修士論文

次世代重力波検出器のための 非線形光学効果を用いた信号増幅技術の開発

東京工業大学 理学院 物理学系 物理学コース 宗宮研究室

21M00464 鈴木 海堂

2023年3月2日

概要

重力波とは時空の歪みが空間をさざ波の如く伝播する現象で、1916年にアインシュ タインによって予言された。重力波は振幅が非常に小さいため観測には困難を極める と考えられてきたが、アインシュタインによる予言からおよそ 100年後の 2015年9 月にアメリカのレーザー干渉計型重力波検出器である Advanced LIGO が遂に重力波 の直接検出に成功した。それから現在に至るまで、高感度化のために多くの技術が開 発されたことで重力波検出器の感度は大幅に向上し、これまでに観測された重力波の イベントは 90例に及ぶ。これらの観測で捉えられた重力波は全て天体の連星合体によ るものであるが、その大部分がブラックホール連星からの重力波であり、中性子星連 星合体後のリングダウンに伴って放出される重力波を始めとする高周波の重力波の信 号は未だ捉えられていない。これは、現在稼働している重力波検出器は数 100 Hz の重 力波に対して感度のピークを持っており、高周波の信号が光の量子的な揺らぎに由来 する量子雑音によって埋もれてしまうからである。

量子雑音の低減のためには、スクイーズされた真空場を干渉計に注入する手法が用 いられてきたが、現在では高強度なレーザーを用いることで生じる光学損失などによ り技術的な限界に到達しつつある。このような中、量子雑音による高周波の帯域制限 を改善するために、懸架鏡の復元力とレーザー光の輻射圧の間に発生するオプトメカ ニカルな相互作用によって作られる光バネを非線形光学効果の一種である光パラメト リック増幅によって強化し、その共振により高周波の重力波信号を増幅させるという 全く新しい手法が宗宮らによって提唱されている。この技術が実証され、次世代の重 力波検出器に導入されれば、中性子星連星の合体後に発生する重力波や超新星爆発に 伴って放出される重力波などの高い周波数のイベントがとらえられるようになるため、 本技術の原理検証は宇宙物理学のさらなる発展につながる。

本研究では光バネの強化による高周波の信号増幅技術の検証するために、非線形結 晶を挿入した信号リサイクリング干渉計の開発を行った。この光学構成は最低でも5 つの自由度を持つ複雑な制御が要求されるため、先行研究では光パラメトリック増幅 の位相制御には至っていなかった。また、音や地面振動による雑音の影響で光バネの 見える周波数帯での伝達関数測定が困難であった。先行研究での問題を解決するため に、本研究ではシングルボードコンピュータを用いたデジタルシステムを駆使するこ とで安定な制御系を構築し、信号リサイクリング干渉計内での光バネの観測とコヒー レント制御法による光パラメトリック増幅の位相制御を含めた5自由度の同時制御に 成功した。

 $\mathbf{2}$

Abstract

In 1916, Einstein predicted the existence of Gravitational waves (GWs) as a phenomenon in which distortions propagate through space-time like ripples. Ever since, they were considered extremely difficult to observe due to their extremely small amplitude. However, in September 2015, the Advanced LIGO finally succeeded in the direct detection. Since then, the sensitivity of GW detectors has improved significantly, as many technologies were developed to increase their sensitivity. As of today, 90 events have been detected. All of the GWs detected in these observations are due to binary mergers, but most of them are signals from binary black holes. On the contrary, high-frequency signals, including the ringdown after binary neutron stars mergers, have not yet been detected. This is because current detectors have a peak sensitivity of a few hundreds Hz and as a result, high-frequency signals are hidden in quantum noise.

For that reason, squeezed vacuum field techniques have been used to reduce quantum noise but are now reaching their technical limits. In this situation, a completely new method to improve high-frequency sensitivity has been proposed by Somiya et al. The technique consists of enhancing the optical spring by optical parametric amplification and thereby, amplifying high-frequency GW signals. Once this technology is introduced, it will be possible to capture high-frequency events such as ringdowns after binary neutron star mergers and GWs from supernovae. Therefore, the verification of the principle of this technology will lead to the further development of astrophysics.

To verify Somiya's theory, we developed a signal-recycling interferometer with inserted nonlinear crystals. Since this optical configuration requires complex control with at least five degrees of freedom, previous studies did not achieve phase control of optical parametric amplification. In fact, measuring the transfer function in the visible frequency band of the optical spring due to noise from sound and ground vibration was reported to be a difficult task. To solve this problem, we constructed a stable control system using a digital arrangement with a single-board computer, successfully observing the optical spring in a signal recycling interferometer and achieving simultaneous control of 5 degrees of freedom, including phase control of the optical parametric amplification.

目次

第1章	重力波	7
1.1	アインシュタイン方程式の導入	7
1.2	弱い重力場でのアインシュタイン方程式..........	9
1.3	真空中の重力波.............................	10
1.4	重力波源の候補..............................	11
第2章	重力波の検出	16
2.1	重力波検出の歴史	16
2.2	干渉計型重力波検出器の原理	18
2.3	重力波検出器における主な雑音	21
第3章	重力波検出器の感度	29
3.1	直交位相分解	29
3.2	量子光学	31
3.3	非線形光学	36
3.4	演算子の定義..............................	41
3.5	量子雑音低減技術	45
3.6	量子限界を超える技術	60
第4章	光学系の制御	72
4.1	伝達関数	72
4.2	フィードバック制御	73
4.3	アクチュエータ	74
4.4	ローパスフィルタ	75
4.5	制御信号の取得.............................	76
第5章	デジタル制御	92
5.1	デジタル信号	92

5.2	エイリアシング..............................	93
5.3	離散時間 LTI システム..............................	93
5.4	離散時間 LTI システムの伝達関数................	95
5.5	デジタル PID 制御	96
5.6	FIR と IIR の比較	97
5.7	デジタルフィルタの利点と欠点	98
第6章	実験	100
6.1	概略	100
6.2	原理	101
6.3	光学系の設計	103
6.4	光バネ生成実験...............................	106
6.5	OPA 実験	109
第7章	議論	116
7.1	光バネ生成実験	116
7.2	OPA 実験	117
第8章	まとめ	119
8.1	結論	119
8.2	今後の課題.................................	120

第1章

重力波

一般相対論において、時空は質量を持つ物体により歪められる。さらに、その物体 が加速度運動をすると時空の歪みが波動として光速で伝播する。この時空のさざ波こ そが重力波^{*1}の正体である (図1.1)。

図1.1 重力と重力波 [23]

重力波はアインシュタインが 1916 年に予言した物理現象で、2015 年の 9 月 14 日 にアメリカの重力波望遠鏡 LIGO によって人類史上初の直接検出がなされた [1]。その とき観測されたのは地球からおよそ 440 Mpc 離れたところで起きたブラックホール連 星合体の際に発生した重力波で、その検出日から GW150914 と名付けられた。

本章では時空の歪みと質量の関係を記述するアインシュタイン方程式から重力波を 導出する。本章の執筆では [20] を参考とした。

1.1 アインシュタイン方程式の導入

アインシュタイン方程式はニュートンの重力場の方程式をブラックホールや中性子 星などによる強い重力場の下でも適用できるように拡張した方程式である。

^{*1} 英語では gravitational wave である。gravity wave も重力波と訳されるが、こちらは流体力学にお ける現象である。

1.1.1 計量テンソル

時空の基底ベクトルを e_{μ} とすると、それらの内積は計量テンソル $g_{\mu\nu}$ と定義される:

$$g_{\mu\nu} := \boldsymbol{e}_{\mu} \cdot \boldsymbol{e}_{\nu} \tag{1.1}$$

本論文では添え字のギリシャ文字は0~3の値をとる。 また、計量テンソルを用いると時空のある2点間の微小距離 *ds* は、

$$ds^{2} = \sum_{\mu} \sum_{\nu} g_{\mu\nu} dx^{\mu} dx^{\nu}$$
(1.2)

と表せる。ここでアインシュタインの規約*2を用いると式 (1.2) は、

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu \tag{1.3}$$

と表すことができる。また、重力場の存在しない平坦な時空をミンコフスキー空間と 呼び、このときの計量テンソルは、

$$g_{\mu\nu} = \eta_{\mu\nu} := \begin{pmatrix} -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(1.4)

と表すことができる。

1.1.2 アインシュタイン方程式

アインシュタイン方程式の具体形は以下の通りである*3:

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \tag{1.5}$$

ここで右辺の *G* は万有引力定数であり、 $T_{\mu\nu}$ はエネルギー運動量テンソルである。エネルギー運動量テンソルは時空に存在する物質によって与えられるテンソルであり、時空が真空である場合には $T_{\mu\nu} = 0$ となる。一方、左辺の $G_{\mu\nu}$ はアインシュタインテンソルであり、具体的には、

$$G_{\mu\nu} := R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$
(1.6)

^{*2} 同じ項で上下の添字が重なる場合にその添え字についての和を取るというルール。主に一般相対論で用いられる。

^{*&}lt;sup>3</sup> 厳密には、宇宙は加速膨張をしているため、これを宇宙に適用するには宇宙項 Λ_{gµν} を加える必要が あるが、これは微小な補正項であるため重力波の導出の際には無視することができる。

で与えられる。ここで $R_{\mu\nu}, g_{\mu\nu}, R$ はそれぞれリッチテンソル、時空の計量テンソル、 リッチスカラーである。リッチテンソルとリッチスカラーは時空の曲率を表すリーマ ンテンソル $R^{\mu}_{\alpha\beta\gamma}$ によって定義される:

$$R_{\mu\nu} := R^{\alpha}_{\mu\alpha\nu}, \ R := R^{\mu}_{\mu} = g^{\mu\nu} R_{\mu\nu}$$
(1.7)

リーマンテンソルの定義は以下で与えられる:

$$R^{\epsilon}_{\sigma\mu\nu} := \partial_{\mu}\Gamma^{\epsilon}_{\sigma\nu} - \partial_{\nu}\Gamma^{\epsilon}_{\sigma\mu} + \Gamma^{\delta}_{\sigma\nu}\Gamma^{\epsilon}_{\delta\mu} - \Gamma^{\delta}_{\sigma\mu}\Gamma^{\epsilon}_{\delta\nu}$$
(1.8)

ここで Γ_{βγ} はクリストッフェル記号と呼ばれ、計量テンソルを用いて、

$$\Gamma^{\alpha}_{\beta\gamma} := \frac{1}{2} g^{\alpha\delta} \left(\frac{\partial}{\partial x^{\beta}} g_{\gamma\delta} + \frac{\partial}{\partial x^{\gamma}} g_{\beta\delta} - \frac{\partial}{\partial x^{\delta}} g_{\beta\gamma} \right)$$
(1.9)

と定義される。

1.2 弱い重力場でのアインシュタイン方程式

地球上などの弱い重力場を考えると、その時空の計量テンソルは、摂動項 $h_{\mu\nu}(|h_{\mu\nu}| \ll 1)$ を用いて、

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \tag{1.10}$$

となる。このとき $g^{\mu\nu} = \eta^{\mu\nu} - h^{\mu\nu}$ であるのでクリストッフェル記号は、 $h_{\mu\nu} \ll 1$ に 注意して、

$$\Gamma^{\mu}_{\nu\lambda} = \frac{1}{2} \eta^{\mu\delta} \left(\partial_{\nu} h_{\lambda\delta} + \partial_{\lambda} h_{\nu\delta} - \partial_{\delta} h_{\nu\lambda} \right)$$
(1.11)

となり、 $h_{\mu\nu}$ の二次以上の項を無視するとリッチテンソルとリッチスカラーはそれ ぞれ、

$$R_{\mu\nu} = -\partial_{\mu}\Gamma^{\sigma}_{\sigma\nu} + \partial_{\sigma}\Gamma^{\sigma}_{\mu\nu}$$

= $\frac{1}{2}\eta^{\sigma\delta} \left(\partial_{\mu\delta}h_{\nu\sigma} + \partial_{\nu\sigma}h_{\mu\delta} - \partial_{\sigma\delta}h_{\mu\nu} - \partial_{\mu\nu}h_{\sigma\delta}\right)$ (1.12)

$$R = \eta^{\mu\nu} R_{\mu\nu} \tag{1.13}$$

となるので、アインシュタインテンソルは $\Box = \eta^{\mu\nu}\partial_{\mu\nu}, h = h^{\mu}_{\mu}$ を用いて次の様に表 せる:

$$G_{\mu\nu} = \frac{1}{2} \left[\partial_{\mu\delta} h^{\delta}_{\nu} + \partial_{\nu\delta} h^{\delta}_{\mu} - \Box h_{\mu\nu} - \partial_{\mu\nu} h - \eta_{\mu\nu} \left(\partial_{\delta\sigma} h^{\delta\sigma} - \Box h \right) \right]$$
(1.14)

さらに、 $h_{\mu\nu}$ を、

$$\tilde{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}h$$
(1.15)

と書き換えると、

$$G_{\mu\nu} = \frac{1}{2} \left[\partial_{\mu\delta} \tilde{h}^{\delta}_{\nu} + \partial_{\nu\delta} \tilde{h}^{\delta}_{\mu} - \Box \tilde{h}_{\mu\nu} - \eta_{\mu\nu} \partial_{\delta\sigma} \tilde{h}^{\delta\sigma} \right]$$
(1.16)

となり、これにローレンツゲージ:

$$\partial_{\nu}\tilde{h}^{\mu\nu} = 0 \tag{1.17}$$

を適用することでアインシュタイン方程式は、

$$\Box \tilde{h}_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu} \tag{1.18}$$

となり、さらにトランスバース・トレースレスゲージ (TT ゲージ)*4:

$$\tilde{h}_{\mu 0} = 0, \ \tilde{h}^{\mu}_{\mu} = 0$$
 (1.19)

を適用すると $\tilde{h}_{\mu\nu} = h_{\mu\nu}$ となるため、弱い重力場でのアインシュタイン方程式は、

$$\Box h_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu}$$
 (1.20)

となる。

1.3 真空中の重力波

宇宙空間などの真空中では、

$$T_{\mu\nu} = 0 \tag{1.21}$$

であるのでこれを式 (1.20) に適用すると真空中のアインシュタイン方程式:

$$\Box h_{\mu\nu} = 0 \tag{1.22}$$

が得られる。ここでこの方程式の解として単色平面波:

$$h_{\mu\nu} = A_{\mu\nu} \exp(ik_{\alpha}x^{\alpha}) \tag{1.23}$$

を考えるとローレンツゲージと真空中のアインシュタイン方程式を満たすために、

$$A_{\mu\nu}k^{\nu} = 0 \tag{1.24}$$

$$k_{\mu}k^{\mu} = 0 \tag{1.25}$$

^{*4} 横波でかつトレースレスとなるゲージ条件。

が必要である。このとき式 (1.24) は重力波の振幅ベクトルと波数ベクトルが直交 (横 波) 横波していることを示していて、式 (1.25) は重力波が光速で伝播することを示し ている。さらに、TT ゲージを満足するために、

$$A_{\mu 0} = 0 \tag{1.26}$$

$$A^{\mu}_{\mu} = 0 \tag{1.27}$$

が必要であり、かつ計量テンソルの定義から h_{µν} が対称であることが分かるため、

$$A_{\mu\nu} = A_{\nu\mu} \tag{1.28}$$

を満たす。このとき、重力波が $z(=x^3)$ 方向に伝わるとすると、このときの波数ベクトルは、

$$-k_0 = k_3 = k \tag{1.29}$$

$$k_1 = k_2 = 0 \tag{1.30}$$

と表すことができる。以上の式 (1.24) から式 (1.30) をまとめると式 (1.23) は、係数 h+, h_× を用いて、

$$h_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \exp\left[-ik(ct-z)\right]$$
(1.31)

となる。この解は h₊, h_× の 2 つの自由度を持つ偏極モードに分けることができ、そ れぞれプラスモード、クロスモードと呼ぶ。また、この解より、重力波による歪みは 潮汐的に働くことが分かるため、地球に重力波が到来した場合には、地面は図1.2のよ うに変形する。

1.4 重力波源の候補

重力という力は極めて弱い力であるため、検出可能な重力波は非常に高エネルギー なイベントによって引き起こされるものに限定される。従って、検出の可能性のある 重力波の波源としては、これまでに観測されたブラックホールや中性子星の連星合体 以外に超新星爆発やパルサー、そして背景放射が挙げられる。

1.4.1 コンパクト連星合体

ブラックホールや中性子星など*5の大質量天体が合体するときには非常に強い重力 波が放出される。このことは、これまでに観測された重力波がすべて連星合体によっ

^{*5} これらの高密度な大質量天体をコンパクト星と呼ぶ。

図1.2 重力波が到来したときの地上の様子

て引き起こされる重力波であることからもよく分かるだろう。

LIGO が初めてとらえた重力波 (GW150914) の波源はおよそ 450 Mpc 離れた位置 にある 30 太陽質量程度の天体の連星合体であった。合体直前の周波数はおよそ 150 Hz で、ここから合体時の天体の中心間距離を見積もると 350 km 程度であることが分か る。中性子星連星合体やブラックホールと中性子星の連星合体ではそれぞれの天体が 30 太陽質量の場合に 350 km まで近づくことはあり得ないため、このイベントはブラ ックホール連星合体であると結論付けられた。GW150914以前はブラックホール連星 の存在は示されていなかったため、すでに電磁波による観測によって多数発見されて いた中性子星連星の合体時に放出される重力波が初めにとらえられると考えられてい た。そのため、この結果は重力波の初の直接検出であると同時にブラックホール連星 の存在を示す快挙となった。さらに、観測後の解析によって得られた波形 (図1.3) は 理論的に得られるものと 94% も一致しており、このことはアインシュタインの一般 相対論が極めて強い重力場の下でも成立していることを意味する。連星合体の過程は インスパイラル、マージャー、リングダウンの3つの段階に分けることができる(図 1.4)。インスパイラルフェイズは2つのコンパクト星がお互いに重心の周りを公転し ながら近いていく過程で、このときの波形からそれぞれの天体の質量を見積もること ができる。インスパイラルフェイズは継続時間が長く、回転半径が縮まるにつれて周 波数が上がる信号 (チャープ信号) であるため、観測と解析が最も容易な段階である。 インスパイラルフェイズの波形からは2つの天体の質量を得ることができる。

マージャーフェイズは接近した天体が合体する瞬間で、強い重力波が放出される段 階であり、この直前の周波数からそれぞれの天体の半径を見積もることができる。ま

図1.3 GW150914 の波形 [1]。 横軸は時間であり、1 目盛あたり 50 msec である。

図1.4 コンパクト連星合体とその重力波 [1]

た、中性子連星合体のマージャーフェイズの波形からは天体の内部構造が分かると考 えられており、そこからは中性子星における状態方程式を得られることが期待されて いる。さらに、合体の瞬間にはニュートリノやガンマ線などの宇宙線も放出されると 考えられており、それらの観測と連携することでより多くの物理が分かる。

リングダウンフェイズは合体した連星が1つのブラックホールになっていく過程で ある。ブラックホールは非常に強い重力を持つため発生した重力波が抜け出すことが できなくなり、発生する重力波は急速な減衰振動となる。この減衰振動はブラックホ ールの準固有振動とも呼ばれ、合体後のブラックホールの質量や角運動量を得ること ができる。

