitational wave travels at the speed of light.

Here we take the transverse-traceless gauge(TT Gauge). From 2.28, to satisfy the

harmonic condition, ξv should be the solution of the wave function. Use Bµ to describe

the wave function, we have

ξµ = Bµ exp
(

ikλxλ
)

(2.36)

Bring this equation to 2.22 and 2.23:

h′µν = hµν − i
(

Bµkν + Bνkµ

)
exp

(
ikλxλ

)
(2.37)
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h′ = h− iηµν
(

Bµkν + Bνkµ

)
exp

(
ikλxλ

)
= −

[
ηµν Aµν + iηµν

(
Bµkν + Bνkµ

)]
exp

(
ikλxλ

) (2.38)

There always exists a Bµ that let h′ = 0. This solution would satisfy traceless condition,

which means hµv = h̃µv. Now we suppose the gravitational wave comes from z direc-

tion. Then we have −k0 = k3 = k, k1 = k2 = 0. The harmonic condition and traceless

condition are:

k
(

Aµ0 + Aµ3
)
= 0 (2.39)

−A00 + A11 + A22 + A33 = 0 (2.40)

In this situation, we can let h′0µ = 0. Let:

h′µν = A′µν exp
(

ikλxλ
)

(2.41)

Then the equation(1.37) can be expressed as:

A′00 = A00 + 2iB0k (2.42)

A′01 = A01 + iB1k (2.43)

A′02 = A02 + iB2k (2.44)

A′03 = A03 − i (B0k− B3k) = A03 − 2iB0k (2.45)

Summarize the conditions to the solutions coefficients:

• −a00 + a11 + a22 + a33 = 0((Traceless condition))

• aµ0 + aµ3 = 0(Harmonic condition)

• aµ0 = 0

• hµv = hvµ((Opposition condition))

(2.46)



2.3. Solution of Einstein euqation 9

From harmonic condition and symmetry of the condition, hµv is:

hµv =


0 0 0 0

0 a11 a12 a13

0 a21 a22 a23

0 a31 a32 a33

 exp i(−ωt + kz) (2.47)

Combine harmonic condition and opposition condition:

hµv =


0 0 0 0

0 a11 a12 0

0 a21 a22 0

0 0 0 0

 exp i(−ωt + kz) (2.48)

Combine the traceless condition and opposition condition:

hµv =


0 0 0 0

0 a11 a12 0

0 a12 −a11 0

0 0 0 0

 exp i(−ωt + kz) (2.49)

Usually we use the following coefficients to describe gravitational wave:

hµv =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 exp i(−ωt + kz) (2.50)

The h+ and h× are polarizations of gravitational wave. h+ is ’plus mode’ and h× is

’cross mode’.

h+ =


0 0 0 0

0 h+ 0 0

0 0 −h+ 0

0 0 0 0

 , h× =


0 0 0 0

0 0 h× 0

0 h× 0 0

0 0 0 0

 (2.51)
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By taking an appropriate gauge, the wave can satisfy the traceless condition as a trans-

verse wave. Such gauge used here is called Transverse Traceless Gauge(TT Gauge).

FIGURE 2.1: Distance between free particles rings when gravitational
wave go though. The gravitational wave’s propagation direction is per-
pendicular to the paper. The ring above represents the infection of plus

mode, the ring below represents the effect of cross mode.

2.4 Effect on free particles

Consider the effect of gravitational wave on two free particles whose positions are

(0,0,0) and (ε,0,0) in TT Gauge. Assume a gravitational wave pass though the particles

when they are at rest, then the distance ∆l between the particles should be:

∆l ≡
∫ ∣∣∣ds2

∣∣∣ 1
2
=
∫ ∣∣∣gαβdxαdxβ

∣∣∣ 1
2

=
∫ ε

0
|gxx|

1
2 dx ' |gxx(x = 0)|

1
2 ε

'
[

1 +
1
2

hxx(x = 0)
]

ε

(2.52)

This equation indicates that the distance between the points is changing with time. As

Figure 2.1 shows, the gravitational wave can be detected by measuring the displace-

ment of the particles.
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2.5 Emission of Gravitational Wave

Here we consider the emission of a linearized gravitational wave. Use Green’s

function to transfer 2.28 with a d’Alembert operator G (xσ − yσ):

G (xσ − yσ) = − 1
4π|x− y|δ

(
|x− y| −

(
x0 − y0

))
θ
(

x0 − y0
)

(2.53)

�G (xσ − yσ) = δ(4) (xσ − yσ) (2.54)

where σ = 0, 1, 2, 3, δ(x) and θ(x) are the Dirac’s δ function and the step function,

respectively. Also assume that x and y are the position of the obervototy and the grav-

itational wave source. So the distance between x and y is given by:

|x− y| =
{

δij

(
xi − yi

) (
xj − yj

)}1/2
(2.55)

Assume the source is far enough to observe, which means r = |x| � |y|, then h̄µν can

be written is this way:

h̄µν(t, x) = −16πG
c4

∫
G (xσ − yσ) Tµν (yσ) d4y

=
4G
c4

∫ Tµν(ct− |x− y|, y)
|x− y| d3y

' 4G
rc4

∫
Tµν(ct− r, y)d3y

(2.56)

The integration in this equation is given by:

∫
Tijd3y =

1
2c2

d2

dt2

∫
T00yiyjd3y =

1
2

d2

dt2

∫
ρyiyjd3y (2.57)

The last term is called quadrupole mass distribution Iij:

Iij ≡
∫

ρyiyjd3y (2.58)

So combining 2.57 and 2.58, the h̄ij can be written like:

h̄ij(t, x) =
2G
rc4 Ïij(ct− r) (2.59)
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We can find that the amplitude of gravitational wave is proportional to the second

derivative of the quadrupole, and inversely proportional to the distance between ob-

servatory and the source.

2.6 Michelson Interferometer

To detect the gravitational wave, the most commonly used detector is the Michel-

son Interferometer[2]. As Figure 2.2 shows, a laser emits from the left, it can be defined

FIGURE 2.2: A Michelson Interferometer

as:

Ein = E0eiΩt (2.60)

Then the Beam Splitter(BS) divides the laser to two beams. Then these beams are re-

flected by the two mirrors, then combined together at the position of BS. We assume

that during this process the phase changes of the two beams are φ1 and φ2, then the

combined beam at the BS can be written as:

EPD = E1ei(Ωt−φ1) − E2ei(Ωt−φ2) (2.61)
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Here the E1 and E2 are the amplitudes of the beams. Theoretically, E1 = E2 = 1
2 E0, but

in a real interferometer their value are not the same, duo to the different reflectivities

of the mirrors. Then the laser are detected by Photo Detector(PD). The laser power

detected by PD is:

PPD = |EPD|2 = E2
1 + E2

2 + 2E1E2 cos (φ1 − φ2)

=
Pmax + Pmin

2
+

Pmax − Pmin

2
cos (φ1 − φ2)

(2.62)

Here,
Pmax ≡ (E1 + E2)

2

Pmin ≡ (E1 − E2)
2 (2.63)

The power of the laser is a function of the cosine of phase difference φ1 − φ2. When

φ1 − φ2=0 the power has a maximum value, and when φ1 − φ2 = π the power has

the minimum value. To let the laser visibility as strong as possible, keep the phase

difference φ1 − φ2 small is essential.

2.7 Response of a Michelson Interferometer to the Grav-

itational wave

Consider in a Cartesian coordinate, two arms of the interferometer are parallel to

the x and y axes. A plus mode gravitational wave h+ comes from +z direction. Under

TT Gauge, the line element is written as:

ds2 = −c2dt2 + (1 + h)dx2 + (1− h)dy2 + dz2 (2.64)

Because the laser in our world line satisfies ds2 = 0, so this equation can be transformed

like:
dx
dt

= ± c√
1 + h

' ±
(

1− 1
2

h
)

c (2.65)

where the + sign represents the laser traveling in the positive x direction and the +

sign represents traveling in the negative x direction. Assume the one interferometer’s
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arm length is l1, so the beam in this arm traveled

∫
dx = 2l1 = c

∫ t

t−τ1

{
1− 1

2
h
(
t′
)}

dt′ (2.66)

long in total. Because the beam propagates in the speed of light, the time spend is:

τ1 =
2l1
c

+
1
2

∫ t

t−τ1

h
(
t′
)

dt′ ≈ 2l1
c

+
1
2

∫ t

t−2l1/c
h
(
t′
)

dt′ (2.67)

In the last integral τ1 ≈ 2l1/c because h � 1. Thus, the phase change during the

propagating is:

φ1 = Ωτ1 =
2l1Ω

c
+

Ω
2

∫ t

t−2l1/c
h
(
t′
)

dt′ (2.68)

Similarly, the phase change of another beam traveling in another arm should be:

φ2 =
2l2Ω

c
− Ω

2

∫ t

t−2l2/c
h
(
t′
)

dt′ (2.69)

Let:

l1 ' l2 ' l (2.70)

l− = l1 − l2 (2.71)

We will have:

φ1 − φ2 =
2l−Ω

c
+ δφGW (2.72)

δφGW = Ω
∫ t

t−2l/c
h
(
t′
)

dt′ (2.73)

The 2.73 indicates the phase difference of two beams. If the gravitational wave comes

to the interferometer, the phase difference will change the interference pattern on the

BS. This is how does interferometer detect the gravitational wave.
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2.8 Frequency respond of Interferometer

Now we talk about the respond of the interferometer to different frequency grav-

itational waves. In frequency domain, the Fourier transformation of h(t) is:

h(t) =
∫ ∞

−∞
h(ω)eiωtdt (2.74)

Bring 2.74 to 2.73:

δφGW = Ω
∫ t

t−2l/c

∫ ∞

−∞
h(ω)eiωt′dωdt′

=
∫ ∞

−∞

2Ω
ω

sin
(

lω
c

)
e−ilω/ch(ω)eiωtdω (2.75)

Here we introduce HMI, representing the frequency response of the interferometer to a

gravitational wave:

HMI(ω) =
2Ω
ω

sin
(

lω
c

)
e−ilω/c (2.76)

Then the 2.75 will be:

δφGW =
∫ ∞

−∞
HMI(ω)h(ω)eiωtdω (2.77)

As we can see, the phase change of the interferometer is depending on the arm length.

The interferometer is most sensitive when the phase difference between the two beams

is π. From this point, we can choose an optimal baseline length l that can maximize

the effect of a fixed frequency gravitational wave. To a 1kHz gravitational wave, the

optimum base length is about 75km. It’s nearly impossible to construct such a long

interferometer on earth. To save the construction cost people developed Fabry-Perot

Interferometer which contains Fabry-Perot cavity that can reflect beams for many times

to enlarge the phase difference. This technology has been applied to existing gravita-

tional wave detectors, but also brought stronger noise to the interferometer.

2.9 Noise in the Michelson Interferometer

The noise is restricting the sensitivity of interferometers[3]. How to restrain the

noise level is always a primary study to the gravitational wave researchers. Here I
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introduce the main noise exist in interferometers briefly.

2.9.1 Shot noise

Shot noise come from the quantum fluctuation of photon number in the laser

beams. Error of photon counting from the PD will cause a pseudo mirror displace-

ment. Assume the photo current injects into the PD is iP. According to Poisson photon-

statistics, the power spectrum of iP is:

ishot =
√

2eiP (2.78)

where e is the elementary charge. Assume the phase difference between the beams is:

φ1 − φ2 = Φ0 + δφ (2.79)

From 2.62, the power of photon vibration detected by PD is:

δIP = − Imax − Imin

2
sin (Φ0) δφ (2.80)

The Imax and Imin are the maximam and minimum current. Consider the minimum

phase difference that could be detected by PD, the δφmin should be:

δφmin =
2
√

2eIP

Imax − Imin

1
sin Φ0

(2.81)

Here the photon current IP is defined as:

IP =
Imax + Imin

2
+

Imax − Imin

2
cos Φ0 (2.82)

Assume the visibility is optimal, which means Imin = 0, the 2.81 becomes:

δφmin =

√
2e

Imax

1
sin (Φ0/2)

(2.83)

When Φ0 = π, the δφmin has a minimum value.

δφmin =

√
2e

Imax
(2.84)
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That is to say, when the PD is at a dark fringe, the shot noise is most restrained. As we

can see from 2.83, the shot noise is inversely proportional to the square root of Imax.