これまでにブラックホール連星合体のみならず、ブラックホールと中性子星の連星 合体や中性子星連星合体由来の重力波も観測されたが、中性子星連星合体においては マージャーフェイズ以降の重力波はほとんど捉えられていない。これは、中性子星連 星の合体後の信号は現在の重力波検出器の観測帯域よりも高く、光の量子的な揺らぎ に起因する雑音 (量子雑音) に埋もれてしまうからである。本研究は高周波の重力波の 信号を増幅させるための原理検証実験であるため、この技術が実証され、次世代の重 力波検出器にインストールされれば中性子星連星の合体後の信号が捉えられるように なることが期待される。

インスパイラル時の重力波の振幅は、天体までの距離を r、連星の中心間の距離を a、天体の質量を M とすると、

$$h \sim \frac{2}{ra} \left(\frac{GM}{c^2}\right)^2 \tag{1.32}$$

のように近似される^{*6}ので、r = 450 Mpc、350 km、M = 30 M_☉ として重力波の振幅 を求めると、 $h \sim 10^{-21}$ であることが分かる。これは地球と太陽の距離を水素原子1 つ分動かす程度の歪みであるため、重力波の振幅は非常に小さいことが分かる。

1.4.2 超新星爆発

超新星爆発は寿命を迎えた恒星が起こす大規模な爆発現象である。その具体的な発 生機構はいまだ解明されていないが、大まかな爆発のメカニズムは Ia 型と Ib、Ic、II 型に分けることができる。Ia 型超新星爆発は、恒星と連星系をなす白色矮星に恒星か らのガスが降り積もり続けた結果、白色矮星がチャンドラセカール限界(1.4*M*_☉)を 超えることで炭素の核融合反応が暴走し、大爆発が引き起こされる現象である。一方 Ib、Ic、II 型は重力崩壊型の超新星爆発と呼ばれ、恒星の内部で核融合が繰り返され た結果、結合エネルギーが最大である鉄の中心核が作られ、これがチャンドラセカー ル限界を超えることで引き起こされる。

重力崩壊型の超新星爆発は爆発後に鉄の核が重力収縮することで中性子星連星やブ ラックホールを形成する。これらのコンパクト星が形成される場合には非対称な核が 回転運動をするため大きな重力波が放出される。このような天体は天の川銀河やアン ドロメダ銀河のようなスケールの銀河1つに対して100年に1度の割合で引き起こさ れるため、おとめ座銀河程度の明るさの銀河ではおよそ1年に1回のペースで起きて いると考えられている。このような重力波はこれまでに多くモデルでシミュレーショ ンされてきたが、その典型的な周波数は数100 Hz から数 kHz で振幅は 10⁻²² から 10⁻²³ あると考えられており、その観測には高周波帯での高感度化が不可欠である。

重力波は物質とほとんど相互作用を起こさずに伝わるため、超新星爆発由来の重力 波をとらえることに成功すれば、その波形から超新星爆発の情報を取り出すことがで きるため、超新星爆発のメカニズムの解明につながる。さらに、重力崩壊によりコン

^{*6 [18]} 式 (7.123)。古典的な近似であるため厳密ではない。

パクト星が生成される過程では重力波と共にニュートリノも放出されるため、超新星 爆発の観測は重力波だけでなく電磁波や素粒子などの観測を組み合わせたマルチメッ センジャー的な天文学の発展に大きく寄与するだろう。

1.4.3 パルサー

パルサーとは高速で自転する中性子星で、その表面に存在する山や谷によって非対称な運動を引き起こし半永久的に重力波を放出する。この重力波は定常的な重力波であるため長時間の積分による解析が可能である。しかし、天体の合体や爆発と比較するとはるかに規模の小さな現象であるため、その振幅は非常に小さく上限で h ~ 10⁻²³であると考えられている。

1.4.4 背景重力波

背景重力波とは宇宙空間に定常的に存在する重力波で、主に2つのカテゴリに分け ることができる。1つはこれまでに挙げた重力波の重ね合わせで、もう1つはビッグ バン直後のインフレーションや相転移などの初期宇宙的な現象に伴う重力波である。

ビッグバン直後の宇宙には電磁波が存在しないため、重力波による観測は初期宇宙 を見るための唯一の手段であるといえる。

第2章

重力波の検出

前章で示したように重力波というのは極めて小さな振幅を持った波である。従って、 重力波の検出は非常に難しく、その検出器の開発にはこれまで多くの物理学者が挺身 してきた。本章では重力波検出の歴史と検出器の原理およびその感度を制限する古典 的な雑音について述べる。

2.1 重力波検出の歴史

重力波の歴史は今からおよそ 100 年前の 1916 年にまで遡る。この年はアインシュ タインが一般相対論を唱えた年で、彼はその理論を基に重力波の存在を予言した。し かし、重力波の効果はあまりにも小さいため、アインシュタイン自身は重力波の検出 は極めて困難だと考えていた。

1969 年、アメリカの物理学者ウェーバー (図2.1) が共振型重力波検出器、ウェーバ ー・バー^{*1}によって重力波が検出されたと発表した。ところが、その実験結果から推 定されるイベントはあまりにもエネルギーが大きいため、現在では誤検出であったと 考えられている。しかし、ウェーバーの挑戦は多くのフォロワーを生み、その後も世 界各地で共振型重力波検出器が開発された。共振型重力波検出器の高感度化は多くの 研究者が挑戦してきたが、これまでに共振型検出器による重力波の直接検出はなされ ていない。これは、共振体の共振周波数付近にしか感度を持たないことと、原子の熱 運動によって感度が制限されてしまう^{*2}ことが原因である。そんな中、ハルスとテー ラーは連星パルサー PSR1913+16 を発見し、1979 年にその公転周期が重力波の放出 に伴って減少していることを示す観測結果を発表した。これは重力波の間接的な検証

^{*1 2} m ほどのアルミニウム製の円筒状のアンテナ。距離を離して 2 台設置することで重力波以外の外乱の除去が図られた。

^{*&}lt;sup>2</sup> ウェーバーの開発した検出器の感度は 10⁻¹⁶ 程度であったが、大型化、低温化により 10⁻¹⁸ の感度 が達成された。

図2.1 ウェーバーとウェーバー・バー [14]

となり、1993年にハルスとテーラーは共にノーベル賞を受賞した。

1973年、共振型重力波検出器で問題になっていた帯域の制限と熱雑音による感度制 限を克服するために、マサチューセッツ工科大学のワイスらによってマイケルソン干 渉計を用いた案が提案された。干渉計型重力波検出器は観測帯域の広さと共振型検出 器を大きく上回る到達感度から共振型検出器に取って代わり、各国でプロトタイプの干 渉計型検出器が建設された。さらに、1984年にはキップ・ソーンと手を組み大型のレー ザー干渉計型重力波検出プロジェクトの LIGO (Laser Interferometer Gravitational-Wave Observatory) が発足された。1989 年から建設が開始された LIGO は、片腕 4kmの巨大なマイケルソン干渉計型の検出器でワシントン州のハンフォードとルイジ アナ州のリヴィングストンのそれぞれに1基ずつ置かれた。1994年からはバリー・バ リッシュが責任者として加わり LIGO は超大型プロジェクトに発展した。LIGO には 更なる改良が加えられ、2015 年 9 月に完成された Advanced LIGO (図2.2) で 100 Hz 付近で 10⁻²³ 程度の感度が達成され、その直後に始まった第1 期観測期間 O1 (2015 年9月12日から2016年1月19日)では、9月14日にブラックホール連星合体の際 に放出された重力波が観測された*3。これは人類史上初の重力波の直接検出で、この 成果によりワイス、バリー・バリッシュ、キップ・ソーンの3名は2017年にノーベル 賞を受賞した。

O1 に続く観測では LIGO はイタリアの Virgo と共同で観測を行なった。LIGO-Virgo による共同観測は、これまでに O2 (2016 年 11 月~2017 年 8 月)、O3a (2019 年 4 月~10 月)、O3b(2019 年 11 月~2020 年 3 月) の観測が行われ、GW150914 から 数えて累計 90 もの重力波のイベントが観測された。

^{*3} 観測日から GW150914 と命名された

図2.2 Advanced LIGO のリヴィングストン観測所 [13]

日本でも重力波の研究は積極的に行われ、1999 年には国立天文台で片腕 300 m の干 渉計型検出器 TAMA300 が建設された。TAMA300 はアメリカの LIGO、イタリアの Virgo、ドイツの GEO600 と共に第 1 世代と呼ばれ、2000 年に世界最高の感度に到 達したが、2002 年に LIGO によってその座は奪われた。2010 年、第 2 世代の重力波 検出プロジェクトとして国内では KAGRA (Kamioka Gravitational wave detector) が立ち上げられ、岐阜県にある神岡鉱山に片腕 3 km の干渉計型検出器が建設された。 KAGRA は地下に建設されている点、鏡にサファイアを用いている点、極低温で運 用する点において他の第 2 世代の検出器と異なる。KAGRA では LIGO、Virgo と連 携して行われる第 4 次観測 (O4) に向けて現在も感度向上のための作業が続けられて いる。

更なる帯域拡張および高感度化のために LIGO、Virgo、KAGRA に次ぐ重力波検 出器の建設も計画されており、第 3 世代の検出器としては Einstein Telescope (ヨー ロッパ) や Cosmic Explorer (アメリカ) などの 10 km スケールの地上設置型の検出器 が計画されている。さらに、重力波検出器の設置計画は地上のみにとどまらず、LISA (アメリカ) や DECIGO (日本)、天琴 (中国) などの宇宙空間で稼働する重力波検出器 の計画も積極的に進められている。

2.2 干渉計型重力波検出器の原理

重力波望遠鏡は一般的に懸架鏡*⁴によって構成されたマイケルソン干渉計によって 構成される。マイケルソン干渉計ではレーザー光源からの光をビームスプリッタで2

^{*4} 懸架をすることで鏡は自由質点として見做すことができる。

つに分け、それぞれをエンドミラーと呼ばれる鏡で反射させてから再度ビームスプリ ッタで合流させて光を干渉させる (図2.3)。

ここで、マイケルソン干渉計の片方の腕が伸びる方向に x 座標を取り、もう一方の腕の方向に y 座標を取り、ビームスプリッタの位置での入射光の電場を $E_0e^{-i\Omega_0t}$ とすると、それぞれの腕を往復し、合流した光の電場は、

$$E_{\rm out} = \frac{E_0}{2} e^{i(-\Omega_0 t + \phi_x)} - \frac{E_0}{2} e^{i(-\Omega_0 t + \phi_y)}$$
(2.1)

となる。 ϕ_x 及び ϕ_y はそれぞれの腕の往復で発生する位相変化。また式 (2.1) の導出 ではビームスプリッタの表面での反射の際に位相が反転することに注意する。従って、 干渉計の出力側で検出される光の強度は、入射光の強度を $P_0(\propto |E_0|^2)$ とすると

$$P_{\text{out}} = \frac{1}{2} P_0 \left(1 - \cos 2(\phi_x - \phi_y) \right)$$
(2.2)

となり、干渉した光の強度は腕の長さの変化に対して正弦波的な変化をする。一般的に、重力波検出器では出力光が打ち消し合う様に差動長 $\phi_x - \phi_y = \phi_-$ を制御して運用する^{*5}。この状態をダークフリンジと呼ぶ^{*6}。

図2.3 マイケルソン干渉計と重力波

ここで、マイケルソン干渉計に周波数 ω のプラスモードの重力波 $(h_{\times} = 0)$ が入射 することを考える。光の線素 ds は常に 0 $(ds^2 = 0)$ であるため、

$$(cdt)^2 = (dx^i)^2 (2.3)$$

^{*5} 制御については4章を参照されたし。

^{*6} ダークフリンジの反対をブライトフリンジと呼び、その中間をミッドフリンジと呼ぶ

となる。ここで x 方向について考えると x 方向の重力波の振幅を $h(t) = h_+ \exp(-i\omega t)$ として、

$$(cdt)^2 = (1+h(t))dx^2$$
(2.4)

より、 $h(t) \ll 1$ に注意すると、

$$\left(1 - \frac{1}{2}h(t)\right)cdt = dx\tag{2.5}$$

となる。さらに光子が長さ L_x の x アームを往復するのに要する時間を δt_x とすると、

$$2L_x = \int_{t-\delta t_x}^t \left\{ 1 - \frac{1}{2}h(t') \right\} cdt'$$
 (2.6)

すなわち、

$$\delta t_x = \frac{2L_x}{c} + \frac{1}{2} \int_{t-\delta t_x}^t h(t') dt'$$
 (2.7)

同様にして、
yアームでは、

$$\delta t_y = \frac{2L_y}{c} - \frac{1}{2} \int_{t-\delta t_y}^t h(t') dt'$$
 (2.8)

ゆえに、重力波が到来したときにマイケルソン干渉計のそれぞれの腕で生じる位相 差は、

$$\delta\phi = \Omega_0(\delta t_x - \delta t_y) \tag{2.9}$$

$$= \frac{2\Omega_0(L_x - L_y)}{c} + \frac{\Omega_0}{2} \int_{t-\delta t_x}^t h(t')dt' + \frac{\Omega_0}{2} \int_{t-\delta t_y}^t h(t')dt' \qquad (2.10)$$

第1項は重力波が存在しない場合 (h(t) = 0) にも生じる位相差であるため、重力波に よって引き起こされる位相差は、

$$\delta\phi_{\rm GW} = \frac{\Omega_0}{2} \int_{t-\delta t_x}^t h(t')dt' + \frac{\Omega_0}{2} \int_{t-\delta t_y}^t h(t')dt'$$
(2.11)

さらに、再び、 $h(t) \ll 1$ であることを考えると、式 (2.7) および式 (2.8) から、

$$\delta t_{x,y} \sim \frac{2L_{x,y}}{c} \tag{2.12}$$

が分かり、腕の差動長が腕の長さより十分に長いとき、 $L_x \simeq L_y$ とすることができる ため、これを L とすると式 (2.11) は、

$$\phi_{\rm GW} = \Omega_0 \int_{t-\frac{2L}{c}}^t h(t')dt'$$
(2.13)

ここに、*h*(*t*) の逆フーリエ変換:

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} h(\omega) e^{i\omega t} d\omega$$
 (2.14)

を入れると、

$$\delta\phi_{\rm GW} = \Omega_0 \int_{t-\frac{2L}{c}}^t \frac{1}{2\pi} \int_{-\infty}^\infty h(\omega) e^{i\omega t'} d\omega dt'$$
(2.15)

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2\Omega_0}{\omega} \sin\left(\frac{L\omega}{c}\right) e^{-i\frac{L\omega}{c}} h(\omega) e^{i\omega t} d\omega \qquad (2.16)$$

となり、式中の、

$$\frac{2\Omega_0}{\omega} \sin\left(\frac{L\omega}{c}\right) e^{-i\frac{L\omega}{c}} (:= H_{\rm GW}(\omega)) \tag{2.17}$$

はマイケルソン干渉計の重力波に対する周波数応答関数であり、

$$\frac{L\omega}{c} = \frac{\pi}{2} \tag{2.18}$$

を満たすときに感度が最も良くなる。例えば周波数が 250 Hz の重力波を観測する場合、 最大の感度を出すためには 300 km の腕の長さが必要になる。しかし、このような腕の 長さの干渉計を地球上に建設するのは現実的には困難であるため、LIGO や KAGRA では後の節で紹介するように共振器を使って実効的な腕の長さを稼いでいる。

2.3 重力波検出器における主な雑音

本章では重力波検出器の感度を制限する数々の雑音について述べる。

2.3.1 振幅スペクトル密度

ある観測量の散逸を議論するとき、その平均値からのずれを積分すると0になって しまう。そこで、このような物理量を評価する時には、その観測量の二乗平均の平方 根である RMS (:Root Mean Square) という値を用いて実行的な振幅を求める。ここ で、ある観測量 *x*(*t*) についての雑音を評価することを考えると、その RMS は、

$$\sqrt{\langle x^2 \rangle} = \sqrt{\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x^2(t) dt}$$
(2.19)

となる。ここで T は観測時間である。さらに x(t) のフーリエ変換を $X(\omega)$ とすると、

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x^2(t) dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} dt \, x(t) \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega X(\omega) e^{i\omega t}$$
(2.20)

$$=\frac{1}{T}\frac{1}{2\pi}\int_{-\infty}^{\infty}d\omega X(\omega)\left(\int_{-\frac{T}{2}}^{\frac{T}{2}}dt\,x(t)e^{-i\omega t}\right)^{*}$$
(2.21)

$$=\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{|X(\omega)|^2}{T}d\omega \qquad (2.22)$$

$$=\frac{1}{2\pi}\int_0^\infty \frac{2|X(\omega)|^2}{T}d\omega \qquad (2.23)$$

のように周波数領域での積分で表すことができる。このときの積分の中身をパワース ペクトル密度:

$$P(\omega) = \frac{2|X(\omega)|^2}{T}$$
(2.24)

と呼び、その平方根を振幅スペクトル密度:

$$S(\omega) = \sqrt{\frac{2|X(\omega)|^2}{T}}$$
(2.25)

と呼ぶ。振幅スペクトル密度は *x*(*t*) の中に周波数 ω の成分がどの程度含まれるかを表 しており、以下の節ではこれを用いて雑音の議論を行う。

2.3.2 地面振動雑音

地面は地震や波浪および人々の活動によって常に振動しており、それらによって引 き起こされる雑音を地面振動雑音と呼ぶ。地面振動雑音の典型的なスペクトルは、

$$x_{\text{seismic}}(f) = 10^{-7} \times \left(\frac{1 \,\text{Hz}}{f}\right)^2 \,\text{m}/\sqrt{\text{Hz}}$$
 (2.26)

で表せる [15]。この振幅は重力波の振幅に比べると非常に大きいため実際の重力波検 出器では鏡を多段階の振り子で懸架することで防振を行なっている。

ここで、質量 m の質点として振る舞う鏡を長さ L の振り子で懸架することを考える。振り子の支点が距離 x(t) だけ動いたときの鏡の変位を y(t) とすると、懸下鏡の運動方程式は、重力加速度 g および振り子のダンピング係数 Γ_m を用いると、

$$m\ddot{y} = \frac{mg}{L}(x-y) - \Gamma_m(\dot{x}-\dot{y})$$
(2.27)

となる。さらに $\gamma_m = \Gamma_m/2m$ 、 $\omega_m^2 = g/L$ (振り子の共振周波数) とすると、

$$m\ddot{y} = m\omega_m^2(x-y) - 2m\gamma_m(\dot{x}-\dot{y}) \tag{2.28}$$

x、yのフーリエ変換を $X(\omega)$ 、 $Y(\omega)$ とすると、

$$Y(\omega) = \frac{m\omega_m^2 + 2im\gamma_m\omega}{m(-\omega^2 + \omega_m^2) + 2im\gamma_m\omega}X(\omega)$$
(2.29)

振り子の Q 値 $Q_m = \omega_m/2\gamma_m$ を用いると、

$$Y(\omega) = \frac{\omega_m^2 + i\frac{\omega_m\omega}{Q_m}}{-\omega^2 + i\frac{\omega_m\omega}{Q_m} + \omega_m^2} X(\omega)$$
(2.30)