Here we use PD’s efficiency η and laser power P to indicate Imax:

Imax = e
ηP
h̄Ω

(2.85)

Combine 2.84 and 2.85, we can have the shot noise at dark fringe:

δφmin =

√
2h̄Ω
ηP

(2.86)

As we can see, the shot noise is inversely proportional to the laser power P. Thus,

increasing laser power can reduce the level of shot noise. On the other hand, similarly

with the purpose and theory of the Fabry-Perot cavity, introducing a ’Power Recycling

Mirror’ to the interferometer can increase the effective beam power[4]. The mirror

locates between laser and beam splitter can reflect the beam come back from the beam

splitter, so the beam is less easy to leak from the interferometer.

2.9.2 Radiation Pressure Noise

When a photon is reflected by a mirror, it gives the mirror a force that vibrates

the mirror. The force is fluctuating due to the fluctuation of the photon number. This

force is called ’radiation pressure noise.’ In a Fabry-Perot Michelson Interferometer,

the displacement of mirror induced by radiation pressure noise is given by

δxradi =
4F

πmω2

 2hP0

λc
[
1 + ( ω

ωc
)2
]
 1

2

(2.87)

Where

ωc =
πc

2LF (2.88)

The unit of δxradi is m/
√

Hz. ωc is the angular cut off frequency of arm cavities. The

F is the finesse of cavities, meaning how many times can the laser transfer between

the mirrors. λ is the laser wavelength, P0 is the laser power, m is the mass of mirrors,

L are the arm lengths. As we can see from the 2.87, the displacement is inversely
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proportional to the frequency. Thus in the low-frequency range, the interferometer’s

sensitivity is more seriously restricted by radiation pressure noise. In the meantime, we

notice that the radiation pressure noise is also proportional to the square root of laser

power P0, indicating there is a trade-off between shot noise and radiation pressure

noise. Thus, the limitation of the sensitivity of interferometer is called the standard

quantum limit(SQL):

hSQL =
1

Lω

√
8h̄
m

(2.89)

This limitation indicates the mechanical limit of the measurement of the laser. People

developed many methods to overcome the limit, such as quantum squeezing.[5][6]

2.9.3 Thermal Noise

The detector’s sensitivity is also restrained by temperature fluctuation of the mir-

rors and its suspension systems. KAGRA has adopted a cryogenic interferometry to

lower the thermal noise, but the effect of temperature fluctuation is still not solved yet.

According to the fluctuation dissipation theorem (FDT)[7], the system in a heat bath

fluctuates. The thermal fluctuation is proportional to the mechanical loss in the body.

The thermal noise due to the incident of laser, and heat exchange between mirror and

suspension system is called mirror thermal noise. The vibration of the mirror body

as a pendulum is called suspended thermal noise. According to the FDT, the thermal

noise can be analyzed by seeing the mirror and suspension system like a pendulum.

The thermal noise of an oscillator can be written as:〈
x(ω)2

〉
=

4kBT
mQ

ω0(
ω2 −ω2

0
)2

+ ω2
0ω2/Q2

(2.90)

Here the kB is the Boltzmann constant, T is the temperature, m is the mirror mass, ω0

is the angular resonant frequency of the system. Introducing the loss angel φ:

φ(ω) =
ω

ω0Q
: Viscous damping model (2.91)

φ =
1
Q

: Structure damping model (2.92)
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The loss angle φ is related to the argument of the mechanical admittance Y of the sys-

tem:

arg(Y(ω)) = arctan(φ(ω)) (2.93)

We can infer that decreasing the temperature or increasing the quality factor can reduce

the thermal noise.

2.9.4 Seismic Noise

To every ground-based interferometer, the seismic noise is an inevitable problem.

Although the mirrors are suspended by the suspension system for avoiding the effect

of ground, the suspension system is not isolated from the ground totally. Generally

speaking, the seismic noise is a function of frequency and varied from the specific

location of the interferometer. The seismic noise can be roughly expressed by:

δxgnd ∼ 10−7 1
f 2 (2.94)

Obviously, it is also restricting the sensitivity mainly in the low-frequency range. To

expand the frequency detection range, developing a suspension system having strong

resistance to low-frequency seismic noise is essential.

2.10 Gravitational Wave Resource

Gravitational waves can be emitted from any item that involves their quadrupole

moment changing. But since usual items contain small mass can only emit a small

amplitude gravitational wave, a detectable gravitational wave resource is mainly an

astronomical origin. In this section, we will discuss the common types of gravitational

wave sources.

2.10.1 Coalescence of Compact Binary Stars

A coalescence of compact binary stars means a pair of stars such as a binary black

hole or binary neutron star approach to each other because of gravity. The start of their

merge process is called ’Inspiral’. Gravitational waves are emitted in the last few min-

utes at the inspiral period. Then when their orbit coincides, the strongest gravitational
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wave emits. We call this period ’Merger’. Finally, the binaries become one black hole,

and the gravitational wave is decayed at a rapid speed. Because the waveform looks

like the ring of a bell, we call this period ’Ringdown’.

2.10.2 Supernova

During the collapse of a massive star, if the gravity center of the star is asymmetric,

a gravitational wave would be emitted. The waveform of supernova’s gravitational

wave is hard to predict, we can only estimate its amplitude as about 10−21 to 10−20.[8]

2.10.3 Pulsars

A spinning neutron star will emit gravitational waves if it is asymmetrical to its

rotation axis. Pulsars are rotating in a frequency as few hundred Hertz. Such neu-

tron stars are called pulsars. Pulsars would also emit radio beams, and the arrival

time of radio beams is not simultaneous with gravitational wave’s arrival time. This

is due to the gravitational wave is stretching and squeezing the space. We have al-

ready observed the time delay by using different observatories. The observation of

one source using combined observatories is called ’Multi-messenger astronomy’, this

study will help us understand the characteristics of neutron stars and black holes more

comprehensively.[9]

2.10.4 Cosmological Sources

Various solutions about the gravitational waves generated during the inflation in

the early universe have been posted. The amplitudes and frequencies in these theories

vary. The estimated frequency is from 109Hz to 10−16Hz, and the estimated ampli-

tude is 10−17 at 10−8Hz[10]. If the gravitational wave generated from the inflation is

detected, we can obtain the information of the universe that is only 10−22 second old,

which is impossible to electromagnetic observation.

Since the cosmological gravitational wave is considered random, a coincidence

test between the independent observatories is essential for detecting the cosmological

source.
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Chapter 3

Data Analysis of Gravitational Wave by

Matched Filtering

This chapter briefly describes the background of gravitational wave source local-

ization by GW detectors. Localization is figuring out the detection of the GW source.

So far, this research is based on an algorithm named ’Matched filtering’, which was

applied during LIGO and Virgo’s observation[11, 12, 13, 14].

3.1 Matched Filtering

3.1.1 Optimal Filter

Matched filtering is a common analysis method for the searching of GW signals

from the data contain noises. This algorithm was studied in the field of signal-processing,

and also known as the optimal filter. Assume the measured waveform from an obser-

vatory is:

s(t) = h(t) + n(t) (3.1)

Here, the h(t) is GW signal and n(t) is noise in the detector.

The two-sided noise power spectral sensitivity(PSD) is Sn( f ), which is defined by

〈
ñ( f )ñ∗

(
f ′
)〉

= δ
(

f − f ′
)

Sn( f ) (3.2)

Define a real-valued filter F(t) as:

A =
∫ ∞

−∞
F(t)a(t)dt =

∫ ∞

−∞
F̃∗( f )ã( f )d f (3.3)
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In 3.3, A is the filtered value of a(t). ã( f ) comes from the Fourier transform of a(t):

ã( f ) =
∫ ∞

−∞
a(t)e−2πi f tdt (3.4)

Combine 3.2, 3.3 and 3.4, we have:〈
N2
〉
=
∫ ∞

−∞

∫ ∞

−∞
F̃∗( f )F̃∗

(
f ′
) 〈

ñ( f )ñ
(

f ′
)〉

d f ′d f

=
∫ ∞

−∞

∫ ∞

−∞
F̃∗( f )F̃∗

(
f ′
)

δ
(

f − f ′
)

Sn( f )d f ′d f

=
∫ ∞

−∞
|F̃( f )|2Sn( f )d f 1

(3.5)

Now we try to find a optimal filter, which can extract the GW signal from the noise

best. We can get this filter by maximizing the ratio of filtered values:

H2

〈N2〉 =

∣∣∣∫ ∞
−∞ F̃∗( f )h̃( f )d f

∣∣∣2∫ ∞
−∞ |F̃( f )|2Sn( f )d f

=

∣∣∣∫ ∞
−∞ F̃∗( f )

√
Sn( f )h̃( f )/

√
Sn( f )d f

∣∣∣2∫ ∞
−∞ |F̃( f )|2Sn( f )d f

(3.6)

Using Cauchy-Schwarz inequality,

∣∣∣∣∫ ∞

−∞
A( f )B( f )d f

∣∣∣∣2 ≤ ∫ ∞

−∞
|A( f )|2d f

∫ ∞

−∞
|B( f )|2d f (3.7)

we can claim that in order to let 3.6 have a maximum value, F̃∗( f )
√

Sn( f ) and h̃( f )/
√

Sn( f )

must be equal. If so, 3.6 is now written by:

H2

〈N2〉 =
C
(∫ ∞
−∞ |F̃( f )|2Sn( f )d f

) (∫ ∞
−∞ |h̃( f )|2/Sn( f )d f

)
∫ ∞
−∞ |F̃( f )|2Sn( f )d f

= C
∫ ∞

−∞

h̃∗( f )h̃( f )
Sn( f )

d f

(3.8)

Where C is a constant number. From this discussion we find that the optimal filter for

h(t) is

F̃∗( f ) = C
h̃( f )

Sn( f )
(3.9)
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The inner product of the detected data s and the template h is defined by:

(h | s) =
∫ ∞

−∞

h̃∗( f )s̃( f )
Sn( f )

d f (3.10)

We can divide the denominator to form the amplitude spectral densitities(ASDs).

(h | s) =
∫ ∞

−∞

h̃∗( f )√
Sn( f )

s̃( f )√
Sn( f )

d f (3.11)

Then we difine h̄( f ) = h̃∗( f )√
Sn( f )

, s̄( f ) = s̃∗( f )√
Sn( f )

. Then 3.11 becomes:

(h | s) =
∫ ∞

−∞
h̄∗( f )s̄( f )d f (3.12)

3.1.2 Waveform Overlap

So far, we have obtained the optimal filter to extract the GW waveform from the

signal. Define a overlap M of two vectors A and B:

M =
(
a′ | b′

)
(3.13)

While the prime make means:
a′ = a

σa

σ2
a = (a | a)

b′ = b
σb

σ2
b = (b | b)

(3.14)

The overlap M is going to normalize the signal-to-noise ratio(SNR).

SNR =
1
σh

(s | h) (3.15)

SNR value is proportional to the amplitude of GW signal. In time domain, the SNR

given by matched filter is:

(s(t) | h) =
∫ ∞

−∞
s̃∗h̃e−2πi f td f (3.16)
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Only when the measured signal gives an SNR higher than an SNR threshold, the

signal is expected to contain a GW. Such signal’s SNR is called a ’Trigger.’

3.1.3 Workflow of Matched Filtering Search

Section 3.1.1 and 3.1.2 talked about the algorithm of matched filtering. LIGO’s

CBC event searching tool [15] based on Matched Filtering can be described as Figure

3.1:

FIGURE 3.1: Data workflow of LIGO for the CBC searching. Representing
a signal detector data analysis workflow.

The data stream from detectors go though the Data loop and the Template loop to

find the optimal template and then record the event. Due to the huge computational

cost of this algorithm, real-time detection and localization of GW are almost impossi-

ble. For example, GW170814 is firstly identified by two matched filter pipelines with

high confidence about 30 seconds after its arrival[16]. Then the trigger was generated
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to alert the observation partners. To observe the EM follow-up, low-latency search

tools are necessary. In Chapter 5 and Chapter 6, we will present a new GW data anal-

ysis algorithm that can effectively reduce the computing cost.

3.2 SNR and Distance

We talk about the relation between SNR and the GW source distance. Combine

3.16 and 2.59, we can see that the SNR is inversely proportional to the distance between

the observation point and the source, but not the square of the distance. To characterize

the detector sensitivity, we usually use the range, which is called the detection range.

It means the source at this range can be detected with an SNR of 8. Particularly, we

often cite the distance of a binary neutron star(BNS) who have the masses of 1.4M�, if

the SNR of this BNS event is 8.