となるため測定帯域が振り子の共振周波数より十分に高く、Q 値が非常に高い領域 では、

$$Y(\omega) \sim -\frac{\omega_m^2}{\omega^2} X(\omega) \tag{2.31}$$

となるため、周波数の高い領域での地面振動雑音は、

$$|x_{\text{seis,sus}}(f)| \frac{f_m^2}{f^2} \times 10^{-7} \times \left(\frac{1 \,\text{Hz}}{f}\right)^2 \,\text{m}/\sqrt{\text{Hz}}$$
(2.32)

となり、懸架によって周波数の2乗に比例した低減効果がもたらされることが分かる。 この効果は振り子の段数を増やす程大きくなるため、KAGRA では9段の振り子が導 入されている。

2.3.3 熱雑音

鏡や振り子は常に熱浴と接していると考えることができるため、熱振動子の流入に よって振動が励起され雑音が生じる。これが熱雑音である。

ここで、懸架鏡のある点を 1 次元の調和振動子として運動方程式を考えることで熱 雑音のパワースペクトル密度を導く。その点の共振周波数を ω₀、復元力を f_{res}(t) とす ると、

$$m\ddot{x}(t) + m\omega_0 x(t) = f_{\rm res}(t) \tag{2.33}$$

これをフーリエ変換し、散逸項 $\phi(\omega)$ を導入すると、

$$-m\omega^2 X(\omega) + m\omega_0 (1 + i\phi(\omega)) X(\omega) = F_{\rm res}(\omega)$$
(2.34)

これは散逸項がない場合と比べてバネ定数が $m\omega_m(1 + i\phi(\omega))$ と書き換えられたもの だと分かる。この書き換えられたバネ定数を複素バネ定数と呼ぶ。この運動方程式か らこの振り子のインピーダンス:

$$Z(\omega) := \frac{F(\omega)}{\dot{X}(\omega)} = \frac{F}{i\omega X}$$
(2.35)

$$=\frac{-m\omega^2 + m\omega_0(1+i\phi(\omega))}{i\omega} \tag{2.36}$$

が求まり、これと揺動散逸定理 [5] から熱雑音による変位のパワースペクトル密度:

$$P_{\rm th}(\omega) = \frac{4k_B T}{m\omega} \frac{\omega_0^2 \phi(\omega)}{(\omega^2 - \omega_0^2)^2 + \omega_0^4 \phi^2(\omega)}$$
(2.37)

が求まる。

散逸項の $\phi(\omega)$ には空気抵抗などの粘性がある場合の viscous モデルと散逸が速度 によらない structure モデルがある:

$$\phi(\omega) = \begin{cases} \frac{\omega}{\omega_0} \frac{1}{Q} \text{ (viscous)} \\ \frac{1}{Q} \text{ (structure)} \end{cases}$$
(2.38)

一般に、重力波検出器の懸架鏡の周りは雑音の低減のために高真空に保たれるので後 者のモデルを用いる。式 (2.39) に $\phi_{\text{structure}}(\omega)$ を入れると、

$$P_{\rm th}(\omega) = \frac{4k_B T}{m\omega} \frac{\omega_0^2/Q}{(\omega^2 - \omega_0^2)^2 + \omega_0^4 \phi^2(\omega)}$$
(2.39)

となり、共振周波数から十分に離れた周波数帯で、

$$P_{\rm th}(\omega) = \begin{cases} \frac{4k_B T \omega_0^2}{m Q \omega^5} & (\omega \ll \omega_0) \\ \frac{4k_B T}{m Q \omega_0^2 \omega} & (\omega \gg \omega_0) \end{cases}$$
(2.40)

となる。重力波検出器に用いられる懸架鏡では、振り子の共振周波数が1Hz程度、鏡の共振周波数が10kHz程度であるため、数10Hzから数kHzの帯域では鏡の熱雑音は前者に従い、振り子の熱雑音は後者に従う。

2.3.4 ニュートニアン雑音

地殻や大気などの質量を持つ物体が動く事でその周りの重力場が変動する。これに よって検出器の鏡が動かされることで生じる雑音をニュートニアン雑音と呼ぶ。この 雑音は非常に小さい (< 10⁻²² /√Hz at 10 Hz) ため LIGO などの第 2 世代の検出器 では問題になっていないが、次世代の検出器では ~ 10 Hz 程度の帯域の感度を制限す ると考えられている。また、KAGRA では神岡鉱山に流れる地下水によるニュートニ アン雑音が低周波の感度を制限する可能性が指摘されている [30]。

2.3.5 散射雑音

散射雑音 (ショットノイズ) は光の量子性に起因する雑音で、光検出器に入射する光 子の揺らぎが光電流の揺らぎとして生じる。光子数の揺らぎは統計的な揺らぎである ため、ポアソン分布に従い、

$$\Delta N = \sqrt{N} \quad (N \gg 1) \tag{2.41}$$

となるため、検出器で検出される光の強度揺らぎは、測定時間を T として、

$$\Delta P_{\rm shot} = \frac{\Delta N}{T} \hbar \Omega_0 \tag{2.42}$$

$$=\sqrt{\frac{\hbar\Omega_0}{T}}P_{\rm in} \tag{2.43}$$

従って、マイケルソン干渉計での散射雑音による揺らぎは、式 (2.2) を用いて、

$$\sqrt{\frac{\hbar\Omega_0}{T}P_0}|\sin\Delta\phi| \tag{2.44}$$

となる。ここで、それぞれの腕の間の位相差を $\Delta \phi = \phi_x - \phi_y$ とした。

ところで、マイケルソン干渉計において重力波によって *δ*φ_{*GW*} の位相変化がもたら された場合のパワーの揺らぎは、式 (2.2) より、

$$\Delta P_{\rm GW} = \frac{P_0}{2} |\sin 2\Delta\phi| \delta\phi_{\rm GW} \tag{2.45}$$

ここで、重力波の信号を $h(\omega)$ とすると、

$$\delta\phi_{\rm GW} = \frac{4\pi L}{\lambda_0} h(\omega) \tag{2.46}$$

と表せるため、先ほどの式は、

$$\Delta P_{\rm GW} = \frac{P_0}{2} |\sin 2\Delta\phi| \frac{4\pi L}{\lambda_0} h(\omega)$$
(2.47)

と書き換えられる。従って、雑音が散射雑音のみのときの信号雑音比は、

$$\frac{S}{N} = \frac{\Delta P_{\rm GW}}{\Delta P_{\rm shot}} \tag{2.48}$$

$$=\frac{4\pi L}{\lambda_0}\sqrt{\frac{P_0T}{\hbar\Omega_0}}h|\cos\Delta\phi| \tag{2.49}$$

従って、ダークフリンジ $\Delta\phi=2n\pi$ のときには、

$$\frac{S}{N} = \frac{4\pi L}{\lambda_0} \sqrt{\frac{P_0 T}{\hbar \Omega_0}} h \tag{2.50}$$

となる。

ところで、観測時間が十分に短い $(T \ll 1)$ 場合には、ある観測量 A(t) についての パワースペクトル密度は、

$$S_A^2 = \frac{2|\hat{A}|^2}{T}$$
(2.51)

$$=\frac{2|\int_{-\infty}^{+} dt A e^{-t\omega t}|^2}{T}$$
(2.52)

$$=\frac{2|\int_{-T/2}^{T/2} dt A(0)e^{-i\omega t}|^2}{T} \quad (\because T \ll 1)$$
(2.53)

$$=2A^2T \quad (\because T \ll 1) \tag{2.54}$$

と書き換えられる。従って、散射雑音の振幅スペクトル密度を S_{shot} とすると信号雑音 比は、

$$\frac{S}{N} = \frac{h}{\sqrt{\frac{S_{\rm shot}^2}{2T}}} \tag{2.55}$$

とも表現できるので、散射雑音の振幅スペクトル密度は先の2式から、以下のように 与えられる:

$$S_{\rm shot} = \frac{\lambda_0}{4\pi L} \sqrt{\frac{2\hbar\Omega_0}{P_0}} \tag{2.56}$$

これより、散射雑音はホワイトノイズであることが分かる。そのため散射雑音は他の ノイズレベルの低い kHz 帯付近で問題となる雑音である。

また、散射雑音はレーザーパワーの平方根に反比例していることが分かるので、散 射雑音を抑えるには検出器に入る光量を増やせば良いということが分かる。ここで、 1 kHz の周波数での散射雑音を考えると、10⁻²¹の感度を実現するためには1 kW のレ ーザーパワーが必要になる。このような出力を持つレーザーを重力波検出器に導入す るのは現実的ではないため、現在稼働している検出器では、ブライトポートで光を干 渉計に打ち返し、実行的なレーザーパワーを増やすパワーリサイクリング技術が用い られている。パワーリサイクリングは干渉計の感度を上げる上で非常に重要な技術で あるため、次章で触れることにする。

2.3.6 輻射圧雑音

光子は運動量を持つため、鏡は光から常に輻射圧を受けている。そして光子数は統計的な揺らぎを持つため、鏡の受ける輻射圧も揺らぎ、鏡の位置が揺らぐ。その結果 生じる雑音が輻射圧雑音である。

ここで、パワー P_0 の光が鏡によって反射されることを考えると、鏡に加わる力は $F = P_0/c$ であるため、時間 T の間で発生する揺らぎは、式 (2.43) を用いて、

$$\Delta F = 2\sqrt{\frac{\hbar\Omega_0 P_0}{c^2 T}} \tag{2.57}$$

従って、この力の T が十分に小さい場合における振幅スペクトル密度は式 (2.54) を用 いて、

$$S_F = 2\sqrt{\frac{\hbar\Omega_0 P_0}{c^2}} \tag{2.58}$$

となる。さらに、鏡の質量をmとすると $|F| = m\omega^2 x$ と表せるので、鏡の変位の振幅

スペクトル密度は、

$$S_x = \frac{2}{m\omega^2} \sqrt{\frac{\hbar\Omega_0 P_0}{c^2}} \tag{2.59}$$

さらに、マイケルソン干渉計の片腕当たりのパワーが <u>Po</u> であることに注意して歪み に換算することで輻射圧雑音の振幅スペクトル密度が求まる:

$$S_{\rm RP} = \frac{4}{mL\omega^2} \sqrt{\frac{\hbar\Omega_0 P_0}{2c^2}}$$
(2.60)

2.3.7 標準量子限界

散射雑音と輻射圧雑音は光の量子性に起因する雑音であるため、これら2つをまと めて量子雑音と呼ぶ:

$$S_{\rm QN}^2 = S_{\rm shot}^2 + S_{\rm RP}^2$$
 (2.61)

$$= \left(\frac{\lambda_0}{4\pi L}\sqrt{\frac{2\hbar\Omega_0}{P_0}}\right)^2 + \left(\frac{4}{mL\omega^2}\sqrt{\frac{\hbar\Omega_0P_0}{2c^2}}\right)^2 \tag{2.62}$$

これを見ると、散射雑音と輻射圧雑音はレーザーパワーに対してトレードオフの関係 があることが分かる。このトレードオフ関係によって求まる量子雑音の下限を標準量 子限界 (Standard Quantum Limit: SQL) と呼ぶ:

$$S_{\rm SQL}^2 = 2\sqrt{S_{\rm shot}^2 S_{\rm RP}^2} \tag{2.63}$$

$$=\frac{4n}{mL^2\omega^2}\tag{2.64}$$

これは古典的な技術のみを用いたレーザー干渉計型重力波検出器の原理的な感度限界 であるが次章で述べるスクイージング技術やホモダイン検出などを用いることで超え ることが可能である。

2.3.8 KAGRA の雑音

最後に、日本の重力波検出器である KAGRA における様々な雑音と、それらの合計 である感度の理論値を図2.4に示して本章を終えることにする。凡例中の Mirror およ び Susp はそれぞれ鏡および懸架系の熱雑音を表しており、Seis は地面振動雑音、SQL は標準量子限界、QN は量子雑音、さらに Total は古典雑音と量子雑音の合計を表し ている。このグラフより、KAGRA の高周波帯での感度は量子雑音により制限されて いることが分かる。

第3章

重力波検出器の感度

多段振り子による懸架や高い真空技術によって低雑音化が進んだ近年の重力波検出 器の感度は主として量子雑音により制限されており、これを改善することが重力波検 出器の更なる高感度化に繋がる。本章では実際の重力波検出器の構成に基づいて量子 雑音を導出し、さらに、その低減のための先進技術を説明する。

3.1 直交位相分解

z方向に進む電場

$$E(z,t) = E_0 \cos(\Omega_0 t - k_0 z)$$
(3.1)

$$= E_0 \cos k_0 z \cos \Omega_0 t + E_0 \sin k_0 z \sin \Omega_0 t \tag{3.2}$$

は距離 *L* 伝搬したときの位相変化が *t* を *t* – *L*/*c* と書き換える事と同等であるため、*z* に関する部分を $E_0 \cos k_0 z = E_1$ および $E_0 \sin k_0 z = E_2$ として *t* のみの関数

$$E(t) = E_1 \cos \Omega_0 t + E_2 \cos \Omega_0 t \tag{3.3}$$

と考えることができる。ここで電場の位相と振幅がそれぞれ $\delta E_0(t)$ および $\delta \phi(t)$ だけ 揺らぐと、そのときの電場は、

$$E'(t) = (E_0 + \delta E_0) \cos\left(\Omega_0 t - k_0 z - \delta\phi\right) \tag{3.4}$$

$$= (E_1 + e_1) \cos \Omega t + (E_2 + e_2) \sin \Omega t$$
(3.5)

$$e_1 = \frac{E_1}{E_0} \delta E_0 - E_2 \delta \phi \tag{3.6}$$

$$e_2 = E_1 \delta \phi + \frac{E_2}{E_0} \delta E_0 \tag{3.7}$$

となる。 E_1 、 E_2 は $E_0^2 = E_1^2 + E_2^2$ を満たす様々な値を取ることができるが、一般的に は $E_1 = E_0$ 、 $E_2 = 0$ となるときについて考える。すると $e_1 = \delta E_0$ は振幅の揺らぎに、 $e_2 = E_0 \delta \phi$ は振幅の揺らぎに対応することがわかる。このことから E_1 および e_1 を振幅 quadrature、 E_2 および e_2 を位相 quadrature と呼ぶ。量子雑音の議論では、電場 とその揺らぎをそれぞれの quadrature に分けて、

$$\boldsymbol{E} = \begin{pmatrix} E_1 \\ E_2 \end{pmatrix} \tag{3.8}$$

$$\boldsymbol{e} = \begin{pmatrix} e_1 \\ e_2 \end{pmatrix} \tag{3.9}$$

のようにベクトル表記して表現する。これを振幅と位相に分けて図示したものはフェ ーザ図 (図3.1) と呼ばれ、電場の揺らぎは雑音楕円としてキャリアの周りに楕円形に 描かれる。

図3.1 フェーザ図

また、実際にフォトディテクタによって測定するのは電場ではなく光の強度

$$P = \frac{\hbar\Omega_0 |E|^2}{2} \tag{3.10}$$

$$\sim \frac{\hbar\Omega_0}{2} ((E_1^2 + E_2^2) + 2(E_1e_1 + E_2e_2))$$
(3.11)

$$=P_0 + \delta P_0 \tag{3.12}$$

であるため、電場の揺らぎは $\delta P_0 = \hbar \Omega_0 (E_1 e_1 + E_2 e_2)$ として電場との積の形で読み

出される。そのため、測定を行うためのキャリア光はローカルオシレータと呼ばれる。 また、このときの電場の偏角となる*ξ* = arctan *E*₂/*E*₁ はホモダイン角と呼ばれる。

さらに、雑音の議論ではそれぞれの雑音を周波数空間で見る必要があるためフーリ エ変換:

$$e_j(\omega) = \int_{-\infty}^{\infty} a_j(t) e^{-i\omega t} dt \quad (j = 1, 2)$$
(3.13)

を用いて電場揺らぎの quadrature を表現する。

3.2 量子光学

先の節では古典的な揺らぎとして電場の揺らぎを扱ってきた。量子雑音は光の量子 性に起因する雑音であるため、その具体的な値を求めるためには量子化された物理量 として期待値を計算する必要がある。そのために本節では電磁場の量子化を行い、揺 らぎの quadrature の演算子の導出を行う。

3.2.1 電磁場の量子化

真空中のマクスウェル方程式は次のように与えられる:

$$\nabla \cdot \boldsymbol{E} = 0 \tag{3.14}$$

$$\nabla \cdot \boldsymbol{B} = 0 \tag{3.15}$$

$$\nabla \times \boldsymbol{E} = -\frac{\partial}{\partial t} \boldsymbol{B} \tag{3.16}$$

$$\nabla \times \boldsymbol{B} = \frac{1}{c^2} \frac{\partial}{\partial t} \boldsymbol{E}$$
(3.17)

また、電場 E と磁束密度 B はスカラーポテンシャル ϕ とベクトルポテンシャル A を 用いて、

$$\boldsymbol{E} = -\nabla\phi - \frac{\partial}{\partial t}\boldsymbol{A} \tag{3.18}$$

$$\boldsymbol{B} = \nabla \times \boldsymbol{A} \tag{3.19}$$

と表される。ここで、ゲージ条件として放射ゲージ*1:

$$\phi = 0 \tag{3.20}$$

$$\nabla \cdot \boldsymbol{A} = 0 \tag{3.21}$$

を課すとマクスウェル方程式から次のような波動方程式が得られる:

$$\left(-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)\boldsymbol{A} = 0 \tag{3.22}$$

*1 クーロンゲージであり、かつローレンツゲージであるゲージ条件。

この解を得るために、長さ (L_x, L_y, L_z) の箱に閉じ込められた電磁場を考える。このと き、周期的境界条件を課すと波数 $k_i(n_i) = 2\pi n_i/L_i$ (i = x, y, z) を用いて、一般解:

$$\boldsymbol{A}(t,\boldsymbol{r}) = \sum_{(n_x,n_y,n_z)} \boldsymbol{A}_{\boldsymbol{k}} e^{-i(\omega_{\boldsymbol{k}}t - \boldsymbol{k} \cdot \boldsymbol{r})} + \boldsymbol{A}_{\boldsymbol{k}}^* e^{i(\omega_{\boldsymbol{k}}t - \boldsymbol{k} \cdot \boldsymbol{r})}$$
(3.23)

が得られる。ここで $\mathbf{k} = (k_x(n_x), k_y(n_y), k_z(n_z)), \omega_{\mathbf{k}} = c|\mathbf{k}|$ とした。このとき、系が 十分に大きいとき $(L \gg 1)$ には \mathbf{n} についての和を積分とみなせるので、式 (3.23) は、

$$\boldsymbol{A}(t,\boldsymbol{r}) \sim \frac{V}{(2\pi)^3} \int \int \int_0^\infty d^3 \boldsymbol{k} \boldsymbol{A}_{\boldsymbol{k}} e^{-i(\omega_{\boldsymbol{k}}t - \boldsymbol{k} \cdot \boldsymbol{r})} + \boldsymbol{A}_{\boldsymbol{k}}^* e^{i(\omega_{\boldsymbol{k}}t - \boldsymbol{k} \cdot \boldsymbol{r})}$$
(3.24)

となる。ここで、V は系の体積である。さらに波数を負まで拡張すると $A_k^* = A_{-k}$ であるため、ベクトルポテンシャルは結局、

$$\boldsymbol{A}(t,\boldsymbol{r}) = \frac{V}{(2\pi)^3} \int_{-\infty}^{\infty} d^3 \boldsymbol{k} \boldsymbol{A}_{\boldsymbol{k}} e^{-i(\omega_{\boldsymbol{k}}t - \boldsymbol{k} \cdot \boldsymbol{r})}$$
(3.25)

となる。すると、このときの電磁場は、

$$\boldsymbol{E}(t,\boldsymbol{r}) = -\frac{V}{(2\pi)^3} \int d^3 \boldsymbol{k} \dot{\boldsymbol{A}}_{\boldsymbol{k}} e^{-i(\omega_{\boldsymbol{k}}t - \boldsymbol{k} \cdot \boldsymbol{r})}$$
(3.26)

$$\boldsymbol{B}(t,\boldsymbol{r}) = -i\frac{V}{(2\pi)^3} \int d^3\boldsymbol{k} \, \boldsymbol{k} \times \boldsymbol{A}_{\boldsymbol{k}} e^{-i(\omega_{\boldsymbol{k}}t - \boldsymbol{k} \cdot \boldsymbol{r})}$$
(3.27)

となり、電磁場のエネルギー H は、

$$H = \int d^3 \boldsymbol{k} \, \frac{\epsilon_0}{2} \boldsymbol{E} \cdot \boldsymbol{E} + \frac{1}{2\mu_0} \boldsymbol{B} \cdot \boldsymbol{B}$$
(3.28)

$$= \frac{V}{(2\pi)^3} \int d^3 \boldsymbol{k} \, \frac{\epsilon_0 V}{2} \dot{\boldsymbol{A}}_{\boldsymbol{k}} \cdot \dot{\boldsymbol{A}}_{-\boldsymbol{k}} + \frac{\epsilon_0 V \omega_{\boldsymbol{k}}^2}{2} \boldsymbol{A}_{\boldsymbol{k}} \cdot \boldsymbol{A}_{-\boldsymbol{k}}$$
(3.29)

ここで、積分の中身 (電磁場のエネルギー密度) をハミルトニアン H だと考え、A_k の 共役運動量を、

$$\boldsymbol{\pi}_{\boldsymbol{k}} = \epsilon_0 V \dot{\boldsymbol{A}}_{\boldsymbol{k}} \tag{3.30}$$

と仮定すると、正準変換は、

$$\dot{\pi}_{k} = -\frac{\partial \mathcal{H}}{\partial A_{k}} \tag{3.31}$$

$$\dot{A}_{k} = \frac{\partial \mathcal{H}}{\partial \pi_{k}} \tag{3.32}$$

となり、 $\epsilon_0 V \dot{A}_k$ は確かに共役運動量だとわかる。これを用いて電磁場のエネルギーを書き直すと、

$$H = \frac{V}{(2\pi)^3} \int d^3 \boldsymbol{k} \, \frac{1}{2\epsilon_0 V} \boldsymbol{\pi}_{\boldsymbol{k}} \cdot \boldsymbol{\pi}_{-\boldsymbol{k}} + \frac{\epsilon_0 V \omega_{\boldsymbol{k}}^2}{2} \boldsymbol{A}_{\boldsymbol{k}} \cdot \boldsymbol{A}_{-\boldsymbol{k}}$$
(3.33)

$$= \frac{V}{(2\pi)^3} \int d^3 \boldsymbol{k} \, \frac{1}{2\epsilon_0 V} \boldsymbol{\pi}_{\boldsymbol{k}} \cdot \boldsymbol{\pi}_{\boldsymbol{k}}^* + \frac{\epsilon_0 V \omega_{\boldsymbol{k}}^2}{2} \boldsymbol{A}_{\boldsymbol{k}} \cdot \boldsymbol{A}_{\boldsymbol{k}}^* \tag{3.34}$$

となる。これは質量が $\epsilon_0 V$ の調和振動子のハミルトニアンと一致する。従って、 A_k 、 $\epsilon_0 V \dot{A}_k$ をそれぞれ演算子とみなし、次の交換関係:

$$[\hat{\boldsymbol{A}}_{\boldsymbol{k}}, \hat{\boldsymbol{\pi}}_{\boldsymbol{k}'}] = i\hbar \frac{(2\pi)^3}{V} \delta(\boldsymbol{k} - \boldsymbol{k}')$$
(3.35)

を課すと電磁場を量子化することができる。さらに、生成演算子:

$$\hat{a}_{k}^{\dagger} = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{\epsilon_{0} V \omega_{k}}{\hbar}} \hat{A}_{k} - i \sqrt{\frac{1}{\epsilon_{0} V \hbar \omega_{k}}} \hat{\pi}_{-k} \right)$$
(3.36)

を定義すると量子化されたハミルトニアン:

$$\hat{H} = \frac{V}{(2\pi)^3} \int d^3 \boldsymbol{k} \hbar \omega_k \left(\hat{\boldsymbol{a}}_{\boldsymbol{k}}^{\dagger} \hat{\boldsymbol{a}}_{\boldsymbol{k}} + \frac{(2\pi)^3}{2} \delta(0) \right)$$
(3.37)

が得られる。またこれらの交換関係は式 (3.35) より、

$$[\hat{a}_k, \hat{a}_{k'}^{\dagger}] = \frac{(2\pi)}{V} \delta(k - k')$$
(3.38)

さらに、ハイゼンベルグ描像とシュレディンガー形式の間の変換式:

$$\hat{O}(t) = e^{\frac{i\hat{H}}{t}}(\hbar)\hat{O}e^{-\frac{i\hat{H}}{t}(\hbar)}$$
(3.39)

を用いることで、ベクトルポテンシャル、電場、磁束密度の演算子の時間発展:

$$\hat{\boldsymbol{A}}(t,\boldsymbol{r}) = \frac{V}{(2\pi)^3} \int d^3\boldsymbol{k} \sqrt{\frac{\hbar}{2\epsilon_0 V \omega_k}} \left(\hat{\boldsymbol{a}}_{\boldsymbol{k}} e^{-i(\omega_k t - \boldsymbol{k} \cdot \boldsymbol{r})} + \hat{\boldsymbol{a}}_{\boldsymbol{k}}^{\dagger} e^{i(\omega_k t - \boldsymbol{k} \cdot \boldsymbol{r})} \right)$$
(3.40)

$$\hat{\boldsymbol{E}}(t,\boldsymbol{r}) = \frac{V}{(2\pi)^3} \int d^3 \boldsymbol{k} i \sqrt{\frac{\hbar\omega_k}{2\epsilon_0 V}} \left(\hat{\boldsymbol{a}}_{\boldsymbol{k}} e^{-i(\omega_k t - \boldsymbol{k} \cdot \boldsymbol{r})} - \hat{\boldsymbol{a}}_{\boldsymbol{k}}^{\dagger} e^{i(\omega_k t - \boldsymbol{k} \cdot \boldsymbol{r})} \right)$$
(3.41)

$$\hat{\boldsymbol{B}}(t,\boldsymbol{r}) = \frac{V}{(2\pi)^3} \int d^3 \boldsymbol{k} i \sqrt{\frac{\hbar}{2\epsilon_0 V \omega_k}} \boldsymbol{k} \times \left(\hat{\boldsymbol{a}}_{\boldsymbol{k}} e^{-i(\omega_k t - \boldsymbol{k} \cdot \boldsymbol{r})} - \hat{\boldsymbol{a}}_{\boldsymbol{k}}^{\dagger} e^{i(\omega_k t - \boldsymbol{k} \cdot \boldsymbol{r})} \right) (3.42)$$

が得られる。

3.2.2 two-photon formalism

先の節では電磁場を量子化し、光子の生成消滅演算子により記述できることを確認した。本節では光子の生成消滅演算子を位相と振幅に分解することでそれぞれの quadrature についての演算子を導く。この表現形式は two-photon formalism[6] と呼 ばれ、量子雑音を記述する上で非常に便利な手法である。

初めに、量子化された電場をレーザー光の電場を表すように書き換える。レーザー光 は指向性を持っているため、電場の進行方向を一次元 (z 方向とする) に書き換えると、

$$\hat{E}(t,z) = \frac{L_z}{2\pi} \int dk_z \sqrt{\frac{\hbar\omega_k}{2\epsilon_0 V}} \left(\hat{a}_{k_z} e^{-i(\omega_{k_z}t - k_z z)} - \hat{a}^{\dagger}_{k_z} e^{i(\omega_{k_z}t - k_z z)} \right)$$
(3.43)

となる。ここで、全体に掛かっている i は位相を $\frac{\pi}{2}$ 回すことでキャンセルした。さら に進行波 ($k_z \ge 0$) について考えることにすると、

$$\hat{E}(t,z) = \frac{L}{2\pi c} \int_0^\infty d\omega \sqrt{\frac{\hbar\omega}{2\epsilon_0 V}} \left(\hat{a}_\omega e^{-i\omega(t-\frac{z}{c})} - \hat{a}_\omega^\dagger e^{i\omega(t-\frac{z}{c})} \right)$$
(3.44)

となる。ここで $\omega = ck_z$ であり、添え字のzは省略した。また、このときの交換関係は、

$$[\hat{a}_{\omega}, \hat{a}_{\omega'}^{\dagger}] = \frac{2\pi c}{L} \delta(\omega - \omega') \tag{3.45}$$

さらに、積分区間をレーザー光の周波数 Ω₀ で分けると、

$$\hat{E}(t,z) = \frac{L}{2\pi c} \left(\int_0^{\Omega_0} + \int_{\Omega_0}^{\infty} \right) d\omega \sqrt{\frac{\hbar\omega}{2\epsilon_0 V}} \left(\hat{a}_\omega e^{-i\omega(t-\frac{z}{c})} - \hat{a}_\omega^{\dagger} e^{i\omega(t-\frac{z}{c})} \right)$$
(3.46)
$$= E_-(t,z) + E_+(t,z)$$
(3.47)

となる。さらに、重力波検出器で問題となる量子雑音はレーザー光の周波数より遥か に低いので、分けた電場それぞれに対して Ω_0 を原点にして考え、 $\Omega_0 \gg \omega$ を加味した 上で近似を行う:

$$E_{-}(t,z) = \frac{L}{2\pi c} \int_{0}^{\Omega_{0}} d\omega \sqrt{\frac{\hbar\omega}{2\epsilon_{0}V}} \left(\hat{a}_{\omega}e^{-i\omega(t-\frac{z}{c})} - \hat{a}_{\omega}^{\dagger}e^{i\omega(t-\frac{z}{c})}\right)$$
(3.48)

$$= -\frac{L}{2\pi c} \int_{\Omega_0}^0 d\omega \sqrt{\frac{\hbar(\Omega_0 - \omega)}{2\epsilon_0 V}} \hat{a}_{\Omega_0 - \omega} e^{-i(\Omega_0 - \omega)(t - \frac{z}{c})} + \text{H.C.} \quad (3.49)$$

$$\sim \frac{L}{2\pi c} \int_0^{\Omega_0} d\omega \sqrt{\frac{\hbar\Omega_0}{2\epsilon_0 V}} \hat{a}_{\Omega_0 - \omega} e^{-i(\Omega_0 - \omega)(t - \frac{z}{c})} + \text{H.C.}$$
(3.50)

$$\sim \frac{L}{2\pi c} \int_0^\infty d\omega \sqrt{\frac{\hbar\Omega_0}{2\epsilon_0 V}} \hat{a}_{\Omega_0 - \omega} e^{-i(\Omega_0 - \omega)(t - \frac{z}{c})} + \text{H.C.}$$
(3.51)

$$E_{+}(t,z) \sim \frac{L}{2\pi c} \int_{0}^{\infty} d\omega \sqrt{\frac{\hbar\Omega_{0}}{2\epsilon_{0}V}} \hat{a}_{\Omega_{0}+\omega} e^{-i(\Omega_{0}+\omega)(t-\frac{z}{c})} + \text{H.C.}$$
(3.52)

これは雑音を含む電場をそれぞれのサイドバンドで分けたといえる。そこでそれぞれ のサイドバンドの演算子を、

$$\hat{a}_{\omega\pm} := \hat{a}_{\Omega_0 \pm \omega} \tag{3.53}$$

と書き換えると、それぞれの電場は、

$$E_{-}(t,z) = \frac{L}{2\pi c} \sqrt{\frac{\hbar\Omega_0}{2\epsilon_0 V}} \int_0^\infty d\omega \,\hat{a}_{\omega-} e^{-i(\Omega_0 - \omega)(t - \frac{z}{c})} + \text{H.C.}$$
(3.54)

$$E_{+}(t,z) = \frac{L}{2\pi c} \sqrt{\frac{\hbar\Omega_0}{2\epsilon_0 V}} \int_0^\infty d\omega \,\hat{a}_{\omega+} e^{-i(\Omega_0+\omega)(t-\frac{z}{c})} + \text{H.C.}$$
(3.55)

となる。ここで、E(t,z)をさらに変形すると、

$$E(t,z) = \frac{L}{2\pi c} \sqrt{\frac{\hbar\Omega_0}{2\epsilon_0 V}} e^{-i\Omega_0(t-\frac{z}{c})} \int_0^\infty d\omega \left(\hat{a}_{\omega-} e^{i\omega(t-\frac{z}{c})} + \hat{a}_{\omega+} e^{-i\omega(t-\frac{z}{c})} \right) + \frac{L}{2\pi c} \sqrt{\frac{\hbar\Omega_0}{2\epsilon_0 V}} e^{i\Omega_0(t-\frac{z}{c})} \int_0^\infty d\omega \left(\hat{a}_{\omega-}^\dagger e^{-i\omega(t-\frac{z}{c})} + \hat{a}_{\omega+}^\dagger e^{i\omega(t-\frac{z}{c})} \right)$$
(3.56)

となり、quadratureの演算子:

$$\hat{a}_1(\omega) = \frac{\hat{a}_{\omega+} + \hat{a}_{\omega-}^{\dagger}}{\sqrt{2}}$$
(3.57)

$$\hat{a}_2(\omega) = i \frac{\hat{a}_{\omega+}^{\dagger} - \hat{a}_{\omega-}}{\sqrt{2}}$$
(3.58)

を導入することで電場を直交位相に分けることができる:

$$E(t,z) = \frac{L}{2\pi c} \sqrt{\frac{\hbar\Omega_0}{\epsilon_0 V}} \cos\left(\Omega_0(t-\frac{z}{c})\right) \int_0^\infty d\omega \left(\hat{a}_1(\omega)e^{-i\omega(t-\frac{z}{c})} + \hat{a}_1^{\dagger}(\omega)e^{i\omega(t-\frac{z}{c})}\right) + \frac{L}{2\pi c} \sqrt{\frac{\hbar\Omega_0}{\epsilon_0 V}} \sin\left(\Omega_0(t-\frac{z}{c})\right) \int_0^\infty d\omega \left(\hat{a}_2(\omega)e^{-i\omega(t-\frac{z}{c})} + \hat{a}_2^{\dagger}(\omega)e^{i\omega(t-\frac{z}{c})}\right)$$
(3.59)

このときの演算子の交換関係は、式 (3.45) より、

$$[\hat{a}_1(\omega), \hat{a}_2^{\dagger}(\omega')] = \frac{2\pi c}{L} i\delta(\omega - \omega')$$
(3.60)

とわかる。さらに扱いやすくするために演算子を $\sqrt{\frac{c}{L}}\hat{a}_{1,2} \rightarrow \hat{a}_{1,2}$ と書き換えることで 交換関係:

$$[\hat{a}_1(\omega), \hat{a}_2^{\dagger}(\omega')] = 2\pi i \delta(\omega - \omega')$$
(3.61)

を得る。また、このときの電場は、

$$E(t,z) = \frac{1}{2\pi} \sqrt{\frac{\hbar\Omega_0}{\epsilon_0 c A}} \cos\left(\Omega_0(t-\frac{z}{c})\right) \int_0^\infty d\omega \left(\hat{a}_1(\omega)e^{-i\omega(t-\frac{z}{c})} + \hat{a}_1^{\dagger}(\omega)e^{i\omega(t-\frac{z}{c})}\right) \\ + \frac{1}{2\pi} \sqrt{\frac{\hbar\Omega_0}{\epsilon_0 c A}} \sin\left(\Omega_0(t-\frac{z}{c})\right) \int_0^\infty d\omega \left(\hat{a}_2(\omega)e^{-i\omega(t-\frac{z}{c})} + \hat{a}_2^{\dagger}(\omega)e^{i\omega(t-\frac{z}{c})}\right)$$
(3.62)

となる。ここで、A はレーザーの断面積である。さらに、積分の部分を、

$$\hat{a}_{1,2}(t,z) = \frac{1}{2\pi} \int_0^\infty d\omega \, \left(\hat{a}_{1,2}(\omega) e^{-i\omega(t-\frac{z}{c})} + \hat{a}_{1,2}^\dagger(\omega) e^{i\omega(t-\frac{z}{c})} \right) \tag{3.63}$$

と書き換えることで、

$$E(t,z) = \sqrt{\frac{\hbar\Omega_0}{\epsilon_0 A}} (\hat{a}_1(t,z)\cos\left(\Omega_0(t-z/c)\right) + \hat{a}_2(t,z)\sin\left(\Omega_0(t-z/c)\right))$$
(3.64)

を得る。これはレーザー光と同位相に â₁ による光子が生成消滅し、直交する位相に â₂ による光子が生成消滅することを表しており、それがレーザー光の揺らぎとなる。 この揺らぎはレーザー光が存在しない (|n〉 = |0〉) 場合にも発生し、それを真空場と呼 ぶ。この真空場こそが重力波検出器の感度を制限する量子雑音の起源となる。

3.3 非線形光学

先の章で述べたように、一般に干渉計型重力波検出器では、その原理的な感度は標準量子限界により制限されるのであった。ところがこの限界は電場の揺らぎのそれぞれの quadrature に相関を持たせることで打ち破ることができる。その手法の1つが 非線形光学効果を用いたスクイージングである。この技術は本研究でも用いられてい るため、ここではその基本的な原理について述べていく。

3.3.1 非線型分極

誘電体に光が入射すると、通常は光電場により次のような誘電分極を起こすことが 知られている:

$$\boldsymbol{P} = \epsilon_0 \chi \boldsymbol{E} \tag{3.65}$$

ここで、*χ* は誘電体の感受率である。ところがこの応答は実際には線形では無いため、 レーザー光などの強い電場を持つ光が入射すると非線形な成分が無視できなくなる:

$$\boldsymbol{P} = \epsilon_0 \chi^{(1)} \boldsymbol{E} + \epsilon_0 \chi^{(2)} \boldsymbol{E}^2 + \epsilon_0 \chi^{(3)} \boldsymbol{E}^3 + \cdots$$
(3.66)

$$= \boldsymbol{P}_L + \boldsymbol{P}_{NL} \tag{3.67}$$

これを非線形分極という。ここで、線形成分である第 1 項を P_L とし、それ以外の非 線形な項を P_{NL} とまとめた。 $\chi^{(1)}$ は線形感受率、それ以降の $\chi^{(n)}$ はそれぞれ n 次の 非線形感受率^{*2}といい、それらは n+1 階のテンソルである。