FIGURE 3.2: aLIGO(top left),AdV(top right) and KAGRA (bottom) target
strain sensitivities as a function of frequency.
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In Figure 3.22, the detection range is for a 1.4M�+1.4M� BNS merger. The BNS

range (in megaparsec) achieved in past observation runs and anticipated for future

runs is shown. The O1 LIGO curve is taken from the Hanford detector, the O2 LIGO

curve comes from Livingston. In each case, these had better performance for that ob-

serving run. The O3 curves for aLIGO and AdV reflect the recent performance of the

detectors.

3.3 Antenna Patterns

In this section, we consider the observatories’ angular dependence on the GW

source. We assume the location of the GW source on the skymap is (θ, φ), and the

resource is rotated by ψ, which is called polarization angel. The angles can be seen in

Figure 3.3. In this figure, two arms of the interferometer are along with x and y axis.

FIGURE 3.3: Defination of the angles describing the location of GW source
and detector.

The amplitude of the signal detected by the observotory would be:

h(t) = F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t) (3.17)

where the h× and h+ are two polarizations of GW signal. The factors F× and F+ are

antenna pattern functions. This equation tells how do the observotories respond to the

2You can find the file at https://dcc.ligo.org/public/0161/P1900218/002/SummaryForObservers.pdf
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GW signal’s angular characteristic. The two antenna pattern functions are defined as:

F+(θ, φ, ψ) =
1
2

(
1 + cos2 θ

)
cos 2φ cos 2ψ− cos θ sin 2φ sin 2ψ (3.18)

F×(θ, φ, ψ) =
1
2

(
1 + cos2 θ

)
cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ (3.19)

3.4 Source Localization

The localization of the GW source needs the combination of separated GW de-

tectors. As GW travels in the speed of light, the arriving time of GW recognized by

different detectors are varied, depending on the direction of GW and detectors’ loca-

tion. A time lag between two detectors can be observed if they are not symmetric to

the GW direction.

Assume using two detectors to localize the GW source. Suppose that the GW

source’s location is R on a unit sphere, and D is the light second distance between two

detectors. The time lag between the arriving time measured by two detectors is given

by (T1 − T2) = D · R.

Assume the two detectors have time accuracies σ1 and σ2, the measured time are

t1 and t2, the distribution of the reconstructed location r and prior distribution p(r) are

defined by:

p(r|R) ∝ p(r) exp

[
− (D · (r− R))2

2
(
σ2

1 + σ2
2
) ]

(3.20)

To summarize, the time lag of the detectors is given by D · R, and the time accuracy

is σ ∼
(
2πρσf

)−1, where ρ represents SNR, and σf is the bandwidth of the signal

calculated by

f n = 4
∫ ∞

0
d f
|h̃( f )|2
S( f )

f n (3.21)

In a three-detector-network occasion, the distribution function is transformed like[17]:

p(r|R) ∝ p(r) exp
[
−1

2
(r− R)T M(r− R)

]
(3.22)
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where the matrix M represents the accuracy:

M =
D12DT

12
σ2

12
+

D23DT
23

σ2
23

+
D31DT

31

σ2
31

(3.23)

Figure 3.4 shows the localization result of GW170817. As we can see, a two-detector-

FIGURE 3.4: GW170817 Localization and Triangulation Annuli. The rapid
Hanford-Livingston localization is shown in blue, and the final Hanford-
Livingston-Virgo localization is in green. The gray rings are one-sigma
triangulation constraints from the three detector pairs. [Credit: LIGO/Vir-

go/NASA/Leo Singer (Milky Way image: Axel Mellinger)]
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network localization(blue) can only give a ring shape result. But a three-detector-

network can localize the GW source with higher accuracy(green). To conclude, a high

precise GW source localization needs a three-detector network at least. As the GW

detector in Japan, KAGRA has finished construction and started running, it’s very at-

tractive to see if a four-detector network has better performance in the study of local-

ization.

3.5 Analysis Algorithms

LIGO and Virgo have developed several localization methods based on matched

filtering. The algorithms are called pipelines. The candidate events are uploaded to

GraceDb.

3.5.1 Compact binary search

Here we introduce several pipelines that are used by LIGO and Virgo. The pipelines

are aiming at the detection of compact binary coalescence(CBC) events.

PyCBC search

PyCBC[14, 18, 19, 20] is an open-source toolkit developed by GW data analysis

researchers. LIGO and Virgo used PyCBC to calculate the SNR of GW events. PyCBC

is based on matched filtering algorithm, more details can be found in the document of

PyCBC.3

GstLAL pipeline

This is also a matched filtering based algorithm used for localization research,

developed by LIGO and Virgo[21]. More details can be found in[22].

cWB pipeline

Coherent WaveBurst (cWB)[23] is a data-analysis tool to search for a broad range

of gravitational-wave (GW) transients. The pipeline identifies coincident events in the

3http://pycbc.org/pycbc/latest/html/
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GW data from earth-based interferometric detectors and reconstructs the gravitational

wave signal by using a constrained maximum likelihood approach. coherent Wave-

Burst was the first algorithm to identify the gravitational wave signal GW150914 de-

tected by LIGO.

MBTA pipeline

MBTA[24] constructs its background by making every possible coincidence from a

single detector triggers over a few hours of recent data. It then folds in the probability

of a pair of triggers passing the time coincidence test.

SPIIR pipeline

SPIIR[25] applies summed parallel infinite impulse response (IIR) filters to ap-

proximate matched-filtering results. It selects high-SNR events from each detector and

finds coherent responses from other detectors. It constructs a background statistical

distribution by time-shifting detector data one hundred times over a week to evaluate

foreground candidate significance.

3.5.2 Sky position reconstruction

Full parameter estimation

For reconstructing the GW source’s precise position, we use Bayesian inference to

estimate all the unknown parameters of the GW signal. LALInference is an algorithm

based on Bayesian inference that can estimate the GW parameters. However, this full

parameter estimation costs a lot of time. Usually, the GW signal analysis contains 15

parameters’ calculation and lasts hours to days to complete.

Bayestar

Bayestar algorithm is used for fast GW position reconstruction. Following Bayesian

inference, Batestar calculates a likelihood function using a three-detector network’s

output, such as arrival time, amplitudes, and phases. It can calculate localization re-

sults in several minutes. Comparing with full parameter estimation, the Bayestar is

faster but can localize the GW source with similar accuracy.
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3.6 Multi-messenger astronomy

As a rapid localization of the GW source can be accomplished, the observation of

one GW source with EM observatories together is possible. Not only BBH and BNS,

but we can also understand EM-emitting supernovas and pulsars more comprehen-

sively. Multi-messenger astronomy will be more important in the field of astronomy

in the future. For example, to observe a kilonova event derived from a BNS merger

event, the BlackGEM telescope will cost a few minutes to align to an area of 2.7deg2.

A monitoring range smaller than 300deg2 is necessary for the EM observation. On the

one hand, Since the EM signal decays in a few days, a quick response to the merger

event will benefit to EM observatories alignment. On the other hand, a multi-detector-

network GW localization can localize the GW source in a smaller range, to help EM

detectors maintain more information.

The expected localization accuracy is about 100deg2 if an advanced detector be-

comes operational this year. The Figure 3.5 shows the summary of localization accu-

racy using two-detector-network and three-detector-network4 :

FIGURE 3.5: The size of 90% confidence area which are alerted in the first
half of O3, which is called O3a. Events detected by two LIGO detectors are
shown in the left and the events detected by LIGO-Virgo three-detector-

network are shown in the right

As we can see, the median value of confidence from LIGO two detector’s observ-

ing data is 1600deg2, and is 950deg2 to a three-detector-network. As the sensitivity

4Cited from https://summary.ligo.org/detchar/summary/O3a/
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situation during the measurement, the detection ranges of Advanced LIGO Hanford,

Advanced LIGO Livingston, and Advanced Virgo are 120Mpc, 140Mpc, and 45Mpc,

respectively. The quoted ranges are the detection ranges for a BNS merger event.

Hopefully, the fourth GW detector KAGRA will join in the localization network

in the future. If all the four detectors can reach their design sensitivity, the localization

accuracy would be improved to 10deg2[26]. However, the actual sensitivities are far

lower than we expected. How to use the low-sensitivity GW detectors to localize the

GW source is still under learning.
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Chapter 4

Convolutional Neural Network

In Chapter 3, we discussed the analysis of the GW signal using the Matched Fil-

tering algorithm. But the matched filtering has shortages like slow reaction speed, and

massive template bank necessity, which is significantly unsuitable to multi-messenger

astronomy. In this chapter, we will discuss developing a Convolutional Neural Net-

work(CNN) to analyze the GW signal instead. The problems met by Matched Filtering

can be solved by CNN’s fast analyze speed and strong generalization performance.

4.1 Perceptron

To understand the structure and principle of CNN, we have to figure out its basic

unit, the artificial neuron. The theory and principle of an artificial neuron are pro-

posed by Warren McCulloch and Walter Pitts in 1943[27]. In 1957, Frank Rosenblatt

developed this idea and designed an algorithm called Perceptron, which can run on a

computer firstly[28]. Perceptron solves linear classification problem, and a handwrit-

ten letters recognition experiment succeed in 1960. From then on, Machine learning

has ushered in a research boom.

Figure 4.1 is the structure of a perceptron: In Figure 4.1, the x1 and x2 are two

input numbers, b is called bias, w1 and w2 are called weights. This perceptron take two

inputs number(x1, x2) in, and output one number. The output y, has a value of 0 or 1,

depending on the input value, bias, and weight. The perceptron can be expressed as

the function below:

y =

{
1 if ∑i xiwi + b > 0

0 if ∑i xiwi + b ≤ 0
(4.1)
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FIGURE 4.1: Percetron diagram

That is to say, this perceptron looks like a gate. When the input number is small, the

gate would not open for it, the output value is 0. But if the input has a big value

knocking the door, the gate would open, thus the output is 1.

4.2 Liner Classification Using Single Perceptron

As we talked before, a perceptron can solve a liner classification problem. To de-

scribe the work simply and clearly, here we compare the perceptron with a AND logic

gate. Perceptron and logic gate both have two inputs and one output, and they can

both solve a liner classification problem. The truth table of AND gate is shown in Ta-

ble 4.1. We can see only when x1 = x2 = 1, y = 1. Otherwise, the output should be 0.

TABLE 4.1: AND gate truth table

x1 x2 y

0 0 0
0 1 0
1 0 0
1 1 1

Next, we try to use a perceptron to accomplish the same classification. Here we

adopt the following parameter setup: w1 = w2 = 0.5, b = −0.75. The parameter set
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is not unique, countless parameter sets satisfy our demand. To simplify the equation,

such setups were used.

Thus, 4.1 has been transformed as the following equation:

y =

{
1 if ∑i 0.5xi − 0.75 > 0

0 if ∑i 0.5xi − 0.75 ≤ 0
(4.2)

Now we draw a picture consists of (0, 0), (0, 1), (1, 0), (1, 1) four points and line

y = 0 in 4.2.

FIGURE 4.2: Perceptron achieves four points classification

In this picture, three blue points(y = 0) and one red point (y = 1) are divided

into two groups by the blue line. Any inputs above the line will cause the output to be

y = 1, and the inputs below the line will lead to y = 0. In this way, we prove that a

perceptron can achieve a liner classification, just likes AND gate does. Not only AND

gate, by handling the parameters properly, but perceptrons can also have the same

function with OR gate, NOT gate, and other liner logic gates.
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4.3 Non-linear Classification Using a Multilayer Percep-

tron

So far, we proved the liner classification ability of perception. Now we talk about

a non-linear case. Like what we did in the Section 4.2, we consider how to achieve an

XOR gate using perceptrons. Its circuit diagram and truth table is shown in Figure 4.3

and Table 4.2. We can see only when the inputs are the same, y = 1. Otherwise, y = 0.

FIGURE 4.3: XOR gate

TABLE 4.2: XOR gate truth table

x1 x2 y

0 0 1
0 1 0
1 0 0
1 1 1

The Figure 4.4 shows the positions of four points. But as we can see, a straight line

can not precisely divide the points into two groups according to their y value. None of

parameter sets can curve the line to satisfy a non-liner classification demand. Thus, we

have to consider adopting a multilayer perceptron with a activation function. Multiple

layers and non-linear activation functions will bring nonlinearity to the perceptrons.