ここで、入射電場が $E \cos \Omega t$ だとすると、式 (3.66) の第 2 項から、周波数 2 Ω を持 つ光が発生することが分かる。これを第二高調波発生 (Second Harmonic Generation: SHG) と呼ぶ。その他にも、入射電場を 2 色にするとそれぞれの光の周波数の和や

 $^{^{*2}\}chi^{(1)}$ は $\chi^{(2)}$ より 7 桁程小さく、高次の分極ではさらに小さいため、通常の電場では無視できる。

差の周波数を持つ光を発生させることができる。これらを和周波発生、差周波発生と 呼ぶ。このように、非線形光学効果は様々な波長変換を行うことが可能な現象である (図3.2)。

図3.2 非線形光学効果のイメージ。 $\omega_2 > \omega_1$ とした。

3.3.2 第二高調波発生

先の節では非線形分極を加味すると、単一周波数のレーザー光を誘電体に入射させることで倍波 (第二高調波) が発生することが分かった。この節では、第二高調波発生について述べる。また、本節では基本波 (周波数: Ω_1)と倍波 (周波数: $2\Omega_1 = \Omega_2$)に関する物理量をそれぞれ1と2の添え字でもって区別する。

ここで、基本波が $E^{(1)} = E_1 e^{-i(\Omega_1 t - k_1 z)} + \text{c.c.}$ であるとすると、周波数 2 Ω の分極は、

$$\mathbf{P}^{(2)} = \mathbf{P}_2 e^{-i(2\Omega_1 t - 2k_1 z)} + \text{c.c.}$$
(3.68)

となり、この分極により第二高調波:

$$\boldsymbol{E}^{(2)} = \boldsymbol{E}_2 e^{-i(\Omega_2 t - k_2 z)} + \text{c.c.}$$
(3.69)

が発生する*3。ここで、電荷および電流が存在しない誘電体中のマクスウェル方程式:

$$\nabla \cdot \boldsymbol{D} = 0 \tag{3.70}$$

$$\nabla \cdot \boldsymbol{H} = 0 \tag{3.71}$$

$$\nabla \times \boldsymbol{E} = -\mu_0 \frac{\partial \boldsymbol{H}}{\partial t} \tag{3.72}$$

$$\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{E}}{\partial t} \tag{3.73}$$

$$\boldsymbol{D} = \epsilon_0 \boldsymbol{E} + \boldsymbol{P} \tag{3.74}$$

のように与えられるため、誘電体中の誘電率が $(1 + \chi^{(1)})\epsilon_0$ であることを用いて波動

^{*3} $\omega_2 = 2\omega_1$ ではあるが k_2 は $2k_1$ ではないことに注意。なぜならば、屈折率は光の周波数に依存する ため、 $k = \frac{2\pi}{\lambda} = n(\omega)\frac{\omega}{c}$ となるからである。
方程式を導くと、

$$\nabla^2 \boldsymbol{E} - \epsilon \mu_0 \frac{\partial^2}{\partial t^2} \boldsymbol{E} = \mu_0 \frac{\partial^2}{\partial t^2} \boldsymbol{P}_{\rm NL}$$
(3.75)

となる。ここに周波数 2 Ω の項 $\boldsymbol{E} = \boldsymbol{E}^{(2)}$ および、 $\boldsymbol{P}_{\mathrm{NL}} = \boldsymbol{P}^{(2)}$ を入れると、次の式が得られる:

$$\frac{\partial^2}{\partial z^2} \boldsymbol{E}_2 e^{-i(\Omega_2 t - k_2 z)} - \epsilon \mu_0 \frac{\partial^2}{\partial t^2} \boldsymbol{E}_2 e^{-i(\Omega_2 t - k_2 z)} = \mu_0 \frac{\partial^2}{\partial t^2} \boldsymbol{P}_2 e^{-i(\Omega_2 t - 2k_1 z)}$$
(3.76)

これは複素共役についても同様である。入射する電場が一定のときには、それぞれの 振幅は時間変化しないため、式 (3.76) は、

$$\frac{\partial^2}{\partial z^2} \boldsymbol{E}_2 + 2ik_2 \frac{\partial}{\partial z} \boldsymbol{E}_2 = -\mu_0 \Omega_2^2 \boldsymbol{P}_2 e^{-i(k_2 z - 2k_1 z)}$$
(3.77)

となる。さらに電場振幅の変化がそれほど急ではないという近似*⁴を行うと、第 1 項 を無視することができる:

$$\frac{\partial}{\partial z}\boldsymbol{E}_2 = \frac{i\mu_0\Omega_2^2}{2k_2}\boldsymbol{P}_2 e^{-i(k_2-2k_1)z}$$
(3.78)

さらに、分極が場所に依らず一定であると仮定して結晶長*l*で積分することで結晶の 出口での第二高調波の振幅が得られる:

$$|\mathbf{E}_{2}(l)| = \frac{\mu_{0}\Omega_{2}^{2}l}{2k_{2}}|\mathbf{P}_{2}|\frac{|\sin\left(\Delta kl/2\right)|}{|\Delta kl/2|}$$
(3.79)

ここで、

$$\Delta k = k_2 - 2k_1 \tag{3.80}$$

は 2 次の分極と第 2 高調波の波数の不一致を表す。 $\Delta k = 0$ の場合には第 2 高調波は 結晶長に比例して大きくなるが、 $\Delta k \neq 0$ のときには $\Delta k l = \pi$ のときに最大値を取り、 結晶長をいくら長くしてもそれより大きくならない。このように、非線形光学波が成 長する条件 $\Delta k = 0$ を位相整合条件と呼ぶ。また、位相整合条件を満たさない場合に 電場が最大値を取るまでの距離 $l_{c} = \frac{\pi}{\Delta k}$ をコヒーレンス長と呼ぶ。

^{*4} $\partial_z^2 E_2$ と $2ik_2 \partial_z E_2$ の比較は $\frac{\lambda_2}{4\pi} \partial_z E_2$ と iE_2 の比較に書き換えられるため、波長のオーダーの距離での電場の振幅の変化と電場の振幅の比較になり、通常、この距離での振幅の変化は無視できると考えてよい。これを緩慢包絡線近似という。

3.3.3 光パラメトリック増幅 (OPA)

周波数 $\Omega_{\rm s}$ の光 $E^{({\rm s})}$ とそれよりも高い周波数 $\Omega_{\rm p}$ の光 $E^{({\rm p})}$ が非線形光学結晶に入 射する場合を考える。本節では簡単のため、入射光の振動方向が揃っている場合を考え 電場をスカラー量して考える。また、分極についても電場の振動方向への射影を考え それぞれをスカラー量とする [26]。このとき、 $E({\rm s})$ に比べて $E^{({\rm p})}$ が強いときには発生 する周波数 $\Omega_{\rm p} - \Omega_{\rm s} (= \Omega_{\rm i}$ とする)の分極から周波数 $\Omega_{\rm i}$ の電場 $E^{({\rm i})}$ が作られ、そこか ら更に $\Omega_{\rm p} - \Omega_{\rm i} = \Omega_{\rm p}$ の電場が作られる。この過程を光パラメトリック増幅 (Optical Parametric Amplification: OPA) という。OPA では、それぞれの光はその働きから ポンプ光 ($E^{({\rm p})}$)、シグナル光 ($E^{({\rm s})}$)、アイドラー ($E^{({\rm i})}$)と呼ばれる。このとき、結晶 内でのそれぞれの光の空間発展は式 (3.78)と同様にして、

$$\partial_z E^{(\mathrm{s})} = \frac{i\mu_0 \Omega_{\mathrm{s}}^2}{2k_{\mathrm{s}}} \epsilon_0 \chi^{(2)}(\Omega_{\mathrm{s}}) E^{(\mathrm{p})} E^{(\mathrm{i})*} e^{i\Delta kz}$$
(3.81)

$$\partial_z E^{(i)} = \frac{i\mu_0 \Omega_i^2}{2k_s} \epsilon_0 \chi^{(2)}(\Omega_i) E^{(p)} E^{(s)*} e^{i\Delta kz}$$
(3.82)

$$\partial_z E^{(p)} = \frac{i\mu_0 \Omega_p^2}{2k_p} \epsilon_0 \chi^{(2)}(\Omega_p) E^{(s)} E^{(i)*} e^{-i\Delta kz}$$
(3.83)

となる。ここで位相不整合は $\Delta k = k_{\rm p} - k_{\rm s} - k_{\rm i}$ である。また、簡単のため z の偏微 分記号を ∂_z とした。また、対称性からそれぞれの $\chi^{(2)}$ は等しい。すると、ポンプ光が 強く、その減衰が無視できるときには、 $E^{({\rm p})}$ を定数とすることができて位相が整合し ているとき ($\Delta k = 0$) の解が次のようになる:

$$E^{(s)}(z) = E^{(s)}(0) \cosh \frac{gz}{2} + ie^{i\phi_{\rm p}} \sqrt{\frac{\Omega_{\rm s}^2 k_{\rm i}}{\Omega_{\rm i}^2 k_{\rm s}}} E^{(i)*}(0) \sinh \frac{gz}{2}$$
(3.84)

$$E^{(i)}(z) = E^{(i)}(0) \cosh \frac{gz}{2} + ie^{i\phi_{\rm p}} \sqrt{\frac{\Omega_{\rm i}^2 k_{\rm s}}{\Omega_{\rm s}^2 k_{\rm i}}} E^{(\rm s)*}(0) \sinh \frac{gz}{2}$$
(3.85)

$$g = \frac{1}{c^2} \sqrt{\frac{\Omega_{\rm s}^2 \Omega_{\rm i}^2}{k_{\rm s} k_{\rm i}}} |\chi^{(2)} E^{(\rm p)}|$$
(3.86)

ここで、 ϕ_p はポンプ光の初期位相である。

次に、シグナル光とアイドラー光が縮退している場合 $(\Omega_s = \Omega_i)$ を考える。すると、 式 (3.84)、式 (3.85) は、

$$E^{(s)}(z) = E^{(s)}(0) \cosh \frac{gz}{2} + ie^{i\phi_{\rm p}} E^{(s)*}(0) \sinh \frac{gz}{2}$$
(3.87)

とまとめられる。さらに、シグナル光の初期位相を φ₀ として、強度を求めると、

$$P^{(s)}(z) = P^{(s)}(0)(\cosh gz - \sin \Delta \phi \sinh gz)$$
(3.88)

$$\Delta \phi = \phi_{\rm p} - 2\phi_0 \tag{3.89}$$

となり、ポンプ光とシグナル光の相対位相によって出力される光の増減が変化するこ とが分かる。

光共振器の中に非線形結晶を設置し、ポンプ光を共振させることで実行的なポンプ 光強度を大幅に増やすことが可能になる。この手法は光パラメトリック共振 (OPO) と呼ばれ、より強い増幅効果を得ることができる。

3.3.4 疑似位相整合

非線形結晶内での位相が不整合であるときには、結晶長がコヒーレンス長を超えた ときに非線形光学効果が抑圧されてしまう方向に働く。そのため OPA や SHG を効率 よく起こすためには位相整合条件 $\Delta k = 0$ を満足する必要がある。OPA や SHG で位 相整合条件を満たすにはキャリア光とポンプ光の屈折率を等しくしなければならない が、一般的に結晶の屈折率には分散があるため、この条件は満たされない。その問題 を解決する手法の一つとして周期分極反転を用いた疑似位相整合が用いられる。

図3.3 周期分極反転。各矢印は分極の方向を表す。

周期分極反転とは図3.3のように一定の周期 Λ で分極が反転するように結晶中の分 極に空間的な変調を加えることで得られる構造である。この構造では Λ がコヒーレン ス長 *l*_c よりも短い場合には分極が図のように成長することになり、位相整合を疑似的 に実現することが可能になる。このとき、これを効率よく起こすための疑似位相整合 条件は、

$$\Delta k = \frac{2m\pi}{\Lambda} \ (m \in \mathbb{Z}) \tag{3.90}$$

となり、分極反転がない場合の位相整合条件よりも簡単に満足させることができる。分極反転のある結晶にはニオブ酸リチウムを用いた PPLN (periodically poled

lithium niobate) やチタン酸リン酸カリウムを用いた PPKTP (periodically poled potassium titanyl phosphate) などがあり、実験室ではオーブンにより温調をかける ことで最適な結晶長になるように制御される。

3.4 演算子の定義

3.4.1 鏡による作用

図3.4 鏡による作用

図3.4のように振幅反射率および透過率がそれぞれr、tである鏡で電場がA(t)とB(t)の光を干渉させると、鏡の内部で起こる反射と外部で起こる反射は位相が反対であることに注意して、干渉光の電場は、

$$C(t) = rA(t) + tB(t)$$
 (3.91)

$$D(t) = tA(t) - rB(t)$$
(3.92)

となるので、これらを直交位相に分けてベクトル表記すると、

$$\boldsymbol{C} = r\boldsymbol{A} + t\boldsymbol{B} \tag{3.93}$$

$$\boldsymbol{D} = t\boldsymbol{A} - r\boldsymbol{B} \tag{3.94}$$

$$\boldsymbol{c}(\omega) = r\boldsymbol{a}(\omega) + t\boldsymbol{b}(\omega) \tag{3.95}$$

$$\boldsymbol{d}(\omega) = t\boldsymbol{a}(\omega) - r\boldsymbol{b}(\omega) \tag{3.96}$$

と表せる。

3.4.2 伝搬による作用

図3.5のように光が距離 *L* だけ伝搬した場合を考えると、これは時間が $L/c = \tau$ だ け遅れるのと同等であるため、伝搬による位相変化 $\phi = L\Omega/c$ および回転行列 $R(\phi)$

図3.5 電場とその揺らぎの伝搬

を用いて、

$$\boldsymbol{B} = R(\phi)\boldsymbol{A} \tag{3.97}$$

$$\boldsymbol{b}(t) = R(\phi)\boldsymbol{a}(t-\tau) \tag{3.98}$$

$$R(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$
(3.99)

さらに、これをフーリエ変換することで、

$$\boldsymbol{b}(\omega) = e^{-i\frac{L\omega}{c}}R(\phi)\boldsymbol{a}(\omega) \tag{3.100}$$

を得る。

3.4.3 懸架鏡による作用

重力波検出器ではエンドミラーを自由質点と見なすことができるように懸架鏡 が用 いられている。このとき、電場の振幅方向の揺らぎが輻射圧揺らぎとして鏡の微小変 位に伝わり、それによって位相方向の揺らぎが変化する。このように、電場の揺らぎ が懸架鏡を通じてそれぞれの quadrature 間で変換されるため、懸架鏡はオプトメカ ニカルなスクイーザーとして働くと見なすことができる。これを ponderomotive スク イージングという。

図3.6 懸架鏡での反射

図3.6のように光が懸架鏡に反射されることを考える。鏡が微小変位 $\delta x(t)$ だけ動 くと、反射光の光路は $2\delta x$ 変化するため、反射れる電場 B(t) は式 (3.4) で $\delta \phi$ を $\delta \phi + 2k_0 \delta x$ とすれば良いだけであるため、

$$B(t) = (A_1 + a_1(t) - 2A_2k_0\delta x(t))\cos\Omega_0 t + (A_2 + a_2(t) + 2A_1k_0\delta x(t))\sin\Omega_0 t$$
(3.101)

となる。従って、それぞれの quadrature に分けて表記すると、

$$\boldsymbol{B} = \boldsymbol{A} \tag{3.102}$$

$$\boldsymbol{b}(t) = \boldsymbol{a}(t) + 2k_0 \begin{pmatrix} -A_2 \\ A_1 \end{pmatrix} \delta x(t)$$
(3.103)

となる。さらに、 $\delta x(t)$ を求めるために、鏡の変位に対する運動方程式を立てる。鏡に 働く力は懸架による機械的な復元力、光の輻射圧、そして重力波によって受ける見か けの力がある。

振幅 h(t) の重力波が検出器にやってくると、長さ L の光路は Lh(t) だけ長くなる。従って、懸架鏡の絶対的な座標は $L + \frac{1}{2}Lh(t)$ と書けるため、重力波による力は $F_{\rm GW} = \frac{1}{2}mL\ddot{h}(t)$ となる。

さらに、光の輻射圧によって受ける力 $F_{\rm RP}$ を考える。鏡に当たる光の輻射圧は光の 強度を P_0 とすると、運動量の変化を考えることで $2P_0/c$ となるため、式 (3.11) を用 いると、

$$F_{\rm RP}^{\rm tot}(t) = \hbar k_0 ((A_1^2 + A_2^2) + 2(A_1 a_1(t) + A_2 a_2(t)))$$
(3.104)

$$=F_{\rm RP} + \delta F_{\rm RP}(t) \tag{3.105}$$

となる。ここで、*F*_{RP} は機械的な復元力と釣り合っているため、懸架鏡の変位に対す る運動方程式は、

$$m\delta\ddot{x}(t) = \delta F_{\rm RP} + \frac{1}{2}mL\ddot{h}(t) \qquad (3.106)$$

となり、これをフーリエ変換することで周波数領域での微小変位;

$$\delta x(\omega) = -\frac{2\hbar k_0}{m\omega^2} (A_1 a_1(\omega) + A_2 a_2(\omega)) + Lh(\omega)$$
(3.107)

を得る。さらに、式 (3.103) をフーリエ変換し、式 (3.107) に入れると、

$$\boldsymbol{b}(\omega) = \boldsymbol{a}(t) + 2k_0 \begin{pmatrix} -A_2 \\ A_1 \end{pmatrix} \left(-\frac{2\hbar k_0}{m\omega^2} (A_1 a_1(\omega) + A_2 a_2(\omega)) + \frac{1}{2} Lh(\omega) \right) (3.108)$$

= $\boldsymbol{a} + \kappa_A \begin{pmatrix} a_1 \sin \xi_A \cos \xi_A + a_2 \sin^2 \xi_A \\ -a_1 \cos^2 \xi_A - a_2 \sin \xi_A \cos \xi_A \end{pmatrix} + \zeta_A \boldsymbol{n}_{A_\perp} h$ (3.109)

となる。ここで新たに登場する文字は以下のように定義される。

$$\kappa_A = \frac{8P_A\Omega_0}{mc^2\omega^2} \tag{3.110}$$

$$\xi_A = \arctan \frac{A_2}{A_1} \tag{3.111}$$

$$\zeta_A = Lk_0 \sqrt{\frac{2P_A}{\hbar\Omega_0}} \tag{3.112}$$

$$\boldsymbol{n}_{A_{\perp}} = \begin{pmatrix} -\sin\xi_A\\ \cos\xi_A \end{pmatrix} \tag{3.113}$$

特に、κ はオプトメカニカル結合定数と呼ばれ、振り子の復元力とレーザー光の輻射 圧の結合の強さを表す。これと回転行列 *R*(*θ*) を用いることで、ponderomotive スク イージング行列:

$$P(\kappa, \xi) = R(\xi) \begin{pmatrix} 1 & 0\\ -\kappa & 1 \end{pmatrix} R(-\xi)$$
(3.114)

を定義できる。従って、式 (3.109) にこれを用いることで懸架鏡で反射された電場の揺 らぎ:

$$\boldsymbol{b}(\omega) = P(\kappa_A, \, \xi_A) \boldsymbol{a}(\omega) + \zeta_A \boldsymbol{n}_{A_\perp} h(\omega) \tag{3.115}$$