By applying one perceptron’s output as the next layer perceptron’s input, we can

construct a multilayer perceptron. In this 4-point-classification case, a two-layer per-

ceptron can meet our needs. As Figure 4.5 shows, the first layer (x1, x2) consists of

single perceptrons, but the second layer (s1, s2) applied the activation function f (x) =

arctan x. By adjusting the weights and the biases of the perceptrons, the two-layer

perceptron in Figure 4.5 can have the same function as an XOR gate.
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FIGURE 4.4: One line can not achieve non-liner classification

FIGURE 4.5: Use 2-layer-perctron to construct a XOR gate

Table 4.3 is truth table of Figure 4.5 and Figure 4.3.

So far, So a non-linear classification is accomplished by the two-layer perceptron.

By adjusting the weights and biases of the perceptron, other non-linear classification

problem can also be solved. The perceptrons having multilayers are named multi-

layer perceptron(MLP), which is the most simple neural network – artificial neural
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TABLE 4.3: Two-layer perceptron truth table

x1 x2 s1 s2 y

0 0 1 0 0
1 0 1 1 1
0 1 1 1 1
1 1 0 1 0

network(ANN). Researchers developed more complicated but more superior neural

networks from ANN, such as the convolutional neural network(CNN), recurrent neu-

ral network(RNN), etc.

4.4 Components of Convolutional Neural Network

Convolutional Neural Network is a class of deep neural networks, which is com-

monly applied in image analyzing. An experiment of cat&dog image classification

using CNN[29] gained an accuracy of over 83%. A typical CNN consists of pooling

layers, fully connected layers, normalization layers, and at least one Convolutional

layer. These layers are called hidden layers, the calculation process in these layers is

usually invisible.

4.4.1 Convolutional Layer

The Convolutional layer is the core of the convolutional neural network. Unlike

the other neural networks or multilayer perceptrons, CNN does not have fully con-

necting layers, that is, neurons in CNN only accept limited data but not all input from

the last layer. The ’fully-connectedness’ ensures that CNN is not disturbed by over-

fitting. This idea comes from image process machines in real-life – eyes. Neurons of

the animal visual system are sensitive to the specific wavelengths, and the information

from different perception area merged to process a full image.
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The name of Convolutional layer comes from the convolution function, which can

filter the input data with learnable kernels.
x11 x12 · · · x1n

x21 x22 · · · x2n
...

... . . . ...

xm1 xm2 · · · xmn

 ∗


y11 y12 · · · y1n

y21 y22 · · · y2n
...

... . . . ...

ym1 ym2 · · · ymn

 =
m−1

∑
i=0

n−1

∑
j=0

x(m−i)(n−j)y(1+i)(1+j)

(4.3)

In 4.3, the first matrix is input data, and the second matrix is the filter kernel. The

equation gives a number as a convolution result. But convolution kernels are usually

smaller than the input matrix so that the output is no longer a number but a matrix.

The kernel will filter the target matrix from left the right and from top to bottom. Each

process gives one outcome. Finally the output matrix is a combination of several con-

volution outcomes. For example, we calculate the convolution outcome of a 4*4 matrix

and a 3*3 matrix: 
1 2 3 0

4 1 0 3

3 0 1 0

0 3 4 1

 ∗


0 1 1

1 0 0

1 0 1

 =

[
7 6

8 11

]
(4.4)

The result matrix come from these four processes:
1 2 3

4 1 0

3 0 1

 ∗


0 1 1

1 0 0

1 0 1

 = 7 (4.5)


2 3 0

1 0 3

0 1 0

 ∗


0 1 1

1 0 0

1 0 1

 = 6 (4.6)


4 1 0

3 0 1

0 3 4

 ∗


0 1 1

1 0 0

1 0 1

 = 8 (4.7)
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1 0 3

0 1 0

3 4 1

 ∗


0 1 1

1 0 0

1 0 1

 = 11 (4.8)

In CNN, the filters play the role of weights in neural networks. The same with MLP,

convolutional layer also has biases, which act on the every elements in matrices, like

4.9 shows. [
7 6

8 11

]
+

[
2 2

2 2

]
=

[
9 8

10 13

]
(4.9)

In this thesis, we used Tensorflow to construct the CNNs. The Convolutional layer

function of Tensorflow has four parameters: filters, kernel size, strides, and padding.

Now we give a brief introduction to the parameters.

Filters

Filters of Convolutional layer mean the number of the filters or the dimensionality

of the output space in term. The filters parameter in 4.4 is one, so the matrix size is

[4 ∗ 4 ∗ 1]. If we let the filters parameter be 3, we will have a [4 ∗ 4 ∗ 3] size output

matrix. In the field of image classification, filters are usually set to 3 to detect the

information in the RGB tri-color field.

Kernel size

Kernel size specifying the height and width of the filter matrix. It is an integer list

contains two numbers. In 4.4 the kernel size is (3, 3).

Stride

An integer list contains 2 integers, specifying the stride of the convolution along

with the height and width. In 4.4 the stride is (1, 1), which means the filter slides over

the matrix from left to right, from top to bottom, with a step of 1. If the stride is 2

or more, the filter will skip 1 or more elements every time it slides. A large stride

parameter will produce a smaller output but loss some information.
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Padding

Padding controls the size of the output matrix, by adding columns and lines with 0

to the matrix. It is usually used to even the size of input and output matrices. Padding’s

value is ’True’ when activated.
1 2 3 0

4 1 0 3

3 0 1 0

0 3 4 1

 ∗


0 1 1

1 0 0

1 0 1

=

[
7 6

8 11

]
Padding→


0 0 0 0

0 7 6 0

0 8 11 0

0 0 0 0

 (4.10)

4.4.2 Pooling layer

In a CNN structure, pooling layers are inserted between Convolutional layers to

reduce the size of output matrices from the previous layers. Thus the data amount and

parameters are controlled, computing costs are also efficiently saved. For example, a

(2 ∗ 2) pooling layer can divide the input matrix into several (2 ∗ 2) small matrices, and

extract the maximum values from each matrix.
4 11 2 1

5 3 2 2

9 11 4 0

4 13 1 2

 Pooling→
[

11 2

13 4

]
(4.11)

As 4.11 shows, as we activated the pooling function, the data was decreased by 75%.

Pooling size larger than (2, 2) is too destructive, which usually causes information loss.

Pooling size of (2, 2) is more commonly used.

4.4.3 Fully Connected Layer

Dense layer, like its name, is a kind of fully connected layer that is connecting

every neuron from the previous layer. The Dense layer collects all the impulse from the

previous layer and outputs N values. Usually, the Dense layer is the final layer in CNN

architecture, so that the N numbers given by Dense layer corresponds N possibilities

of N classes. For example, in the dog & cat classification, Dense layer was used to give
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two possibilities of dog & cat. The large the difference between these two numbers, the

better the classification effect.

4.5 Architecture and Workflow of Convolutional Neural

Network

4.5.1 CNN Architecture

The Section 4.4 introduced the layers of CNN. Their specific combination and se-

quence are depending on our needs. Figure 4.6 shows the CNN architecture for binary

classification. The architecture can be simplified into three components: Input later,

Hidden layer, and output layer. The input layer is in charge of transforming data into

operational matrices, then send them to the hidden layer. Hidden layer, which consists

of Convolutional layers, Polling layers, Fully connected layers can process the data,

summarize the laws among the data, and pass the information to the Output layer.

Output layer gives a list of possibilities corresponding to input data classes. In a bi-

nary classification case, the output layer gives two possibilities.

FIGURE 4.6: CNN architecture for binary classification
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4.5.2 CNN Workflow

This section talks about the classification workflow using CNN. Classification

aims to classify mixed data sets into several categories based on their characteristics;

the characteristics of input data is called features in the term. Because parameters in

CNN are not at its best from the beginning, we should let the CNN optimize its pa-

rameters by learning input data features. This process is called ’Train’. The parameter

optimization method is discussed in the next section. Especially, if we attach every

input data with a label, the training process is named ’Supervised learning’ that signif-

icantly benefits the learning efficiency.

FIGURE 4.7: Cat & Dog classification – Supervised Learning

If no labels are attached, which means the training process is applying an ’Unsu-

pervised learning’, the CNN will easily mismatch the features and the train data sets.

For example, in the Cat & Dog classification problem, an unsupervised learned CNN

would divide the input data into ’small animal’ and ’big animal’ two groups, but not

classify them according to their species. Unsupervised learning is usually applied to

the big-data analysis, such as background gravitational waves analysis.

After all the parameters are tuned to the minimum error state, CNN is ready for

a ’Test’, which means classify the unknown input data. Usually, the training data set

and the test data set are generated to be different, for measuring CNN’s generalization

ability. That is to say, a well- trained CNN should be able to handle unknown test data.
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FIGURE 4.8: Cat & Dog classification – Unsupervised Learning

We can also recognize the test process as ’Label predict’, because the actual output

data correspond to putative labels. How to measure the prediction and classification

capabilities of CNN depends on the accuracy of the test. In the Cat & Dog classification,

we define the accuracy as the Equation 4.12:

Accuracy =
TC + TD

TC + FD + FC + TD
=

TC + TD
N

(4.12)

Where the codes in the equation are the amounts of predicted labels:

FIGURE 4.9: Predicted labels of the Cat & Dog classification

To maintain a high classification accuracy, we need to optimize the parameters

inside the CNN via multiple training. The next section talks about the optimization

algorithm.
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4.5.3 Parameter Optimization – Backpropagation

In the study of 4-point-classification, the weights and biases of the perceptrons are

assigned by ourselves. But for a CNN containing millions of parameters, setting every

weights and biases manually is impossible. How to tune the parameters to the best de-

pends on the backpropagation algorithm. The schematic diagram of backpropagation

is Figure 4.10.

FIGURE 4.10: Parameter optimization based on backpropagation

At first, the input data is forward propagated through CNN, then the loss function

calculates the difference between the right label and predicted label. Then the loss gra-

dient of each parameter(weights & biases) is sent back to CNN. Finally, the parameters

inside CNN are optimized according to the gradients. This process is named the gradi-

ent descent algorithm. To minimize the loss, the gradient descent algorithm takes steps

proportional to the negative slope of the loss function. To understand this algorithm,

let us consider how to come down the mountain at the fastest speed.

Assume one man trapped in the mountains, and he is trying to get down from

the mountain as soon as possible. The most efficient strategy is to always walk along
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the path having a maximum negative gradient. The length of each step is called the

learning rate. But this method also has a disadvantage: easy to be trapped in a small

pit. The gradients around the pit bottom are always positive that invalid this strategy.

That is to say, this man can find the local minimum point, but he likely cannot find the

global minimum.

FIGURE 4.11: Gradient descent algorithm – Local minimum and Global
Minimum

About how to avoid trapping in the local minimum, many researchers have pro-

posed solutions. Such as mini-batch training, which means to train the CNN in several

steps with several batches. Each train epoch gives one loss function, then finds the

global minimum point from different loss maps. This method is called Batch Gradient

Descent. Another way to find the global minimum is by revising the learning rate. The

learning rate is one hyperparameter that we can set manually. Usually, it has a fixed

value. But these years, researchers find that a variable learning rate is helpful to see the

global minimum. At the beginning of training, we use a large learning rate to quickly
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find the global minimum, then lower the learning rate in several steps. This strategy is

called Learning Rate Decay.

4.6 Software and Development Environments

So far, we discussed every detail about the fundamental of CNN. Fortunately, we

don’t need to realize all the functions by writing the codes, but get the support from

machine learning software. The machine learning software often used include Ten-

sorflow1 , Keras2 , PyTorch3 , Panda4 , Chainer5 , etc. To speed up our calculation

on computers, we used CUDA6 and cuDNN7 GPU acceleration toolkit provided by

NVIDIA. In this thesis, we mainly used Tensorflow and Keras based on Python2. Aa

for the dataset generation, a gravitational wave data library, PyCBC8 , is used for gen-

erating GW waveforms and noises. In this section, we will give introductions for the

software and the development environment.

4.6.1 Softwares to Implement Convolutional Neural Network

Tensorflow

Tensorflow is an open-source framework for machine learning. It provides mul-

tiple development tools, libraries, and also a community for researchers. We used

Tensorflow to construct the CNN architecture in this thesis. We also used train and test

functions of Tensorflow to improve and examine our CNN.

1https://www.tensorflow.org/
2https://keras.io/
3https://pytorch.org/
4https://www.tensorflow.org/
5https://chainer.org/
6https://developer.nvidia.com/accelerated-computing-training/
7https://developer.nvidia.com/cudnn/
8https://pycbc.org/

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://www.tensorflow.org/
https://chainer.org/
https://developer.nvidia.com/accelerated-computing-training/
https://developer.nvidia.com/cudnn/
https://pycbc.org/
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Keras

Keras is also an open-source library for machine learning, supporting calling and

applying Tensorflow faster. That is to say, it can help users build CNN more conve-

niently. Generally speaking, it is considered as an interface but not a framework.

GPU Acceleration Toolkit – CUDA & cuDNN

NVIDIA’s CUDA provides a development environment for GPU-accelerated ma-

chine learning. We also applied NVIDIA’s cuDNN library, which designed for deep

neural networks. With the help of GPU acceleration, we saved our test time cost can

into one second.

4.6.2 Development Environment

Hardware Environment

This research is completed on a computer with a Linux operating system.

CPU: Intel i7-6700HQ 2.60GHz

GPU: NVIDIA GeForce GTX 1070

Memory: 16GB 2133MHz

Software Environment

Here we show the versions of crucial packages we used. Please note that using a

different version may cause an error.

Python: 2.8.09

numpy: 1.16.1

PyCBC: 1.14.2

lalsuite: 6.62

tensorflow: 2.1.0

tensorflow-gpu: 1.13.1

CUDA: 10.1.0

cupy-cuda101: 6.5.0

9Python2 has come to an end of life, no further updating will be released. But as PyCBC only supports
Python2, we had to use the old version of Python.
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cuDNN: 7.6.4

Keras: 2.3.1
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Chapter 5

Detection of Gravitational Waves Using

Neural Network

This chapter talks about how did we construct a CNN and used it to detect the

GW in a noisy background. Our goal is to enable CNN to detect the GW event as far

as possible and maintain high accuracy at the same time.

5.1 Previous Research

This thesis is not the first one that is trying to apply CNN to the study of GW

data analyzing. Few articles talked about the successful implementation of the GPU-

accelerated CNN algorithm. Daniel George et al. presented a deep CNN framework

for GW detection that enables real-time multi-messenger Astro-physics[30]. Daniel

George adopted a coincident check for the multiple detectors to reduce the false-alarm

rate to 0.003%. This GPU-implementation deep CNN model is believed to have a cal-

culation speed that is 10200 times faster than Matched Filtering. But this article didn’t

talk about the classification and parameter estimation method of the signal, such as

GW source localization.

Chayan Chatterjee et al. constructed a deep ANN model to localize the simu-

lated GW signal using a three-detector network(HVL)[31]. This model can localize

the GW150914 merger event in a 312 deg2 with an accuracy of 90%. But this research

also has a short-coming: waveform parameters were not taken into account. In other

words, the ANN model can only be used for a fixed GW waveform analysis. We be-

lieve that this model has to be modified to consider more variables. So that it can real-

ize real-time GW data analysis. At the same time, we believe adopting a four-detector
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network(HLVK) would benefit localization research.

The improvement of the GW detection algorithm is expressed in this chapter, and

the development of GW localization research that can realize real-time GW analysis is

shown in Chapter 6.

5.2 Implement of GW Detection Using CNN

So far, we discussed the basic principles and benefits of using CNN for image

recognition. The reasons and methods for applying this technology to GW’s data anal-

ysis have not been explained.

GWs also contain features, especially in the Ringdown period. In the Ringdown

period, the GW waveform has the highest amplitude, and the highest frequency that

distinguishes it with noise, as Figure 5.1 shows. We believe that the CNN algorithm

can also classify GW waveforms and noises with high accuracy.

FIGURE 5.1: GW waveform(left) and its Ringdown period(right), gener-
ated by PyCBC

But, unlike the typical image classification process, in this research, we collected

the time and amplitude information of the GW waveform as train and test data, but

not digitizing the waveform according to its RGB value. The method of making the

waveform diagram is shown in Figure 5.2. Also, all the pictures displayed in this thesis

are all drawn after fitting, but this does not mean that we used the data from a fitted

curve when making the data set. All amplitude and time information are accurate

values provided by PyCBC.
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FIGURE 5.2: The waveform is derived from the time and amplitude data
provided by PyCBC.

5.3 Architecture of the CNN for GW Detection and the

Workflow

We used CNN as a binary classification algorithm to distinguish signal contains

GW from pure noise. The workflow is similar to Figure 4.7, but the input data was

replaced with the GW signal and noise signal, as Figure 5.3 shows.

FIGURE 5.3: Workflow of the detection of gravitational waves

For the implementation of the coding, we used Keras for TensorFlow interface.

The specific structure of the CNN is shown as Figure 5.4.

The input data contains noisy GW waveforms with label ’1’ and pure noise sig-

nals with label ’0’. Three Convolutional layers are expected to learn the feature from

input data. Pooling layers are inserted between the Convolutional layers, for saving

computing capabilities. One Flatten layer that abandons data randomly can prevent

the CNN from overfitting. The last layer is the Dense layer, it gives two output that

corresponding to the possibilities of label ’1’ and label ’0’, the labels of input data.
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FIGURE 5.4: CNN architecture for gravitational waves detection

Because the CNN needs to be trained several times to comprehend the laws in-

side the data, we need to generate an input data bank consisting of thousands of GW

waveforms and noise signals. In order to make the generated waveforms as close as

possible to the waveforms detected by the GW observatories, we used the GW data

analysis software, PyCBC to make waveforms and noises.

5.4 PyCBC

PyCBC is an open-source software developed by LIGO and Virgo. It is used in

the first direct detection of gravitational waves (GW150914) by LIGO and is used in

the ongoing analysis of LIGO and Virgo data. Now PyCBC supports Windows system,

Linux system, and macOS.
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PyCBC has a vast database contains waveform simulation functions, PSDs of the

detectors, GW events information, matched filtering algorithm, and localization pipelines.

In this thesis, we mainly used it to generate GW waveforms and noises.

5.4.1 GW Waveforms Generation

The GW waveform generation function of PyCBC depends on these parameters:

masses, spins, distance, approximant, tidal deformability, eccentricity, inclination, co-

alescence phase, sample time step, and the cutoff frequency for high-pass. The codes

are shown below.

1 import matplotlib.pyplot as plt

2 from pycbc.waveform import get_td_waveform

3

4 hp, hc = get_td_waveform(approximant='IMRPhenomPv2',

5 mass1=20,

6 mass2=20,

7 spin1z=0.5,

8 spin2z=0.5,

9 delta_t=1.0/4096, # Sample frequency = 4096Hz

10 f_lower=40 # High pass filter

11 )

12

13 plt .plot(hp.sample_times, # X cordinate: Sample time

14 hp, # Y cordinate: Amplitude of plus polarization

15 label='h1'

16 )

17 plt .ylabel( ' Strain ' )

18 plt . xlabel( 'Time (s) ' )

19 plt . legend()

20 plt .show()

And the output of this code is Figure 5.5.
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FIGURE 5.5: The waveform from a 20M�+20M� BBH merger

5.4.2 Noise Generation

We used PyCBC to simulate the noise signals in GW detectors. The noises should

be the Gaussian noise and colored by the PSD of each detector. The code below is

generating the noise in a LIGO detector.

1 import pycbc.noise

2 import pycbc.psd

3 import pylab

4 import numpy as np

5

6 # The color of the noise matches the PSD provided.

7 flow = 30.0

8 delta_f = 1.0 / 16

9 flen = int(2000 / delta_f ) + 1

10 psd = pycbc.psd.aLIGOZeroDetHighPower(flen, delta_f, flow)

11

12 # Generate 32 seconds of noise at 4096 Hz

13 seed = np.random.randint(1024) # Generate a random number

14 delta_t = 1.0 / 4096

15 tsamples = int(32 / delta_t )

16 ts = pycbc.noise.noise_from_psd(tsamples, delta_t, psd, seed=seed)

17

18 pylab.plot( ts .sample_times, ts)
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19 pylab.ylabel( ' Strain ' )

20 pylab.xlabel( 'Time (s) ' )

21 pylab.show()

We can see the noise is a function of duration, sample time step, PSD of the detec-

tor, and a random seed. Here we used the PSD of Advanced LIGO sensitivity. Because

we also randomized the noise signal, the code gives a different picture every time it

runs. One of the random noise signals is shown in Figure 5.6.

FIGURE 5.6: Simulated noise signal in Advanced LIGO

We combined the generated GW waveform with noise, to simulate the noisy wave-

form detected by the observatories, as Figure 5.7 shows.

FIGURE 5.7: Simulated noisy waveform detected by Advanced LIGO
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5.5 Train and Test Dataset Generation

5.5.1 Train Dataset

In order to train the generalization ability of the CNN, the train data bank should

include as many types of waveforms as possible. This research mainly searched for

BBH merger events. The specific parameter set is as follows:

• Masses of the binary range from 20M� to 50M�, with an interval of 1M�.

• Spins of the binary range from 0 to 0.8, with an interval of 0.2.

• Distance of the binary range from 1Mpc to 700Mpc.

• Inclination, polarization, coalescence phase and the other parameters are fixed.

The parameter distribution of mass and spin is shown below.

FIGURE 5.8: Parameters for train data generation

The generation code is shown below:

1 import pycbc

2 import numpy as np

3 import random

4 from pycbc.waveform import get_td_waveform

5 from pycbc.detector import Detector

6 import matplotlib.pyplot as plt

7 import pycbc.noise
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8 import pycbc.psd

9 apx = ' IMRPhenomPv2'

10 delta_f = 1.0 / 16

11 flen = int(2000 / delta_f ) + 1

12 flow = 40

13 T = 1024

14 psd_h1 = pycbc.psd.aLIGOZeroDetHighPowerGWINC(flen, delta_f, flow)

15 mass1_range = np.linspace(20,50,30)

16 mass2_range = mass1_range

17 spin1z_range = np.linspace(0, 0.8,5)

18 spin2z_range = spin1z_range

19 inclination=2.34

20 pol_range=0.9

21 det_h1 = Detector( 'H1')

22 X = []

23 for i1 in range(len(mass1_range)):

24 for i2 in range(len(mass2_range)):

25 print (( i1 , i2 ) )

26 if mass1_range[i1]<=mass2_range[i2]:

27 for i3 in range(len(spin1z_range)):

28 for i4 in range(len(spin2z_range)):

29 seed_noise = random.randint(1,127)

30 delta_t = 1.0 / 2000

31 tsamples = T

32 noise_h1 = pycbc.noise.noise_from_psd(

33 tsamples, delta_t , psd_h1, seed=seed_noise)

34 hp, hc = get_td_waveform(approximant=apx,

35 distance=200,

36 mass1=mass1_range[i1],

37 mass2=mass2_range[i2],

38 spin1z=spin1z_range[i3],

39 spin2z=spin2z_range[i4],

40 inclination=inclination ,

41 coa_phase=2.45,

42 delta_t=1.0/2000,

43 f_lower=40)
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44 signal_h1 = det_h1.project_wave(hp, hc,0,0, 0.9)

45 signal_h1_array = np.array(signal_h1)[−T:]

46 list_h1 = signal_h1_array. tolist ()

47 h1_max_index = list_h1.index(max(list_h1))

48 list_h1 = signal_h1_array. tolist ()

49 X0 = []

50 X1 = []

51 X0.append([100*np.array(signal_h1.sample_times[h1_max_index−10:h1_max_index+11])

−100*signal_h1.sample_times[h1_max_index−10], 10**21*signal_h1_array[

h1_max_index−10:h1_max_index+11]])

52 X1.append([100*np.array(signal_h1.sample_times[h1_max_index−10:h1_max_index+11])

−100*signal_h1.sample_times[h1_max_index−10], 10**21*noise_h1[h1_max_index−10:

h1_max_index+11]])

53 X.append(X0)

54 X.append(X1)

55 X = np.array(X)

56 np.save('X_4_27_1_train200mpc.npy', X)

Explanations for the lines in the block above:

• Line 1 to line 8: Import PyCBC and other packages.

• Line 9: Assign what approximant algorithm that PyCBC uses.

• Line 10 to line 21: Assign constant parameters.

• Line 22, 49, 50: Make empty lists to collect waveform information

• Line 23 to line 43: Generate waveforms.

• Line 44 to line 55: Post-process of the waveforms, collect time and amplitude

information.

• Line 56: Save the information as a npy file.

In this way, we generated the template waveforms where are 200Mpc far away

from the earth. Some of the codes are easily confused. Here we give some explanations

to the codes.
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1) GW waveforms in this template bank were not mixed with noises. The pure GW

signals and noises were alternately inserted into the data set for training.