が求まる。

式 (3.115) から、重力波の信号は入射光と直交した向きで現れることが分かる。こ こで、ある周波数 ω_{GW} を持った重力波について考える。そのときの時間領域での信 号を、

$$\boldsymbol{n}_{A_{\perp}}b'\sin\omega_{\rm GW}t = \zeta_A \boldsymbol{n}_{A_{\perp}}h(t) \tag{3.116}$$

とすると、反射光の電場の直行位相分解をもとに戻した場合に、次のような信号の和 として考えることができる:

$$b_{\uparrow}'(t) = -\frac{b'\sin\xi_A}{2}\sin(\Omega_0 + \omega_{\rm GW})t - \frac{b'\cos\xi_A}{2}\cos(\Omega_0 + \omega_{\rm GW})t \quad (3.117)$$

$$b'_{\downarrow}(t) = -\frac{b' \sin \xi_A}{2} \cos(\Omega_0 - \omega_{\rm GW})t + \frac{b' \cos \xi_A}{2} \cos(\Omega_0 - \omega_{\rm GW})t \quad (3.118)$$

すなわち、重力波は懸架鏡を介してキャリア光から重力波の周波数分だけ周波数シフトさせた側帯波 (サイドバンド) を発生させる。このとき、高周波にシフトした光 b'₁(t) をアッパーサイドバンド、低周波にシフトさせた光 b'₁(t) をロワーサイドバンドと呼 ぶ (図)。従って、重力波検出器は重力波により発生するサイドバンドを検出する装置 であるといえる。

3.4.4 光パラメトリック増幅による作用

ポンプ光とシグナル光の位相差によってシグナル光の電場を操作することのできる OPA は重力波検出器などの微小信号計測に上手く用いることで感度を改善することが できる。本節では OPA を導入した重力波検出器の雑音を計算するためにその演算子 を求めていく。

図のように、ポンプ光の周波数がキャリア光の周波数の 2 倍 (2Ω₀) で、このときの シグナル光がキャリア光 (Ω₀) である OPA について考える。このとき、電場とその揺 らぎの入出力関係は式 (3.88) より、

$$B(t) = [(A_1 + a_1(t))\cos(\Omega_0 t - 2\theta) - (A_2 + a_2(t))\sin(\Omega_0 t - 2\theta)]\sinh u + [(A_1 + a_1(t))\cos\Omega_0 t + (A_2 + a_2(t))\sin\Omega_0 t]\cosh u$$
(3.119)

$$2\theta = \phi_{\rm p} - 2\phi_{\rm s} + \frac{\pi}{2} \tag{3.120}$$

となる。結晶の出口での gz を u と置いた。式 (3.119) の第 1 項に着目すると、それぞ れの quadrature がポンプ光の初期位相についてトレードオフに振る舞うことが分か る。従って、OPA も懸架鏡と同様にスクイーザとして振る舞うと言える。そのため、 スクイージングの方向を決める 20 はスクイージング角と呼ばれる。さらに、先の式を 電場とその揺らぎに分けてそれぞれベクトル表記で表すと次のようになる:

$$\boldsymbol{B} = S(u,\theta)\boldsymbol{A} \tag{3.121}$$

$$\boldsymbol{b}(\omega) = S(u,\theta)\boldsymbol{a}(\omega) \tag{3.122}$$

$$S(u,\theta) = \begin{pmatrix} \cosh u + \sinh u \cos 2\theta & \sinh u \sin 2\theta \\ \sinh u \sin 2\theta & \cosh u - \sinh u \cos 2\theta \end{pmatrix}$$
(3.123)

ここで $S(u, \theta)$ はスクイージング行列と呼ばれ、スクイージングの強さを表すスクイ ージングファクタ $s = e^u$ を用いて、

$$S(u,\theta) = R(\theta) \begin{pmatrix} s & 0\\ 0 & 1/s \end{pmatrix} R(-\theta)$$
(3.124)

のように書ける。

3.5 量子雑音低減技術

本章では定義した演算子を用いて干渉計型重力波検出器における量子雑音を導出し、 その低減方法について議論する。本章では実際の重力波検出器である KAGRA に合わ せて腕の長さを $L = 3 \, \text{km}$ 、懸架鏡の質量を $m = 23 \, \text{kg}$ とする。

図3.7 マイケルソン干渉計での入出力関係

3.5.1 マイケルソン干渉計における量子雑音

はじめに干渉計型重力波検出器として最もシンプルなマイケルソン干渉計 (Michelson interferometer: MI) における量子雑音を導出する。電場とその揺らぎについては 図3.7のように定義し、ぞれぞれの腕の長さを *L_x* および *L_y* とした。なお、ビームス プリッタの透過率と反射率の比は 1:1 である。すると、それぞれの電場についての入 出力関係は、

$$B = \frac{H+D}{\sqrt{2}}, \ C = \frac{A-K}{\sqrt{2}}, \ G = \frac{A+K}{\sqrt{2}}, \ L = \frac{H-D}{\sqrt{2}},$$
$$D = R(\phi_x)F, \ E = R(\phi_x)C, \ F = E,$$
$$H = R(\phi_y)J, \ I = R(\phi_y)G, \ J = I$$
(3.125)

となる。ここで、 $\phi_{x,y}$ はそれぞれの腕の距離を伝搬したときに生じるキャリアの位相 差 $\frac{L_{x,y}\Omega_0}{c}$ である。これを $oldsymbol{A} = \begin{pmatrix} A_0 \\ 0 \end{pmatrix}$ 、 $oldsymbol{K} = oldsymbol{0}$ の場合について解くと、

$$\boldsymbol{B} = \frac{1}{2}R(2\phi_y)(I + R(2\phi_-))\boldsymbol{A}$$
(3.126)

$$\boldsymbol{L} = \frac{1}{2}R(2\phi_y)(I - R(2\phi_-))\boldsymbol{A}$$
(3.127)

となり、差動長 $\phi_{-} = \phi_x - \phi_y$ が 2π を法として 0 と合同であるときにダークフリン ジになり、 $\frac{\pi}{2}$ と合同であるときにブライトフリンジになることが分かる。 次に電場の揺らぎについて考える。電場のときと同様に入出力関係を書き下すと、

$$\boldsymbol{b} = \frac{\boldsymbol{h} + \boldsymbol{d}}{\sqrt{2}}, \ \boldsymbol{c} = \frac{\boldsymbol{a} - \boldsymbol{k}}{\sqrt{2}}, \ \boldsymbol{g} = \frac{\boldsymbol{a} + \boldsymbol{k}}{\sqrt{2}}, \ \boldsymbol{l} = \frac{\boldsymbol{h} - \boldsymbol{d}}{\sqrt{2}},$$
$$\boldsymbol{d} = e^{i\alpha}R(\phi_x)\boldsymbol{f}, \ \boldsymbol{e} = e^{i\alpha}R(\phi_x)\boldsymbol{c}, \ \boldsymbol{f} = P(\kappa_E, \xi_E)\boldsymbol{e} - \zeta_E\boldsymbol{n}_{E_\perp}h(\omega), \quad (3.128)$$
$$\boldsymbol{h} = e^{i\alpha}R(\phi_y)\boldsymbol{j}, \ \boldsymbol{i} = e^{i\alpha}R(\phi_y)\boldsymbol{g}, \ \boldsymbol{j} = P(\kappa_I, \xi_I)\boldsymbol{i} + \zeta_I\boldsymbol{n}_{I_\perp}h(\omega)$$

となる。 α は腕を伝搬する間に生じる揺らぎの位相遅れであるが、それぞれの腕の長さ の差は重力波の波長に比べて十分に小さいため、 $\alpha = -L_x \omega/c = -L_y \omega/c := -L\omega/c$ とした。また、重力波は差動の信号であるため、x 方向と y 方向の重力波の信号の符 号を逆にした。さらに、 $P_E = P_I = P_A/2$ に注意して解く^{*5}と、

$$R(2\phi_y)\boldsymbol{b} = \frac{e^{2i\alpha}}{2} [R(2\phi_-) + I] P(\frac{\kappa_A}{2}, 0)\boldsymbol{a} + \frac{e^{2i\alpha}}{2} [-R(2\phi_-) + I] P(\frac{\kappa_A}{2}, 0)\boldsymbol{k} - \frac{\zeta_A e^{i\alpha}}{2} \begin{pmatrix} -\sin 2\phi_-\\ \cos 2\phi_- - 1 \end{pmatrix} h(\omega)$$
(3.129)

$$R(2\phi_y)\boldsymbol{l} = \frac{e^{2i\alpha}}{2} [R(2\phi_-) - I] P(\frac{\kappa_A}{2}, 0) \boldsymbol{a} + \frac{e^{2i\alpha}}{2} [-R(2\phi_-) - I] P(\frac{\kappa_A}{2}, 0) \boldsymbol{k} - \frac{\zeta_A e^{i\alpha}}{2} \begin{pmatrix} -\sin 2\phi_-\\ \cos 2\phi_- + 1 \end{pmatrix} h(\omega)$$
(3.130)

となる。第3項に注目すると、ダークフリンジのときには重力波の信号が全て干渉計の出力側に現れることが分かる。このことから出力ポートは Anti-Symmetric (AS) ポートと呼ばれる^{*6}。そのため、一般的な干渉計型重力波検出器はダークフリンジで運用される。

さらに、式 (3.130) で $\phi_y \equiv \pi/2 \pmod{2\pi}$ 、 $\phi_- \equiv 0 \pmod{2\pi}$ とすると、

$$\boldsymbol{l} = e^{2i\alpha} \begin{pmatrix} 1 & 0 \\ -\kappa_A/2 & 1 \end{pmatrix} \boldsymbol{k} + \zeta_A e^{i\alpha} \begin{pmatrix} 0 \\ 1 \end{pmatrix} h(\omega)$$
(3.131)

となる。ここで、第1項は量子雑音、第2項は重力波の信号を表している。さらに真 空場 *a* について考えると懸架鏡による ponderomotive スクイージングの効果で、雑 音楕円が図3.8のように変化することが分かる。

ところで、式 (3.127) を見ると、干渉計の出力を完全にダークにするとローカルオ シレータがなくなり、信号が得られないことが分かる。そこで動作点を僅かにずらす $(2\phi_{-} = \delta \ll 1)$ ことでキャリア光:

$$\boldsymbol{L} = \frac{1}{2}R(\pi)(I - R(\delta))\boldsymbol{A}$$
(3.132)

$$\sim -\frac{\delta}{2} \begin{pmatrix} 0\\A_0 \end{pmatrix} \tag{3.133}$$

 *5 K = 0 でも k は真空場の揺らぎとして AS ポートから入ってくるため、 $k \neq 0$ となることに注意。

^{*6} 反対に同相信号が現れる入力側を Reference Feedback Light (RFL) ポートと呼ぶ。

図3.8 真空場の受ける ponderomotive スクイージングの効果

を得る*⁷。従って、この場合にはホモダイン角が 90° であるため、検出される光の揺 らぎは、

$$\delta P_L = \hbar \Omega_0 L_2 l_2 \tag{3.134}$$

$$=e^{2i\alpha}\left(-\frac{\kappa_A}{2}k_1+k_2\right)+\zeta_A e^{i\alpha}h(\omega) \tag{3.135}$$

となり、このときの信号雑音比は、

$$SNR = \frac{\zeta_A h(\omega)}{e^{i\alpha} \left(-\frac{\kappa_A}{2}k_1 + k_2\right)}$$
(3.136)

となる。さらに、重力波検出器の感度はこれが1となるときの信号:

$$h_{\rm MI}(\omega) = \frac{e^{i\alpha} \left(-\frac{\kappa_A}{2}k_1 + k_2\right)}{\zeta_A} \tag{3.137}$$

^{*&}lt;sup>7</sup> このキャリア光は DC オフセットと呼ばれる。

で定義されるため、それぞれの真空場を演算子に置き換えることで、感度を表す演 算子:

$$\hat{h}_{\mathrm{MI}}(\omega) = \frac{e^{i\alpha} \left(-\frac{\kappa_A}{2}\hat{k}_1 + \hat{k}_2\right)}{\zeta_A} \tag{3.138}$$

を得る。また、この演算子と式 (2.24) から、感度のパワースペクトル密度 $S^2(f)$ は、

$$\frac{1}{2}\langle 0|(\hat{h}(\omega)h^{\dagger}(\omega') + h^{\dagger}(\omega')\hat{h}(\omega))|0\rangle = \frac{1}{2}2\pi\delta(\omega - \omega')S^{2}(f) \qquad (3.139)$$

と表すことができるので、感度の演算子 $\hat{h}(\omega)$ が $c_1\hat{a} + c_2\hat{a}_2$ と表せる場合には、 quadrature の演算子の交換関係を用いることで、パワースペクトル密度は次のように なる:

$$S^{2}(f) = |c_{1}|^{2} + |c_{2}|^{2}$$
(3.140)

従って、マイケルソン干渉計の感度は、

$$S_{\rm MI} = \sqrt{\frac{1}{\zeta_A^2} \left(\frac{\kappa_A^2}{4} + 1\right)} \tag{3.141}$$

だと分かる。また、これより、マイケルソン干渉計の感度は以下の下限を持つことが 分かる:

$$S_{\rm MI} \ge \sqrt{\frac{\kappa_A}{\zeta_A^2}} \tag{3.142}$$

$$=\sqrt{\frac{4\hbar}{mL^2\omega^2}} := h_{\rm SQL} \tag{3.143}$$

これこそが標準量子限界であり、古典的な重力波検出器の感度の限界値となる。これ を用いてマイケルソン干渉計の感度を表すと、

$$S_{\rm MI} = \sqrt{\frac{h_{\rm SQL}^2}{2} \left(\frac{\kappa_A}{2} + \frac{2}{\kappa_A}\right)} \tag{3.144}$$

となる。これパワーごとにプロットしたグラフを図3.9に表す。これより、入射レーザ ーのパワーを上げれば上げるほど高周波の感度がよくなることが分かる。ところが、現 在の技術では安定的に運用できるのは 100 W 程度が限界であり、マイケルソン干渉計 では重力波の検出を実現する感度に到達することはできない。従って、実際の重力波 検出器ではマイケルソン干渉計にいくつかの光共振器などを組み合わせることで感度 の向上を図っている。

図3.9 マイケルソン干渉計の感度

3.5.2 ファブリペロ共振器

光共振器とは、光が同じ行路を何度も往復するように鏡を設置した多重干渉計であ る。本節では最も簡単な光共振器のファブリペロ共振器について考える。

図3.10 ファブリペロ共振器における電場の入出力関係

ファブリペロ (Fabry-Pérot : FP) 共振器とは図3.10のように 2 つの鏡を向かい合わせで配置した共振器である。このとき、2 つの鏡の間の距離を *L*_c とすると、電場の入出力関係は、

$$\boldsymbol{B} = -r_{\mathrm{F}}\boldsymbol{A} + t_{\mathrm{F}}\boldsymbol{D}, \quad \boldsymbol{C} = t_{\mathrm{F}}\boldsymbol{A} + r_{\mathrm{F}}\boldsymbol{D},$$
$$\boldsymbol{D} = R(\phi_{\mathrm{c}})\boldsymbol{F}, \quad \boldsymbol{E} = R(\phi_{\mathrm{c}})\boldsymbol{C}, \quad \boldsymbol{F} = r_{\mathrm{E}}\boldsymbol{E}, \quad \boldsymbol{G} = t_{\mathrm{E}}\boldsymbol{E}$$
(3.145)

となる^{*8} ここで、 ϕ_c は半往復で発生する位相変化 $L\Omega_0/c$ である。これを入射光を $oldsymbol{A} = \begin{pmatrix} A_0 \\ 0 \end{pmatrix}$ として、反射光 $oldsymbol{B}$ 、透過光 $oldsymbol{G}$ について解くと、

$$\boldsymbol{B} = -r_{\rm F} \begin{pmatrix} A_0 \\ 0 \end{pmatrix} + \frac{t_{\rm F}^2 r_{\rm E} A_0}{1 + r_{\rm F}^2 r_{\rm E}^2 - 2r_{\rm F} r_{\rm E} \cos 2\phi_{\rm c}} \begin{pmatrix} \cos 2\phi_{\rm c} - r_{\rm F} r_{\rm E} \\ \sin 2\phi_{\rm c} \end{pmatrix}$$
(3.146)

$$\boldsymbol{G} = \frac{t_{\rm F} t_{\rm E} A_0}{1 + r_{\rm F}^2 r_{\rm E}^2 - 2r_{\rm F} r_{\rm E} \cos 2\phi_{\rm c}} \begin{pmatrix} (1 - r_{\rm F} r_{\rm E}) \cos 2\phi_{\rm c} \\ (1 + r_{\rm F} r_{\rm E}) \sin 2\phi_{\rm c} \end{pmatrix}$$
(3.147)

(3.148)

従って、反射光、透過光および共振器内それぞれのパワーは、

$$P_B = \frac{r_{\rm F}^2 + r_{\rm E}^2 - 2r_{\rm F}r_{\rm E}\cos 2\phi_{\rm c}}{1 + r_{\rm F}^2 r_{\rm E}^2 - 2r_{\rm F}r_{\rm E}\cos 2\phi_{\rm c}}P_A \tag{3.149}$$

$$P_G = \frac{t_{\rm F}^2 t_{\rm E}^2}{1 + r_{\rm F}^2 r_{\rm E}^2 - 2r_{\rm F} r_{\rm E} \cos 2\phi_{\rm c}} P_A \tag{3.150}$$

$$P_E = \frac{1}{t_E^2} P_G = \frac{t_F^2}{1 + r_F^2 r_E^2 - 2r_F r_E \cos 2\phi_c} P_A$$
(3.151)

となる。また、ここから共振器の反射光と透過光がエネルギー保存 $P_A = P_B + P_G$ を満足することが分かる。これを ϕ_c の関数として図3.11にプロットした。2つの鏡の反射率が十分に大きいとき、共振点の付近では、

$$P_E \sim \frac{T_{\rm F}}{\frac{1}{4}(T_{\rm F} + T_{\rm E})^2 + 4\phi^2} P_A$$
 (3.152)

$$T_{\rm F,E} = t_{\rm F,E}^2$$
 (3.153)

となり、 P_B 、 P_G 、 P_E はローレンチアンで近似できることが分かる。

光共振器では $2\phi = 2n\pi$ のときに共振器内に閉じ込められる光が最も多くなり、この状態を共振状態と呼ぶ。また、共振状態になる共振器長の間隔をフリースペクトラ ルレンジ (FSR) と呼び、次のように定義される:

$$L_{\rm FSR} = \frac{\lambda_0}{2} \tag{3.154}$$

また、これは光の周波数の間隔としても書きなおすことができて、その場合は、

$$f_{\rm FSR} = \frac{c}{2L_{\rm c}} \tag{3.155}$$

^{*8} 反射率、透過率の添字は共振器の入射側の鏡と透過側の鏡がそれぞれフロント鏡とエンド鏡と呼ばれ ることに由来する。

図3.11 FP 共振器の各所での光強度。 $r_{\rm F} = 0.9$ 、 $r_{\rm E} = 0.99$ 、 $P_A = 1$ W とした。 共振器内強度 P_E については 0.1 倍されていることに注意。