2) Not all information from the entire BBH merger is included in the data set. Based

on the highest peak, 10 points on the left and 10 points on the right are selected.

In other words, a search window having ten milliseconds duration is adopted.

3) As line 51 and line 52 show, the time values were enlarged by 100 times, while the

amplitude values were enlarged by 1021 times. This action facilitates the CNN to

analyze the data because the CNN is not very sensitive to small numbers.

Finally, 11,625 waveforms like Figure 5.5 were generated, and an equal amount of

noise signal was inserted between these waveforms. So far, the train data set prepara-

tion is accomplished and is saved as a npy file.

5.5.2 Test Dataset

In principle, the train data and the test data must be separated. The method of

making the test set is roughly the same as the method of making the train set, but the

parameter set needs to be modified. Also, the GW waveforms should be mixed with

noise to make noisy waveforms. The test data set parameters is as follows:

• Masses of the binary range from 20.5M� to 50.5M�, with an interval of 1M�.

• Spins of the binary range from 0.1 to 0.9, with an interval of 0.2.

• Distance, Inclination, polarization, coalescence phase, and the other parameters

were the same as the train data set.

The parameter distribution of the training set and test set is as follows:

The test data set is derived from these codes:

1 import pycbc

2 import numpy as np

3 import random

4 from pycbc.waveform import get_td_waveform

5 from pycbc.detector import Detector

6 from pycbc.waveform import get_fd_waveform
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FIGURE 5.9: Parameters for train data and test data generation

7 import matplotlib.pyplot as plt

8 apx = ' IMRPhenomPv2'

9

10 import pycbc.noise

11 import pycbc.psd

12 delta_f = 1.0 / 16

13 flen = int(2000 / delta_f ) + 1

14 flow = 40

15

16 T = 1024

17 psd_h1 = pycbc.psd.aLIGOZeroDetHighPowerGWINC(flen, delta_f, flow)

18 mass1_range = np.linspace(20.5,50.5,30)

19 mass2_range = mass1_range

20 spin1z_range = np.linspace(0.1, 0.9,5)

21 spin2z_range = spin1z_range

22 inclination=2.34

23 pol_range=0.9

24 det_h1 = Detector( 'H1')

25 X = []

26 for i1 in range(len(mass1_range)):

27 for i2 in range(len(mass2_range)):

28 print (( i1 , i2 ) )

29 if mass1_range[i1]<=mass2_range[i2]:

30 for i3 in range(len(spin1z_range)):
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31 for i4 in range(len(spin2z_range)):

32 seed_noise = random.randint(1,127)

33 delta_t = 1.0 / 2000

34 tsamples = T

35 noise_h1 = pycbc.noise.noise_from_psd(tsamples, delta_t, psd_h1, seed=seed_noise)

36 hp, hc = get_td_waveform(approximant=apx,

37 distance=200,

38 mass1=mass1_range[i1],

39 mass2=mass2_range[i2],

40 spin1z=spin1z_range[i3],

41 spin2z=spin2z_range[i4],

42 inclination=inclination ,

43 coa_phase=2.45,

44 delta_t=1.0/2000,

45 f_lower=40)

46 signal_h1 = det_h1.project_wave(hp, hc,0,0, 0.9)

47 signal_h1_array = np.array(signal_h1)[−T:] + np.array(noise_h1[−T:])

48 list_h1 = signal_h1_array. tolist ()

49 h1_max_index = list_h1.index(max(list_h1))

50 X0 = []

51 X1 = []

52 X0.append([100*np.array(signal_h1.sample_times[h1_max_index−10:h1_max_index+11])

−100*signal_h1.sample_times[h1_max_index−10], 10**21*signal_h1_array[

h1_max_index−10:h1_max_index+11]])

53 X1.append([100*np.array(signal_h1.sample_times[h1_max_index−10:h1_max_index+11])

−100*signal_h1.sample_times[h1_max_index−10], 10**21*noise_h1[h1_max_index−10:

h1_max_index+11]])

54 X.append(X0)

55 X.append(X1)

56 X = np.array(X)

57 np.save('X_4_27_1_test200mpc.npy', X)

The block above shows the code to generate the test GW template waveform at

200Mpc. The GW waveforms and the noises are superimposed, to compose the noisy

GW waveforms. At the same time, the same amount of noise signals are inserted into

the waveforms. In total, 11,625 waveforms like Figure 5.7 and 11,625 noise signals were
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included by the test data set.

So far we have prepared the train & test dataset.

5.6 Train and Test Process

5.6.1 Train Process – Parameter Optimization

The code block below represents the whole train process, and then store the CNN

as a file.

1 import tensorflow as tf

2 import pathlib

3 from tensorflow.keras import datasets, layers , models

4 gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=0.8)

5 import numpy as np

6 from sklearn.model_selection import train_test_split

7

8 #Label set generation

9 label_set =[]

10 for i in range(23250/2):

11 label_set .append(1)

12 label_set .append(0)

13 label_set = np.array(label_set )

14

15 #Load the train data set file

16 X = np.load( 'X_4_27_1_train200mpc.npy')

17 X = np.asarray(X, np.float32)

18 Y = label_set

19 #Use 10 percent of the data to validate the model

20 X_train, X_validation, Y_train, Y_validation = train_test_split (X, Y, test_size =0.1)

21

22 #Construct a CNN, Keras used.

23 model = models.Sequential()

24 model.add(layers.Conv2D(11, kernel_size = 1, strides=(1, 1) , padding='valid',input_shape = (1,2,21) ,

data_format='channels_first' , activation='relu ' ) )

25 model.add(layers.MaxPooling2D(pool_size=1, strides=None, data_format='channels_first'))
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26 model.add(layers.Conv2D(22, kernel_size = 1, strides=(1, 1) , padding='valid', activation='relu ' ) )

27 model.add(layers.MaxPooling2D(pool_size=1, strides=None, data_format='channels_first'))

28 model.add(layers.Conv2D(44, kernel_size = 1, strides=(1, 1) , padding='valid', activation='relu ' ) )

29 model.add(layers.Dropout(0.02, noise_shape=None, seed=None))

30 model.add(layers.MaxPooling2D(pool_size=1, strides=None, data_format='channels_last'))

31 model.add(layers.Flatten())

32 model.add(layers.Dense(2, activation='softmax'))

33

34 #Optimizing. The Optimizer is Adam, default hyperparameters were used.

35 model.compile(optimizer=tf.keras.optimizers.Adam(0.001),

36 loss='sparse_categorical_crossentropy',

37 metrics=["accuracy"])

38

39 # Train the model in 10 epochs.

40 history = model.fit(X_train, Y_train, epochs=10, validation_data=(X_validation, Y_validation))

41

42 # Save the model as a h5 file , accessable when testing.

43 model.save('CNN_4_27_200mpc.h5')

About the details of the code block:

• Line 9 to line 13: Generate labels for the data set; ’1’ for GW waveforms and ’0’

for noises.

• Line 15 to line 20: Load and split the data set

• Line 23 to line 32: Construct the CNN architecture

• Line 35 to line 37: Call and define the optimizer, Adam.

• Line 40: Train the CNN, use Adam to optimize the parameters of CNN.

• Line 43: Save the CNN model as an h5 file.

Here we show the accuracy and loss during the trian process.

From Figure 5.3, we can see that in the first two epochs1 the accuracy has reached

one, which means the CNN has learned the features of the train data set. Also, because

1In terms of neural networks, an epoch refers to one cycle through the full training dataset.
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FIGURE 5.10: Loss and Accuracy of train and validation process

of the optimization, the loss is reduced to zero. Now we test the CNN with known

data set to verify its generalization ability.

5.6.2 Test Process – Label Prediction

The code block below shows the test process.

1 import numpy as np

2 from tensorflow.keras import models

3 new_model = models.load_model('CNN_4_27_200mpc.h5') # Load the model file we trained.

4 test_set = np.load( 'X_4_27_1_test200mpc.npy')

5 test_set = np.asarray( test_set , np.float32)

6 test_label = new_model.predict(test_set) # Label prediction.

7 test_label = test_label . tolist ()

8

9 # Make the correct labels

10 label_set =[]
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11 for i in range(23250/2):

12 label_set .append(1)

13 label_set .append(0)

14 label_set = np.array(label_set )

15 X = np.load( 'X_4_27_1_test200mpc.npy')

16 X = np.asarray(X, np.float32)

17 Y = label_set

18

19 # Calculate the loss and accuracy, according to the test data set and its correct labels .

20 test_loss , test_acc = new_model.evaluate(X, Y, verbose=2)

About the details of the code block:

• Line 3: Load the CNN model.

• Line 4 to line 5: Load the test data set.

• Line 6 to line 7: Predict the test data set labels.

• Line 10 to line 14: Make the correct labels, because the arrangement of GW wave-

form and noise signal is known.

• Line 15 to line 20: Calculate the loss and accuracy by comparing the correct labels

and predicted labels.

The accuracy is defined as Figure 5.11 shows. The red text represents the correct

prediction amount, and the black text represents the wrong prediction amount.

FIGURE 5.11: Detection accuracy definition

Because we have found that the test accuracy is severely restricted by the distance

of CBC, here we show the figure of test accuracy versus distance.



68 Chapter 5. Detection of Gravitational Waves Using Neural Network

In Figure 5.12, we ended the test at 800Mpc. At 800Mpc, about all of the predicted

labels are ’0’, which means CNN recognizes every input data as noise. Because half of

the input data is the noise signal, the accuracy closes to 0.5.

FIGURE 5.12: Detection accuracy versus distance

5.6.3 Result and Discussion

In this chapter we have talked about the detection of GW using CNN. We used

accuracy to represent the generalization ability of CNN. As Figure 5.12 shows, the

accuracy has a poor performance in a long distance. This is because the amplitude of

GW is inversely proportional to the distance, as Figure 5.13 shows.

Also, the BBH having larger mass would emit stronger GW that is more likely to

be detected. Meanwhile, small mass events are easily overwhelmed by noise.
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FIGURE 5.13: The further the distance is, the weaker the GW amplitude
would be.
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Chapter 6

Localization of Gravitational Waves

Using Neural Network

This chapter talks about the localization of the GW source using CNN. Localiza-

tion means figuring out the coming direction of the GW source. To position the source

in a smaller area, simultaneous observation of at least two GW detectors is essential.

Three or four detector’s combination will benefit not only the detection confidence but

also the sky localization.

FIGURE 6.1: O1-O2-skymap

From Figure 6.1, we can see the localization precision of GW170814 is better than

the other events because of the joining of Virgo. LIGO’s observation obtained different
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localization results. To strengthen the GW source search, they combined the result

from four pipelines that used different analysis methods, to search particular sources.

As a three-detector network (LIGO Hanford, LIGO Livingston and Virgo) is con-

vinced to have a more precise localization, we believe that introducing KAGRA to the

network will benefit the localization work. Although the detectors’ sensitivities are

different, the effective use of the less sensitive detector information is still under study.

The following sections talk about using CNN to localize the GW source and the

necessity of introducing KAGRA to the network.

6.1 Implement of GW Localization Using CNN

As we have discussed in Section 3.4 and Section 5.2, we can locate the gravita-

tional wave source in a way similar to image recognition. We need to prepare the GW

waveforms containing time lag information to infer the direction of GW. The time lags

can be simulated by calling PyCBC’s projection function, which means project one GW

signal to several detectors, like Figure 6.2 shows.

FIGURE 6.2: Waveform projection

The left side of Figure 6.2 is a GW waveform generated by PyCBC, and the right

side shows the waveforms detected by GW observatories. The relative position of these

waveforms is simulated by PyCBC basing on the direction of the GW source. Thus the

time lag between detectors can be measured. In this research, we take the time interval

between the highest peaks as time lags. From time lags among the detector network,

we can estimate the direction of the GW source. In this way, a localization problem is

transformed into a classification problem.
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6.2 Architecture of the CNN for GW Localization and the

Workflow

The CNN we used for detection is not suitable for the localization problem any-

more, because sky localization is a multiclass classification but not a binary classifi-

cation. The amount of classes depends on the sector number on the sky map. The

finer we divide the sky map, the larger the sector amount, and the higher the localiza-

tion precision. But at the same time, the localization accuracy would drop because the

GW is easily localized to a neighboring sector. We tried to divide the sky map into 81

sectors, and a finer dividing caused low test accuracy. The CNN architecture for local-

ization is similar to the CNN in Figure 5.3, but had a different output layer, as Figure

6.3 shows.