と表される。さらに、共振点付近で ϕ_{c} が十分に近いことを仮定すると、半値全幅 f_{FWHM} を、

$$f_{\rm FWHM} = \frac{1 - r_{\rm F} r_{\rm E}}{\pi \sqrt{r_{\rm F} r_{\rm E}}} f_{\rm FSR}$$
(3.156)

と表すことができる。このとき、 $\phi_c \sim \frac{1-r_F r_E}{2\sqrt{r_F r_E}}$ であるため、この仮定は2つの鏡の反 射率が十分に高い場合に成り立つといえる。FSR と FWHM の比は共振器のフィネス と呼ばれる:

$$\mathcal{F} = \frac{\pi\sqrt{r_{\rm F}r_{\rm E}}}{1 - r_{\rm F}r_{\rm E}} \sim \frac{2\pi}{T_{\rm F} + T_{\rm E}} \tag{3.157}$$

これを用いると、 $T_{\rm F} \gg T_{\rm E}$ 、 $T_{\rm F} = T_{\rm E}$ 、 $T_{\rm F} \ll T_{\rm E}$ の場合に分けて共振器内パワーを表すことができる:

$$P_E = \begin{cases} \frac{2\mathcal{F}}{\pi} P_A \ (T_{\rm F} \gg T_{\rm E}) \\\\ \frac{\mathcal{F}}{\pi} P_A \ (T_{\rm F} \sim T_{\rm E}) \\\\ 0 \ (T_{\rm F} \ll T_{\rm E}) \end{cases}$$
(3.158)

それぞれの場合を上から順にオーバーカップリング、クリティカルカップリング、アン ダーカップリングと呼び、それぞれで蓄えられる光量が異なる。光を蓄えることのでき ないアンダーカップリングを除いて、フィネスは光子の平均往復回数 $\frac{2F}{\pi}$ $(T_{\rm F} \gg T_{\rm E})、 \frac{F}{\pi}$ $(T_{\rm F} \sim T_{\rm E})$ を表している。

次に、電場の揺らぎについて考える。干渉計の腕に入れることを考慮して、図3.12の ような完全にオーバーカップリングで、後方の鏡が懸架鏡になっている場合を考える

図3.12 FP 共振器における電場のゆらぎの入出力関係

と、入出力関係は以下のようになる:

$$\boldsymbol{b} = -r\boldsymbol{a} + t\boldsymbol{d}, \quad \boldsymbol{c} = t\boldsymbol{a} + r\boldsymbol{d},$$
$$\boldsymbol{d} = e^{i\alpha_{\rm c}}R(\phi_{\rm c})\boldsymbol{f}, \quad \boldsymbol{e} = e^{i\alpha_{\rm c}}R(\phi_{\rm c})\boldsymbol{c}, \quad \boldsymbol{f} = P(\kappa_E, \xi_E)\boldsymbol{e} + \zeta_E \boldsymbol{n}_{E_{\perp}}h(\omega) \quad (3.159)$$

これらを共振状態 $(\phi_{c} = 0)$ の場合について解くと、

$$\boldsymbol{b} = \begin{bmatrix} -r + \frac{t^2 e^{2i\alpha_{\rm c}}}{(1 - re^{2i\alpha_{\rm c}})^2} \begin{pmatrix} 1 - re^{2i\alpha_{\rm c}} & 0\\ -\kappa_E & 1 - re^{2i\alpha_{\rm c}} \end{pmatrix} \end{bmatrix} \boldsymbol{a} + \frac{te^{i\alpha_{\rm c}}}{1 - re^{2i\alpha_{\rm c}}} \frac{\sqrt{\kappa_E}}{h_{\rm SQL}} \begin{pmatrix} 0\\ 1 \end{pmatrix} h(\omega)$$
(3.160)

となる。さらに、 $T = t^2 \ll 1$ 、 $\alpha_c \ll 1$ として近似すると、

$$\boldsymbol{b} = \frac{T + 4i\alpha_{\rm c}}{T - 4i\alpha_{\rm c}} \begin{pmatrix} 1 & 0\\ -T\frac{\kappa_E}{\frac{T^2}{4} + 4\alpha_{\rm c}^2} & 1 \end{pmatrix} + \left(\frac{T + 4i\alpha_{\rm c}}{T - 4i\alpha_{\rm c}}\right)^{\frac{1}{2}} \frac{\sqrt{T\frac{\kappa_E}{\frac{T^2}{4} + 4\alpha_{\rm c}^2}}}{h_{\rm SQL}} \begin{pmatrix} 0\\ 1 \end{pmatrix} h(\omega)$$
(3.161)

となり、さらに、

$$\mathfrak{K}_A = T \frac{\kappa_E}{\frac{T^2}{4} + 4\alpha_c^2} = \frac{T}{\frac{T^2}{4} + 4\alpha_c^2} \frac{2\mathcal{F}}{\pi} \kappa_A \tag{3.162}$$

$$\mathfrak{a} = \arctan\left(4\alpha_{\rm C}/T\right) \tag{3.163}$$

と置くことで、

$$\boldsymbol{b} = e^{2i\mathfrak{a}} \begin{pmatrix} 1 & 0 \\ -\mathfrak{K}_A & 1 \end{pmatrix} \boldsymbol{a} + e^{i\mathfrak{a}} \frac{\sqrt{\mathfrak{K}_A}}{h_{\rm SQL}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} h(\omega)$$
(3.164)

と表せる。ここで第2項に注目すると、

$$e^{i\mathfrak{a}}\frac{\sqrt{\mathfrak{K}_A}}{h_{\mathrm{SQL}}} \begin{pmatrix} 0\\ 1 \end{pmatrix} h(\omega) \bigg| \propto \sqrt{\frac{1}{1 + \left(\frac{\omega}{Tc/4L_c}\right)^2}}$$
 (3.165)

となり、重力波の信号に対してローパスフィルタのように振る舞うことが分かる。このときのカットオフ周波数に対応する定数をキャビティポール ω_c と呼ぶ:

$$\omega_{\rm c} = \frac{Tc}{4L_{\rm c}} \tag{3.166}$$

この周波数よりも十分に低い領域 ($\omega \ll \omega_c$) ではファブリペロ共振器による位相遅れ \mathfrak{a} は

$$\mathfrak{a} \sim \frac{2\mathcal{F}}{\pi} \alpha_{\rm c} \tag{3.167}$$

となり、位相遅れが 2*F*/π 倍になる。これはファブリペロ共振器により、実効的な光 路長が 2*F*/π 倍されることを意味する。そのため、マイケルソン干渉計の腕にファブ リペロ共振器を組み込むことで感度の向上を図ることができる。

3.5.3 ファブリペロ・マイケルソン干渉計

図3.13 FPMI での入出力関係

本節では図3.13のようにマイケルソン干渉計の腕がファブリペロ共振器が組み込ま れたファブリペロ・マイケルソン干渉計を考える。ここで干渉計がダークフリンジに 動作しており、それぞれの腕共振器が共振しているときには、電場の揺らぎの入出力 関係は式 (3.164) を用いることで以下の様になる:

$$\boldsymbol{c} = \frac{\boldsymbol{a} - \boldsymbol{g}}{\sqrt{2}}, \quad \boldsymbol{e} = \frac{\boldsymbol{a} + \boldsymbol{g}}{\sqrt{2}}, \quad \boldsymbol{b} = \frac{\boldsymbol{d} + \boldsymbol{f}}{\sqrt{2}}, \quad \boldsymbol{h} = \frac{-\boldsymbol{d} + \boldsymbol{f}}{\sqrt{2}},$$
$$\boldsymbol{d} = e^{2i\mathfrak{a}} \begin{pmatrix} 1 & 0\\ -\mathfrak{K}_E & 1 \end{pmatrix} \boldsymbol{c} + e^{i\mathfrak{a}} \frac{\sqrt{\mathfrak{K}_E}}{h_{\mathrm{SQL}}} \begin{pmatrix} 0\\ 1 \end{pmatrix} h(\omega), \quad (3.168)$$
$$\boldsymbol{f} = e^{2i\mathfrak{a}} \begin{pmatrix} 1 & 0\\ -\mathfrak{K}_C & 1 \end{pmatrix} \boldsymbol{c} - e^{i\mathfrak{a}} \frac{\sqrt{\mathfrak{K}_C}}{h_{\mathrm{SQL}}} \begin{pmatrix} 0\\ 1 \end{pmatrix} h(\omega)$$

ビームスプリッタから腕共振器のフロント鏡までの距離は共振器長さに比べ十分小さいため、ここではこの間の距離をは無視した。これらを $\mathfrak{K}_E = \mathfrak{K}_C = \mathfrak{K}_A/2$ であることに注意して解くことで出力される電場の揺らぎが得られる:

$$\boldsymbol{h} = e^{2i\mathfrak{a}} \begin{pmatrix} 1 & 0 \\ -\mathfrak{K}_A/2 & 1 \end{pmatrix} \boldsymbol{g} - e^{i\mathfrak{a}} \frac{\sqrt{\mathfrak{K}_A}}{h_{\rm SQL}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} h(\omega)$$
(3.169)

従って、FP マイケルソン干渉計の感度は、

$$S_{\rm FPMI} = \sqrt{\frac{h_{\rm SQL}^2}{2} \left(\frac{\mathfrak{K}_A}{2} + \frac{2}{\mathfrak{K}_A}\right)} \tag{3.170}$$

となる。さらに、これをプロットすることで FPMI の感度曲線を得ることができる (図3.14)。腕共振器のフィネスを上げると実行的な光路長が伸びることでもたらされ る信号増幅効果により、低周波帯では光量を上げるのと同等の効果が起きている。一 方、高周波帯では周波数が上がるにつれて感度が悪くなっていることが分かる。これ は腕共振器のもつローパス特性により、キャビティポールよりも周波数の高い信号が 減衰されてしまうからである。

3.5.4 信号リサイクリング・マイケルソン干渉計

本節では信号リサイクリング (SR) マイケルソン干渉計と呼ばれる、マイケルソン 干渉計の出力ポートに鏡 (信号リサイクリング鏡) を設置した構成の干渉計*⁹ (図3.15) についての量子雑音を導出する。

初めに、それぞれの電場の揺らぎの入出力関係を書き下す:

$$\boldsymbol{c} = t_{\mathrm{S}}\boldsymbol{e} + r_{\mathrm{S}}\boldsymbol{d}, \quad \boldsymbol{f} = -r_{\mathrm{S}}\boldsymbol{e} + t_{\mathrm{S}}\boldsymbol{d}$$
$$\boldsymbol{d} = e^{i\alpha_{\mathrm{S}}}R(\phi_{\mathrm{S}})\boldsymbol{l}, \quad \boldsymbol{k} = e^{i\alpha_{\mathrm{S}}}R(\phi_{\mathrm{S}})\boldsymbol{c}$$
(3.171)

ここで $\alpha_{\rm S}$ 、 $\phi_{\rm S}$ は、ビームスプリッタから SR 鏡までの距離 $L_{\rm S}$ (特に断りのない場合 は $L_{\rm S} = 1$ m とする)を用いて、それぞれ $L_{\rm S}\omega/c$ 、 $L_{\rm S}\Omega_0/c$ である。また、a、k、l に

^{*&}lt;sup>9</sup> マイケルソン干渉計を透過率 ¹/₂(1 – cos 2φ₋) の鏡だと考えると、この光学構成は一つの共振器になっているため、信号リサイクリング共振器とも呼ばれる。

図3.14 FPMIの感度。 $P_A = 10000 \text{ W}$ とした。

図3.15 SRMI における電場の揺らぎのの入出力関係

ついての関係はマイケルソン干渉計と同じであるため、改めて書き下すと、ダークフ リンジのとき、

$$\boldsymbol{l} = e^{2i\alpha} P(\kappa_A/2, 0) \boldsymbol{k} + e^{i\alpha} \frac{\sqrt{\kappa_A}}{h_{\text{SQL}}} \begin{pmatrix} 0\\1 \end{pmatrix} h(\omega)$$
(3.172)

であった。これらを用いて **f** について解くと SRMI から出力される電場の揺らぎが求まる:

$$\boldsymbol{f} = \left(-r_{\rm S} + t_{\rm S}^2 e^{2i\beta} [1 - r_{\rm S} e^{2i\beta} R_{\rm S} P R_{\rm S}]^{-1} R_{\rm S} P R_{\rm S}\right) \boldsymbol{e} + t_{\rm S} e^{i\beta} \frac{\sqrt{\kappa_A}}{h_{\rm SQL}} [1 - r_{\rm S} e^{2i\beta} R_{\rm S} P R_{\rm S}]^{-1} R_{\rm S} \begin{pmatrix} 0 \\ 1 \end{pmatrix} h(\omega)$$
(3.173)

簡単のため $\alpha + \alpha_{\rm S}$ 、 $R(\phi_{\rm S})$ 、 $P(\kappa_A/2, 0)$ はそれぞれ、 β 、 $R_{\rm S}$ 、P と置き換えた。さら に、このときの感度を SR 共振器が共振している状態 ($\phi_S \equiv 0 \mod 2\pi$) についてプロ ットすると図3.16のようになり、SR 共振器のフィネスを上げることで、高周波での感 度が少し改善されていることが分かる (黄、緑、橙色のプロット)。ところが、SR 共振 器のフィネスを上げすぎると高周波の信号に対する位相遅れが大きくなるため、感度 の改善には限度がある (紫、茶色のプロット)。

図3.16 SRMIの感度。 $P_A = 10000 \text{ W}$ とした。

3.5.5 デュアルリサイクリング・マイケルソン干渉計

図3.17 DRMI における電場の入出力関係

つぎに信号リサイクリング干渉計の入射ポートにパワーリサイクリング (PR) 鏡 を追加したデュアルリサイクリング (DR) マイケルソン干渉計 (図3.17) について考 える。

DRMI においてマイケルソン干渉計がダークフリンジに制御されている場合には、 全ての信号が AS ポートに現れ、全てのキャリアが RFL ポートに現れるため、PR 共 振器と SR 共振器はそれぞれ独立した共振器として考えることができる。すると、PR 共振器が共振しているときの電場の入出力関係は、

$$\boldsymbol{B} = -r_{\mathrm{P}}\boldsymbol{A} + t_{\mathrm{P}}\boldsymbol{H}, \quad \boldsymbol{G} = t_{\mathrm{P}}\boldsymbol{A} + r_{\mathrm{P}}\boldsymbol{H}, \quad \boldsymbol{G} = \boldsymbol{H}$$
(3.174)

となるため、Aについて解くと、

$$\boldsymbol{G} = \frac{t_{\rm P}}{1 - r_{\rm P}} \boldsymbol{A} \tag{3.175}$$

となり、PR 鏡の反射率が十分に高い場合には、実効的な入射光強度が、

$$P_{\rm G} \sim \frac{4}{T_{\rm P}} P_{\rm A} = \frac{2\mathcal{F}_{\rm P}}{\pi} P_A \tag{3.176}$$

となり、PR 共振器は SRMI の入射光を PR 共振器のフィネス \mathcal{F}_{P} に比例した強度に 変更する効果があることが分かる。

ここでさらに SR 共振器も共振している $\phi_S \equiv 0 \pmod{2\pi}$ ときを考えると l は、共振器長が $L + L_S$ のファブリペロ共振器と同様に考えることができ、

$$\boldsymbol{l} = e^{2i\boldsymbol{\mathfrak{a}}_{\mathrm{DR}}} \begin{pmatrix} 1 & 0\\ -\boldsymbol{\mathfrak{K}}_{\mathrm{DR}} & 1 \end{pmatrix} \boldsymbol{a} + e^{i\boldsymbol{\mathfrak{a}}_{\mathrm{DR}}} \frac{\sqrt{\boldsymbol{\mathfrak{K}}_{\mathrm{DR}}}}{h_{\mathrm{SQL}}} \begin{pmatrix} 0\\ 1 \end{pmatrix} h(\omega)$$
(3.177)

となる。 $\mathfrak{a}_{\mathrm{DR}}$ 、 $\mathfrak{K}_{\mathrm{DR}}$ はそれぞれ $\arctan\left(4\beta/T_{\mathrm{S}}\right)$ 、 $T_{\mathrm{S}}\frac{\kappa_{G}/2}{\frac{T_{\mathrm{S}}^{2}}{4}+4\beta^{2}}\sim\frac{2\mathcal{F}_{\mathrm{S}}}{\pi}\frac{2\mathcal{F}_{\mathrm{P}}}{\pi}\frac{\kappa_{A}}{2}$ である。従って、PR 共振器がレーザーパワーをおよそ $\frac{2\mathcal{F}_{\mathrm{P}}}{\pi}$ 倍するのに対して、PR 共振器は重力波の信号をおよそ $\frac{2\mathcal{F}_{\mathrm{S}}}{\pi}$ 倍するということが分かる。実際の重力波検出器ではドイツの GEO600 がこれと同様の光学構成になっている [8]。

3.5.6 デュアルリサイクリング・ファブリペロ・マイケルソン干渉計

次にこれまでの内部共振器を全て組み込んだ、デュアルリサイクリング・ファブリ ペロ (DRFP) マイケルソンについて考える。光学構成は図3.18の通りで、名前の通 り DR マイケルソン干渉計と FP マイケルソン干渉計が組み合わさった構成になって いる。

干渉計がダークフリンジで動作しており、PR 共振器が共振しているときの DRFP

図3.18 DRFPMI での入出力関係

干渉計における入出力関係は以下の様に書き下せる:

$$\boldsymbol{c} = t_{\mathrm{S}}\boldsymbol{e} + r_{\mathrm{S}}\boldsymbol{d}, \quad \boldsymbol{f} = -r_{\mathrm{S}}\boldsymbol{e} + t_{\mathrm{S}}\boldsymbol{d},$$
$$\boldsymbol{d} = e^{i\alpha_{\mathrm{S}}}R(\phi_{\mathrm{S}})\boldsymbol{l}, \quad \boldsymbol{k} = e^{i\alpha_{\mathrm{S}}}R(\phi_{\mathrm{S}})\boldsymbol{c}, \quad (3.178)$$

$$\boldsymbol{l} = e^{2i\mathfrak{a}} P(\mathfrak{K}_A/2, 0) \boldsymbol{k} - e^{i\mathfrak{a}} \frac{\sqrt{\mathfrak{K}_A}}{h_{\rm SQL}} \begin{pmatrix} 0\\1 \end{pmatrix} h(\omega)$$
(3.179)

これは DR 干渉計の入出力関係で腕で発生する移送遅延 α を α に書き換え、さらにさ らにオプトメカニカル結合定数 κ_A を 𝔅_A へと書き換えたものと等しいため、干渉計 から出力される電場の揺らぎは、

$$\boldsymbol{f} = \left(-r_{\rm S} + t_{\rm S}^2 e^{2i\mathfrak{B}} [1 - r_{\rm S} e^{2i\mathfrak{B}} R_{\rm S} P(\mathfrak{K}_G/2, 0) R_{\rm S}]^{-1} R_{\rm S} P R_{\rm S}\right) \boldsymbol{g} + t_{\rm S} e^{i\mathfrak{B}} \frac{\sqrt{\mathfrak{K}_G}}{h_{\rm SQL}} [1 - r_{\rm S} e^{2i\mathfrak{B}} R_{\rm S} P R_{\rm S}]^{-1} R_{\rm S} \begin{pmatrix} 0\\1 \end{pmatrix} h(\omega)$$
(3.180)