FIGURE 6.3: Workflow of the localization of gravitational waves

The specific architecture of the CNN is shown in Figure6.4.

This CNN has an output layer that gives a possibility list contains 81 numbers;

each number corresponds to the possibility of one label.
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FIGURE 6.4: CNN architecture of gravitational waves localization

6.3 Train and Test Dataset Generation

In this study, the train and test data set is the low-parameter-density data set we

used in the GW detection, but coming from 81 directions. The specific generation pro-

cess is as follows:

1) Simulate a GW waveform emitted from the CBC.

2) Project the waveform to the detector network, get the signals in the four detectors.

3) Extract the ringdown part of each waveform.

4) Combine four ringdown period signals together.

So that the combined signals are maintained, like Figure 6.5 shows.
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FIGURE 6.5: Ringdown period of the waveforms in four detectors

The labels ’h1’, ’l1’, ’v1’, ’k1’ are corresponding to LIGO Hanford, LIGO Liv-

ingston, Virgo, and KAGRA, respectively. But as we can see, the lines in Figure 6.5

is still a mess. The waveforms are too messy to distinguish them from each other. We

have further reduced the size of the input:

5) Extract the maximum peaks from the ringdown periods. Specifically, select ten

points around the crest as input data. Unlike GW detection research, the search

window for a single detector is five milliseconds, but the window for the com-

bined network is not fixed due to time lags.

Finally, the signal we used for data set generation is a combination of four peaks,

like Figure 6.6 shows.

In total 12,960 pictures like Figure 6.6 was prepared.
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FIGURE 6.6: Highest waveform peaks of the HLVK network.

6.3.1 Train Dataset

Just like in the GW detection problem we talked about before, we made a training

set and data set that do not have the same waveform at all. The specific parameter set

is as follows:

• Masses of the binary range from 20M� to 50M�, with an interval of 10M�.

• Spins of the binary range from 0.2 to 0.8, with an interval of 0.2.

• Distance of the binary range from 20Mpc to 200Mpc.

• Values of declination: [-1.41, -1.10, -0.74, -0.37, 0, 0.37, 0.74, 1.10, 1.41] (Unit: Ra-

dian; North pole & South Pole abandoned)

• Values of right ascension: [2π
9 , 4π

9 , 6π
9 , 8π

9 , 10π
9 , 12π

9 , 14π
9 , 16π

9 , 2π] (Unit: Radian)

• Inclination, polarization, coalescence phase and the other parameters are fixed.

Here we show the codes for train data set generation:
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1 import pycbc

2 import numpy as np

3 import random

4 from pycbc.waveform import get_td_waveform

5 from pycbc.detector import Detector

6 apx = ' IMRPhenomPv2'

7 import matplotlib.pyplot as plt

8 import pycbc.noise

9 import pycbc.psd

10

11 # The color of the noise matches a PSD which you provide

12 flow = 40

13 delta_f = 1.0 / 40

14 flen = int(2000 / delta_f ) + 1

15 T = 1024

16

17 psd_h1 = pycbc.psd.aLIGOZeroDetHighPower(flen, delta_f, flow)

18 psd_v1 = pycbc.psd.analytical.AdvVirgo(flen, delta_f, flow)

19 psd_l1 = pycbc.psd.aLIGOZeroDetHighPower(flen, delta_f, flow)

20 psd_k1 = pycbc.psd.analytical.KAGRADesignSensitivityT1600593(flen, delta_f, flow)

21 # NOTE: Inclination runs from 0 to pi, with poles at 0 and pi

22 # coa_phase runs from 0 to 2 pi .

23

24 det_h1 = Detector( 'H1')

25 det_l1 = Detector( 'L1')

26 det_v1 = Detector( 'V1')

27 det_k1 = Detector( 'K1')

28

29 # Choose a GPS end time, sky location, and polarization phase for the merger

30 # NOTE: Right ascension and polarization phase runs from 0 to 2pi

31 # Declination runs from pi/2. to −pi/2 with the poles at pi/2. and −pi/2.

32 dec_range = np.linspace(0.1−np.pi/2, −0.1+np.pi/2, 9)

33 ra_range = np.linspace(2*np.pi/9, 2*np.pi,9)

34

35 mass1_range = np.linspace(20,50,4)

36 mass2_range = mass1_range
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37 spin1z_range = np.linspace(0.2, 0.8,4)

38 spin2z_range = spin1z_range

39 inclination_range=2.34

40 pol_range=0.9

41

42 X = []

43 Y = []

44 for i1 in range(len(dec_range)):

45 for i2 in range(len(ra_range)):

46 print (( i1 , i2 ) )

47 for i3 in range(len(mass1_range)):

48 for i4 in range(len(mass2_range)):

49 if mass1_range[i3]<=mass2_range[i4]:

50 for i5 in range(len(spin1z_range)):

51 for i6 in range(len(spin2z_range)):

52

53 seed_noise = random.randint(1,127)

54 # Generate noise

55 delta_t = 1.0 / 2000

56 tsamples = T

57

58 noise_h1 = pycbc.noise.noise_from_psd(tsamples, delta_t, psd_h1, seed=

seed_noise)

59 noise_l1 = pycbc.noise.noise_from_psd(tsamples, delta_t, psd_l1, seed=

seed_noise)

60 noise_v1 = pycbc.noise.noise_from_psd(tsamples, delta_t, psd_v1, seed=

seed_noise)

61 noise_k1 = pycbc.noise.noise_from_psd(tsamples, delta_t, psd_k1, seed=

seed_noise)

62

63 X0 = []

64

65 #Generate waveforms

66 hp, hc = get_td_waveform(approximant=apx,

67 distance=10,

68 mass1=mass1_range[i3],
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69 mass2=mass2_range[i4],

70 spin1z=spin1z_range[i5],

71 spin2z=spin2z_range[i6],

72 inclination=inclination_range,

73 coa_phase=2.45,

74 delta_t=1.0/2000,

75 f_lower=40)

76

77 signal_h1 = det_h1.project_wave(hp, hc, ra_range[i2 ], dec_range[i1],

pol_range[i8])

78 signal_l1 = det_l1.project_wave(hp, hc, ra_range[i2 ], dec_range[i1],

pol_range[i8])

79 signal_v1 = det_v1.project_wave(hp, hc, ra_range[i2 ], dec_range[i1],

pol_range[i8])

80 signal_k1 = det_k1.project_wave(hp, hc, ra_range[i2 ], dec_range[i1],

pol_range[i8])

81

82 signal_h1_array = np.array(signal_h1)[−T:] #+ np.array(noise_h1)

83 signal_l1_array = np.array(signal_l1)[−T:] #+ np.array(noise_l1)

84 signal_v1_array = np.array(signal_v1)[−T:] #+ np.array(noise_v1)

85 signal_k1_array = np.array(signal_k1)[−T:] #+ np.array(noise_k1

86

87 list_h1 = signal_h1_array. tolist ()

88 list_l1 = signal_l1_array. tolist ()

89 list_v1 = signal_v1_array. tolist ()

90 list_k1 = signal_k1_array. tolist ()

91

92 h1_max = max(list_h1)*10**21

93 l1_max = max(list_l1)*10**21

94 v1_max = max(list_v1)*10**21

95 k1_max = max(list_k1)*10**21

96

97

98 h1_max_index = list_h1.index(max(list_h1))

99 l1_max_index = list_l1. index(max(list_l1) )

100 v1_max_index = list_v1.index(max(list_v1))
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101 k1_max_index = list_k1.index(max(list_k1))

102

103 X0.append([100*np.array(signal_h1.sample_times[h1_max_index−5:

h1_max_index+6])−100*signal_h1.sample_times[h1_max_index−5],

104 10**21*signal_h1_array[h1_max_index−5:h1_max_index+6]])

105 X0.append([100*np.array(signal_l1.sample_times[l1_max_index−5:

l1_max_index+6])−100*signal_l1.sample_times[h1_max_index−5],

106 10**21*signal_l1_array[l1_max_index−5:l1_max_index+6]])

107 X0.append([100*np.array(signal_v1.sample_times[v1_max_index−5:

v1_max_index+6])−100*signal_v1.sample_times[h1_max_index−5],

108 10**21*signal_v1_array[v1_max_index−5:v1_max_index+6]])

109 X0.append([100*np.array(signal_k1.sample_times[k1_max_index−5:

k1_max_index+6])−100*signal_k1.sample_times[h1_max_index−5],

110 10**21*signal_k1_array[k1_max_index−5:k1_max_index+6]])

111

112 X.append(X0)

113

114 X = np.array(X)

115 np.save('X_4_28_1_train10mpc.npy', X)

Explanation on the code block:

• Line 17:to line 27: Call the detectors and their PSDs.

• Line 32 to line 40: CBC parameter assignment.

• Line 44 to line 101: GW waveform generation. (Note the noise is not mixed here.)

• Line 103 to line 115: Collect the time and amplitude data of eleven points sur-

rounding the crest, save them in the npy file.

• Taking the starting time point of H1 as the reference point, the time of the other

waveforms is shifted.

• Noise is not mixed in the waveforms for training. But when we generate the test

data set, noises are superimposed.

• Nine declinations and nine right ascensions appointed 81 points on sky maps,

which divide the sky into 81 sectors.
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6.3.2 Test Dataset

The test data set for localization consists of noisy waveforms based on different

parameters with training. Figure 6.8 is one of the waveforms. Because the detectors’

sensitivities are different, we should use each detector’s PSD to color the noise. The

PSDs can be inquired from PyCBC.

At present(2020/7), the O3 observation run will end soon, LIGO and Virgo will

reach their designed sensitivity in O4 run. However, KAGRA’s sensitivity is below its

expected standard. According to the forecast, KAGRA’s actual sensitivity in O4 run

would be the expected sensitivity in O3 run. So in this research, we use the expected

sensitivity of LIGO and VIRGO during O4 run as reference sensitivity. And also use

the expected sensitivity of KAGRA during O3 run as the reference sensitivity.

FIGURE 6.7: PSDs of LIGO, Virgo in O4 run and KAGRA in O3 run

At present, LIGO has the best sensitivity overall, followed by Virgo. Data quotes



82 Chapter 6. Localization of Gravitational Waves Using Neural Network

from a report of LIGO in July 2019. To make the noisy test data set, we mix the noise

signals with pure GW signals, to get the noisy waveforms like Figure 6.8 shows.

FIGURE 6.8: Noisy waveforms for dataset generation

The parameters are shown below.

• Masses of the binary range from 25M� to 55M�, with an interval of 10M�.

• Spins of the binary range from 0.1 to 0.7, with an interval of 0.2.

• Distance, declination, and right ascension were the same with the train data set.

• Inclination, polarization, coalescence phase, and the other parameters are fixed.

About the test data generation code, we don’t show the complete codes in order to

save the space. The code can be written out by revising the train data set generation

codes:

1) Mix noise to pure GW waveforms. Specifically, delete the ’#’ in line 82~85.

2) Modify the parameter assignment, from line 32 to line 40.

3) Revise the file name in line 115.
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6.4 Train and Test Process

6.4.1 Train Process

The block below shows the code for training.

1 import tensorflow as tf

2 import pathlib

3 from tensorflow.keras import datasets, layers , models

4 gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=0.8)

5 import numpy as np

6

7 sector = 160

8

9 label_set=np.zeros((sector*81))

10 for i in range(81):

11 label_set [ i *sector : sector *( i+1)] = i

12 print( label_set .shape)

13

14 from sklearn.model_selection import train_test_split

15 X = np.load( 'X_4_28_1_train10mpc.npy')

16 X = np.asarray(X, np.float32)

17 Y = label_set

18

19 print(X.shape)

20 print(Y.shape)

21 X_train, X_validation, Y_train, Y_validation = train_test_split (X, Y, test_size =0.1)

22

23 # construct a CNN, Keras used.

24 model = models.Sequential()

25 model.add(layers.Conv2D(11, kernel_size = 1, strides=(1, 1) , padding='valid',input_shape = (4,2,11) ,

data_format='channels_first' , activation='relu ' ) )

26 model.add(layers.MaxPooling2D(pool_size=1, strides=None, data_format='channels_first'))

27 model.add(layers.Conv2D(22, kernel_size = 1, strides=(1, 1) , padding='valid', activation='relu ' ) )

28 model.add(layers.MaxPooling2D(pool_size=1, strides=None, data_format='channels_first'))

29 model.add(layers.Conv2D(44, kernel_size = 1, strides=(1, 1) , padding='valid', activation='relu ' ) )
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30 model.add(layers.Dropout(0.02, noise_shape=None, seed=None))

31 model.add(layers.MaxPooling2D(pool_size=1, strides=None, data_format='channels_last'))

32 model.add(layers.Flatten())

33 model.add(layers.Dense(162, activation='relu') )

34 model.add(layers.Dense(81, activation='softmax'))

35

36 model.compile(optimizer=tf.keras.optimizers.Adam(0.001), loss='sparse_categorical_crossentropy', metrics

=["accuracy"])

37

38 history = model.fit(X_train, Y_train, epochs=50, validation_data=(X_validation, Y_validation))

39

40 model.save('CNN_4_28_10mpc.h5')

In the block above,

• Line 7:to line 12: Labels generation.

• Line 14 to line 21: Load and split the train data set.

• Line 24 to line 34: CNN construction

• Line 36: Make a parameter optimizaer

• Line 38: Train the CNN within 50 epochs.

• Line 40: Save the trianed CNN model.

Loss and acuracy during the train process is shown by Figure 6.9.

Compared to the GW detection problem, we can see that the CNN took longer

epochs to learn from the train data for the localization of the GW source.

6.4.2 Test Process

The block below shows the test process.

1 import numpy as np

2 from tensorflow.keras import models

3

4 new_model = models.load_model('CNN_4_28_10mpc.h5') # load the model file we have trained before.
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FIGURE 6.9: Noisy waveforms for dataset generation

5 test_set = np.load( 'X_4_28_1_test10mpc.npy')

6 test_set = np.asarray( test_set , np.float32)

7 test_label = new_model.predict(test_set)

8 test_label = test_label . tolist ()

9

10 sector = 160

11 label_set=np.zeros((sector*81))

12 for i in range(81):

13 label_set [ i *sector : sector *( i+1)] = i

14

15 X = np.load( 'X_4_28_1_test10mpc.npy')

16 X = np.asarray(X, np.float32)

17 Y = label_set

18

19 test_loss , test_acc = new_model.evaluate(X, Y, verbose=2)

Explanations on the codes:
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• Line 4: Load the trained CNN model.

• Line 5 to line 6: Load the test data set.

• Line 7 to line 8: Label prediction.

• Line 10 to line 13: Correct label making.

• Line 15 to line 19: Calculate the loss and accuracy by comparing the right labels

and predicted labels.

Like we talked in Section 5.6.2, the localization accuracy was mainly restricted by

the distance of CBC. Figure 6.10 shows the relation of the localization accuracy and the

distance:

FIGURE 6.10: Localization accuracy versus distance
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We can see in Figure 6.10, the CNN has a high classification accuracy when the

distance is small, but the accuracy drops when we increase the distance. When dis-

tance=200Mpc, the accuracy is only 0.13, it means 87% input waveforms are localized

into the wrong sectors.

6.4.3 Research of a Three-detector Network Localization

In this chapter, the localization research is based on the combination of four detec-

tors. But in fact, KAGRA has just joined the network for a short time, few works have

proceeded with KAGRA. We want to know whether KAGRA’s joining is valuable, and

when KAGRA can contribute to the detector network. So in this chapter, we removed

KAGRA from the network and tried to localize the GW source using LIGO and Virgo

data.

We still examine the relationship between accuracy and distance using three de-

tectors (LIGO Hanford, LIGO Livingston and Virgo).

About the data set preparation, the parameter set of the template bank was the

same as above. Also, CNN architecture was revised to adapt the three-dimensional

data set. Here we compare the result of the three-detector network localization accu-

racy and the four-detector network localization accuracy, as Figure 6.11 shows.

Unfortunately, introducing KAGRA has a small contribution to the network. It

helps improve the localization accuracy only when the CBC is near enough. Accord-

ing to the research in the section below, we guess that due to the low sensitivity of

KAGRA, the signal it detects is easily overwhelmed by noise, so KAGRA gives that

wrong triggers. To some extent, KAGRA hinders localization analysis when the CBC

is far away.

From the current point of view, people can not find positive reasons for KAGRA

to join the localization network.

6.4.4 Increase KAGRA Sensitivity to Improve Localization Accuracy

This section talks about the study of high-sensitivity KAGRA’s contribution to the

detector network. As Figure 3.2 shows, KAGRA needs further sensitivity improvement

to catch up with other detectors. Here we simulated a higher sensitivity KAGRA which

has the expected sensitivity during O4 observing run, like Figure 6.12 shows.
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FIGURE 6.11: Accuracy of HLVK network (blue) and HLV network(red)

FIGURE 6.12: PSDs of HLVK in O4 run, and KAGRA in O3 run
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The sensitivity of O4 KAGRA is obtained by dividing the current PSD by ten times.

Figure 6.13 shows the result of GW localization accuracy using network contains

more sensitive KAGRA.

FIGURE 6.13: Accuracy improvements by raising KAGRA sensitivity.

We can see that increasing the sensitivity of KAGRA will significantly improve the

accuracy of localization. If the researchers of KAGRA can suppress the noise power to

one-tenth of the current status, then people have a good reason to let KAGRA join the

localization network.
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Chapter 7

Case Study: Injection of GW170814

Data

This chapter talks about a case study of GW170814 data analysis. GW170814 is a

BBH merger event detected by LIGO and Virgo in Aug. 2017. The raw data has been

released for researching. We take this event as a research object because GW170814 has

the ideal binary masses and a high SNR = 15.9. The real data was imported from the

GW Open Science Center1 via PyCBC.

7.1 GW170814 Detection

7.1.1 Data Pre-processing

Raw data from LIGO and Virgo can be accessed, but here we choose LIGO Liv-

ingston, because L1 has better sensitivity at that moment. Figure 7.1 shows the signal

in the L1 detector around GPS time 1186741861.53, the event occurring time. HPF and

LPF were adopted to filter noises, and the strain was also smoothed.

As we talked in chapter 4, the search window for GW detection is ten milliseconds.

So we extract the highest peak out like Figure 7.2 shows. Time starts from the leftmost

side of the waveform. The duration is ten milliseconds.

In order to test CNN’s classification ability, noise data is also essential. We ran-

domly selected a part of the L1 signal after the merger as a noise signal. The noise

signal is shown in Figure 7.3.

So far the data pre-processing has finished.

1https://www.gw-openscience.org/eventapi/html/GWTC-1-confident/GW170814/v3/
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FIGURE 7.1: H1 signal of event GW170814

FIGURE 7.2: H1 signal of event GW170814, around the highest peak
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FIGURE 7.3: Noise signal in H1

7.1.2 Injection Test

Now a well-trained CNN is used for injection test. The workflow follows Figure

5.4. The GW waveform with label ’1’ and noise signal with label ’0’ was send to the

CNN, then the classification result is show in Table 7.1.

TABLE 7.1

GW possibility noise possibility
GW signal 0.811 0.189

noise signal 0.001 0.999

We can see that CNN give high probabilities to the correct label. From this we

believe that the injection experiment was successful.

However, before the classification experiment conducts, the signal was pre-processed.

In another test, we did not filter the real signal and found that the GW signal has been

submerged in noise. In this case, this experiment is impossible to complete.
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7.2 GW170814 Localization

This section talks about the localization of GW170814 using real data. Since KA-

GRA was not able to operate at the time, here we use the data of the three-detector

network(HLV).

7.2.1 Data Pre-processing

Via PyCBC, real data of LIGO and Virgo can be imported from GW Open Sci-

ence center. As we talked in the previous section, the real data is filtered by HPF and

LPF, then smoothed. Signals in LIGO and Virgo around GW170814 occurring time are

shown in Figure 7.4.

FIGURE 7.4: Signals of GW170814 in HLV detectors, H1 waveform in-
verted.

It isn’t easy to recognize the position of the peaks in each detector, especially in

the V1 detector. So we shift the signal according to the detection time delay: use L1 as

the reference detector, move H1 signal forward for 8 ms, and move V1 signal forward

for 14 ms[16]. Aligned signals are shown in Figure 7.5.

Now we can clearly see the simultaneous response of each detector. We select the

signals between 0.51 and 0.52 seconds as the input data. After restoring their relative

positions, we got the input data for localization, like Figure 7.6 shows.
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FIGURE 7.5: Aligned signals of GW170814 in the detectors, H1 waveform
inverted.

FIGURE 7.6: Peaks in HVL detectors, sample frequency is 2kHz. Strain
was enlarged by 1021 times, time was enlarged by 102 times.

The time and amplitude information were sent to a trained CNN, as input data.

The workflow follows Figure 6.3.
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7.2.2 Injection Test

The CNN predicts the label corresponds to input data. As a result, the possibility

of the 19th sector has a maximum possibility. That is to say, the CNN predicts that the

input data is more close to the point (RA = 2π
9 , Dec = -0.74) than any other points, with

a possibility of 99.9 percent. Figure 7.7 shows the localization result.

FIGURE 7.7: Blue point is the real direction of GW170814, and the red box
is the credible regine of predicted direction.

The area of the red box is about 500 deg2, when the rapid localization areas cal-

culated by LIGO and Virgo are 1160 deg2(LIGO data only) and 60 deg2 (with Virgo

data)[16]. Figure 7.8 shows the rapid localization result.
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FIGURE 7.8: Localization of GW170814. The rapid localization using data
from the two LIGO sites is shown in yellow, with the inclusion of data
from Virgo shown in green . The full Bayesian localization is shown in

purple. The contours represent the 90% credible regions.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis discussed GW data analysis research: detecting GW from noise back-

ground and localizing GW source. We used Tensorflow and Keras to construct a CNN

algorithm to accomplish the analysis. We found that the main restriction of this re-

search is the sensitivities of the detectors. For example, in the localization research,

a lower sensitivity detector is not so important to the detector network. It will even

hinder high sensitivity detectors from obtaining correct results.

In Chapter 5, we generated the template waveforms depending on varying param-

eters, such as masses and spins. This template bank contains ten thousand waveforms

emit from medium mass BBH mergers, used for GW detection experiment. After the

train and test process, the CNN was capable of detecting BBH events up to 600Mpc

with an over 90% accuracy.

In Chapter 6, we talked about the localization of GW. We did not only prepare

a template bank but also considered the response of GW detectors based on obser-

vatories’ locations. We conducted two experiments: three-detector network local-

ization(HLV) and four-detector network localization(HLVK), and compared each net-

work’s performance. We found that introducing KAGRA to the detector network will

indeed benefit the localization, but KAGRA needs to increase its sensitivity to show its

value more. Our simulation shows that if the researchers of KAGRA can suppress the

noise power to one-tenth of the current status, the four-detector network would have

a better performance than a three-detector network.

In Chapter 7, we imported the released data of GW170814 event from LIGO data

centre. Using the recorded signal from LIGO Livingston, we successfully distinguished
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GW signal from the noise, with an accuracy of 81%. Then we combined the signals in

LIGO and Virgo to localize the GW source. As a result, we localized the source in a 500

deg2 area with an accuracy of over 99%.

CNN Architecture

In this thesis, the CNN structure we constructed was derived from repeated mod-

ification and testing. The reason why the hyperparameter set in the hidden layer has

such values is for obtaining higher accuracy. Modifying the hyperparameter set can

further reduce the calculation time, but this will reduce the model’s accuracy.

Algorithm Time Cost and Multi-messenger Astronomy

The most significant advantage of the CNN algorithm is a low time cost. The

starting point and focus of this research are to use CNN’s low computing cost feature.

Since we directly used the GW information as input data, instead of using traditional

image recognition methods, time cost was further reduced. Although the specific time

cost varies depending on the input data’s size, the average cost of a detection calcula-

tion is 0.04ms, and the cost of a localization calculation is 0.08ms. From this, we can

see that the CNN algorithm has great potential for the realization of multi-messenger

astronomy.

8.2 Future Work

Based on our experiments, we found that the CNN algorithm is capable of real-

time analysis. However, in this study, because no GW denoising process is included,

analysis accuracy was restricted. In the injection experiment described in Chapter 7,

we filtered the raw data to remove a part of the noise, and then we were able to obtain a

satisfactory result. Thus, we believe that before employing this algorithm for real-time

analysis, denoising techniques should be included.

For the localization research, we divided the skymap into 81 sectors, far from the

level of search pipelines. Limited by our experimental equipment and the calculation

speed of Python, further improvements are difficult to realize. But we believe that by
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adopting better hardware and improving our algorithm, we can divide the sky map

finer. In other words, more accurate GW source localization can be achieved.
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