となる。ここで、第 = a + α_S 、 $\mathfrak{K}_G = \frac{2\mathcal{F}_P}{\pi} \mathfrak{K}_A$ である。これを SR 共振器が共振状態で ある場合についてプロットすると図3.19のようになる。ここで、凡例の 3 番目の条件 のグラフに注目すると、PR 共振器のフィネスを上げることで実行的なレーザーパワ ーが上がり、感度の良い帯域が高周波へシフトしていることが分かる。一方、4 番目、 5 番目のグラフを見ると、SR 共振器のフィネスが高くなることで帯域を狭めながら低 周波へとシフトしていることが分かる。これは SR 共振器が量子雑音を増幅させなが ら腕共振器のキャビティポールを下げていると言える。このように共振状態の SR 共 振器は腕共振器を持つ干渉計の感度を感度を上げないため、一般に重力波検出器では 用いられない。

実際の重力波検出器では SR 共振器は反共振 ($\phi_{\rm S} = \pi/2$) 状態で用いられる。この 光学構成はサイドバンドが SR 共振器で共振するようになるためレゾナント・サイド

図3.19 DRFPMIの感度。T = 0.01、 $P_A = 100$ とした。

バンド・エクストラクション (RSE) 干渉計 [11] と呼ばれる^{*10}。この場合の感度は共 振状態の DRFPMI 感度の式で SR 鏡の反射率 r_S を –1 倍することで得ることがで き、それをプロットすると図3.20の橙色のプロットのようになる。腕共振器だけの構 成の感度である黄色のプロットと比較すると、BSR 干渉計はキャビティポールを下げ ることなく感度の良い帯域を広げていることが分かる。広い帯域で高い感度を持つた め、腕共振器を持つ LIGO、Virgo、KAGRA では BSR が用いられている。

3.6 量子限界を超える技術

ここまでに紹介した技術はある帯域での量子雑音を低減することが可能であるが、 どれも標準量子限界を超えない程度の技術であった。本節では標準量子限界を打ち破 ることのできる技術の数々を紹介する。

3.6.1 ホモダイン検出

これまでの感度の計算ではホモダイン角が 90° の場合のみを考えてきた。本節では 出力電場にローカルオシレータを加えることで任意のホモダイン角で検出することの できる、ホモダイン検出 (図3.21) について述べる。

^{*10} SR 共振器を共振状態で用いる場合はブロードバンド信号リサイクリング (BSR) と呼ばれる。

図3.20 RSE 干渉計の感度。T = 0.01、 $P_A = 100$ である。

図3.21 ホモダイン検出。それぞれの光検出器ではローカルオシレータ *B* と出力真 空場 *b* とのビート信号が検出され、それぞれの差分を取ることであらゆる検出角で の測定ができる。

出力電場の揺らぎ b が次のように表せる場合を考える:

$$\boldsymbol{b} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \boldsymbol{a} + \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} h(\omega)$$
(3.181)

このとき、出力電場を $oldsymbol{B}=egin{pmatrix} B_1\ B_2 \end{pmatrix}$ とすると、その強度揺らぎは、

$$\delta P_B = \hbar \Omega_0 (b_1 B_1 + b_2 B_2)$$

$$= \hbar \Omega_0 [(A_{11} B_1 + A_{21} B_2) a_1 + (A_{21} B_1 + A_{22} B_2) a_2 + H_1 B_1 + H_2 B_2]$$
(3.182)
(3.183)

となるため、感度はホモダイン角 $\xi_B = \arctan B_2/B_1$ を用いて、

$$S_{\text{homo}}^2 = \frac{|A_{11}\cos\xi_B + A_{21}\sin\xi_B|^2 + |A_{12}\cos\xi_B + A_{22}\sin\xi_B|^2}{|H_1\cos\xi_B + H_2\sin\xi_B|^2} \quad (3.184)$$

となり、例えばマイケルソン干渉計の場合には、

$$S_{\rm MI,\,homo}^2 = \frac{h_{\rm SQL}^2(\omega)}{\kappa_A} \left[\left(\cot \xi_B - \frac{\kappa_A}{2} \right)^2 + 1 \right]$$
(3.185)

となる。ある周波数では $\left(\cot \xi_B - \frac{\kappa_A}{2}\right)^2 = 0$ とすることができて、輻射圧雑音を完全 に打ち消すことが可能である。これをプロットすると図3.22のようになり、ある周波 数では標準量子限界を破ることが分かる。このように quadrature 間に相関を持たせる ことで輻射圧雑音をキャンセルする手法を Back Action Evasion (BAE) と呼ぶ。ホ モダイン検出による量子雑音低減効果を雑音楕円 (図3.23)を用いて説明すると、フェ ーザ図上で位相方向に伸びる重力波の信号がホモダイン角の方向へ伸びるの軸への正 射影として検出されることで、ある周波数では信号雑音比が上がり感度が良くなると 言える^{*11}。

それぞれの周波数で量子雑音が最小になるよう周波数毎に検出角を回す手法はバリ エーショナルリードアウトと呼ばれるが、この手法は実現が困難であるため、通常は それぞれの検出器において重力波が最も多く取れるような角度で読み取りを行う。

3.6.2 外部スクイージング

先の節までは出力ポートから入射する真空場の振幅方向と位相方向の揺らぎがそれ ぞれ等しい (コヒーレントな) 場合について考えてきた。本節では、図3.24のように出 カポートから入射する真空場に対して OPA を行うことで、干渉計にスクイーズされ た真空場 (図3.25) が注入される場合を考える。このとき、電場の揺らぎの入出力関係 は以下のようになる:

$$\boldsymbol{c} = S(\boldsymbol{u}, \boldsymbol{\theta})\boldsymbol{a}, \quad \boldsymbol{b} = \boldsymbol{d} \tag{3.186}$$

^{*&}lt;sup>11</sup> ホモダイン角が浅くなるほど感度の良い周波数が低周波になるが、それに伴って信号自体が弱くなる ため、ショットノイズの影響が大きくなり、高周波の感度を犠牲にする事になる

図3.22 MI でホモダイン検出を行った場合の感度。 $P_A = 10000$ W とした。

図3.23 フェーザ図上でのホモダイン検出。赤色の矢印が重力波信号である。

図3.24 MIの外部スクイージング

図3.25 真空場の OPA によるスクイージングの効果

マイケルソン干渉計の場合には感度が、

$$S_{\rm MI,\,ex\,sqz}^{2} = \frac{h_{\rm SQL}^{2}}{\kappa_{A}} \left[\left(\sinh u \sin 2\theta - \frac{\kappa_{A}}{2} (\cosh u + \sinh u \cos 2\theta) \right)^{2} + \left((\cosh u - \sinh u \cos 2\theta) - \frac{\kappa_{A}}{2} \sinh u \sin 2\theta \right)^{2} \right]$$
(3.187)

となり、スクイージング角によっては SQL を突破することが可能である (図3.26)。 また、入射する真空場 a をフィルタキャビティにより回し、スクイージング角を $\theta = \arctan \kappa_A/2$ とすることで、それぞれの周波数において最適なスクイージングを 実現することができる:

$$S_{\rm MI,\,ext\,sqz}^2 \to \frac{h_{\rm SQL}}{2s^2} \left(\frac{\kappa_A}{2} + \frac{2}{\kappa_A}\right)$$
 (3.188)

これは周波数依存スクイージングと呼ばれ、LIGO や Virgo にも導入されている [10, 12]。

図3.26 MI で外部スクイージングを行った場合の感度。入射光強度 $P_A = 10000$ W, ホモダイン角 $\xi = 90^{\circ}$ とした。

3.6.3 光バネ

ここまでの議論では共振器がすべて共振している場合を考えてきた。本節では共振 器が離調されている (共振器長が共振位置からずれている)状態について考える。

懸架鏡が用いられた光共振器を離調すると、レーザー光の輻射圧と懸架によりもた らされる機械的な復元力との間にオプトメカニカルな相互作用が働き、鏡を束縛する ことが可能になる (図3.27)。このとき、懸架鏡が共振器長が短くなる方向に移動する と、光の輻射圧が強まり機械的な復元力が弱まるため、鏡は元の位置に戻ろうとする。 逆に共振器長が長くなる方向に鏡が動けば復元力が強まり、輻射圧が弱まるため、や はり鏡は元の位置に戻ろうとする。このように、離調された懸架鏡はバネで束縛され たような振る舞いをするため、この現象は光バネと呼ばれる。

図3.27 光バネ

共振器が単純なファブリペロ共振器であった場合には、電場の揺らぎの入出力関係 は式 (3.159) となるため、これを $\phi_c \neq 0$ の上で解くと、

$$\boldsymbol{b} = (-r + t^2 e^{2i\alpha_{\rm c}} [1 - r e^{2i\alpha_{\rm c}} R(2\phi_{\rm c}) P(\kappa_E, 0)]^{-1} R(2\phi_{\rm c}) P(\kappa_E, 0)) \boldsymbol{a} + t\gamma_E e^{i\alpha_{\rm c}} [1 - r e^{2i\alpha_{\rm c}} R(2\phi_{\rm c}) P(\kappa_E, 0)]^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} h(\omega)$$
(3.189)

となり、離調が正 $(0 \le \phi_c \le \pi/2)$ のときには、ある周波数で **b** の分母を 0 とするこ とができるようになり、信号を大きく増幅することができる。これは光バネの共振に よる効果であると考えることができる。

重力波検出器では、腕共振器や PR 共振器を離調すると共振器内の光量が低下し、感 度が大きく下がってしまう。そのため、重力波検出器内で離調を行う場合には SR 共 振器に対して行うことが一般的である [4]。3.5.4で導いた SR 干渉計の入出力関係は、

$$\boldsymbol{l} = \left(-r_{\rm S} + t_{\rm S}^2 e^{2i\beta} [1 - r_{\rm S} e^{2i\beta} R_{\rm S} P R_{\rm S}]^{-1} R_{\rm s} P R_{\rm S}\right) \boldsymbol{e} + t_{\rm S} e^{i\beta} \frac{\sqrt{\kappa_A}}{h_{\rm SQL}} [1 - r_{\rm S} e^{2i\beta} R_{\rm S} P R_{\rm S}]^{-1} R_{\rm S} \begin{pmatrix} 0 \\ 1 \end{pmatrix} h(\omega)$$
(3.190)

$$=\frac{1}{M}\left(e^{2i\beta}E\boldsymbol{e}+t_{\rm s}e^{i\beta}\frac{\sqrt{\kappa_A}}{h_{\rm SQL}}Hh(\omega)\right)$$
(3.191)

であった。ここで、新たに置いた文字 M、E、H はそれぞれ、

$$M = 2 + 2e^{4i\beta}r_{\rm s}^2 - e^{2i\beta}r_{\rm S}(4\cos 2\phi_{\rm S} + \kappa_A \sin 2\phi_{\rm S})$$
(3.192)

$$E = \begin{pmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{pmatrix}$$
(3.193)

$$E_{11} = E_{22} = -4r_{\rm S}\cos 2\beta + (1+r_{\rm S}^2)\left(\cos 2\phi_{\rm S} + \frac{\kappa_A}{2}\sin 2\phi_{\rm S}\right) \qquad (3.194)$$

$$E_{12} = -t_{\rm S}^2 (2\sin 2\phi_{\rm S} + \kappa_A \sin^2 \phi_{\rm S}) \tag{3.195}$$

$$E_{21} = t_{\rm S}^2 (2\sin 2\phi_{\rm S} - \kappa_A \cos^2 \phi_{\rm S}) \tag{3.196}$$

$$H = \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} \tag{3.197}$$

$$H_1 = -2(1 + e^{2i\beta}r_{\rm S})\sin\phi_{\rm S} \tag{3.198}$$

$$H_2 = 2(1 - e^{2i\beta}r_{\rm S})\cos\phi_{\rm S} \tag{3.199}$$

である。このときの光バネの周波数は上の式 (3.191)の M を 0 にする周波数である:

$$f_{\rm OS} = \frac{1}{2\pi} \sqrt{\frac{4P_A \Omega_0}{mc^2} \frac{\sin 2\phi_{\rm S}}{r_{\rm S} + 1/r_{\rm S} - 2\cos 2\phi_{\rm S}}}$$
(3.200)

また、干渉計から出力される真空場 l を、ホモダイン角 & で検出した場合の感度は、

$$S_{\rm SR,\,detune}^2 = \frac{h_{\rm SQL}^2}{\kappa_A} \frac{|E_{11}\cos\xi + E_{21}\sin\xi|^2 + |E_{12}\cos\xi + E_{22}\sin\xi|^2}{T_{\rm S}|H_1\cos\xi + H_2\sin\xi|^2} \tag{3.201}$$

となる。これをホモダイン角 $\xi = 90^\circ$ で検出した場合の感度を図3.28に示す。これを見ると、光バネが形成されている状態では感度曲線に2つのディップが現れ、低周波側のディップでは狭帯域ながらも SQL を突破することが分かる。この周波数は $r_S \rightarrow 1$ の極限で光バネの周波数 f_{OS} に近づくため、光バネによる信号増幅の効果であると言える。一方、高周波側のディップはサイドバンドの共振周波数と一致しており、これは信号が共振する周波数と理解することができる。

3.6.4 内部スクイージング

こちらの節では、本研究のテーマでもある、内部スクイージングを導入した光学構成について考える。この光学構成は高周波帯に高い感度を持つ重力波検出器の構成として宗宮らにより考案されたものである [16]。

内部スクイージングとは名前の通り、干渉計の内部で OPA によるスクージングを 行う手法であるが、キャリアの強いところで OPA を行うと信号増幅だけでなく、結晶 内での光学ロスによる共振器内光量の減少や OPA 以外の非線形光学効果が起きてし まうため、重力波検出器で内部スクイージングを行う場合には、キャリアがほとんど 存在しない SR 共振器の内部で行う必要がある。

図3.29 SRMIの内部スクイージング

初めに、図3.29のように SR 干渉計の出力ポートで OPA を起こす場合につい て考える。このときの電場の揺らぎの入出力関係は、式 (3.171) の第 3 式を $d = e^{i\alpha_{\rm S}}R(\phi_{\rm S})S(s,\theta)l$ と変更すればよい^{*12}ため、出力される真空場は、

$$\boldsymbol{f} = \left(-r_{\rm S} + t_{\rm S}^2 e^{2i\beta} [1 - r_{\rm S} e^{2i\beta} R_{\rm S} S(s,\theta) P R_{\rm S}]^{-1} R_{\rm S} S(s,\theta) P R_{\rm S}\right) \boldsymbol{e} + t_{\rm S} e^{i\beta} \frac{\sqrt{\kappa_A}}{h_{\rm SQL}} [1 - r_{\rm S} e^{2i\beta} R_{\rm S} S(s,\theta) P R_{\rm s}]^{-1} R_{\rm S} S(s,\theta) \begin{pmatrix} 0 \\ 1 \end{pmatrix} h(\omega) (3.202)$$

*¹² ポンプ光の入射方向を出力光の向きにしているため、式 (3.171) の第 4 式では OPA は起こらない。

となる。ここで離調がある場合の感度を計算すると図3.30のようになり、光バネ由来の ディップが高周波側に移動することが分かる。これは SR 共振器内に漏れた光が OPA により増幅され、光バネがより硬くなっているためである。従来の干渉計構成で高周 波の感度を良くするには入射光強度の強化が必要だが、レーザーパワーの増強やパワ ーリサイクリングの高フィネス化などの単純な入射光の強化は技術的な限界に迫って きている。一方、本技術は OPA により強化された光バネの信号増幅効果によるもので あるため、本光学構成は入射光の強度を変更することなく高周波帯の高感度化を実現 することができる。

図3.30 内部スクイージングを行った SRMI のスクイージングファクタ*s* ごとの感 度。 $P_A = 10000 \text{ W}, \phi_{\text{s}} = 40^{\circ}, \xi = 45^{\circ}, \theta = 0$ とした。

図3.30中の橙色のプロットから分かるように、あるスクイージングファクタでは2 つのディップが重なり、1 つの深いディップにすることが可能になる。この条件はスク イージングファクタと離調を適切にすることで、より高周波な領域に移動させること ができる (図3.31) ため、超新星爆発や合体後の中性子星連星から放たれる重力波を捉 えるための構成として期待できる。

図3.31では非常に狭い帯域でしか標準量子限界を破らないが、非線形結晶中のポン プ光の位相の自由度であるスクイージングアングルθを調節することで、ディップの 深さを犠牲にしながらも帯域幅を広くすることが可能である (図3.32)。

次に、SR 共振器に加えて腕共振器がある場合 (図3.33) について考える。この場合の 出力真空場は DRFP 干渉計の節での議論より、式 (3.202) に $\beta \rightarrow \mathfrak{B}$ および $\kappa_A \rightarrow \mathfrak{K}_A$

図3.31 内部スクイージングを行った SRMI の適切な離調での感度。 $P_A = 10000 \text{ W}, \xi = 45^{\circ}, \theta = 0 \text{ とした}.$

図3.32 内部スクイージングを行った適切な離調の SRMI のスクイージングアング ルごとの感度。 $P_A = 10000 \text{ W}, \xi = 45^\circ$ とした。

の書き換えを施せばよいだけであることが分かるため、

$$\boldsymbol{f} = \left(-r_{\rm S} + t_{\rm S}^2 e^{2i\mathfrak{B}} [1 - r_{\rm S} e^{2i\mathfrak{B}} R_{\rm S} S(s,\theta) P R_{\rm S}]^{-1} R_{\rm S} S(s,\theta) P R_{\rm S}\right) \boldsymbol{e} + t_{\rm S} e^{i\mathfrak{B}} \frac{\sqrt{\mathfrak{K}_A}}{h_{\rm SQL}} [1 - r_{\rm S} e^{2i\mathfrak{B}} R_{\rm S} S(s,\theta) P R_{\rm S}]^{-1} R_{\rm S} S(s,\theta) \begin{pmatrix} 0 \\ 1 \end{pmatrix} h(\omega) (3.203)$$

となる。これを用いて RSE 干渉計で内部スクイージングを行った場合の感度をプロットすると図3.34のようになり、高周波帯の感度が少しだけ良くなることが分かるが、

図3.33 SRFP での内部スクイージング

SRMI で OPA を行う場合ほどの高感度化は期待できない。そのため、内部スクイージ ングによる光バネの強化は DRMI などの腕共振器を持たない光学構成で行う方がより 適していると言える。

図3.34 RSE 干渉計で内部スクイージングを行った場合の感度。 $r_{\rm S} = 0.9$ 、 $P_A = 10000$ W、T = 0.01、 $\xi = 45^{\circ}$ とした。

第4章

光学系の制御

干渉計型重力波検出器をダークフリンジに保つには腕にある鏡の位置をレーザー光 の波長 (~ 1µm) よりもさらに小さいスケールで調整する必要がある。そのため、地 面振動や熱的な外乱により容易にフリンジが変化してしまう。そこで、レーザー干渉 計では検出器で読み取られた信号を制御装置を通して鏡に取り付けられたアクチュ エータに送り、変位を打ち消すように鏡を動かす。これをフィードバック制御と呼ぶ [19](図4.1)。

図4.1 マイケルソン干渉計の制御

4.1 伝達関数

伝達関数とは、システムの入出力関係を表現する周波数応答関数である。伝達関数 が $G(\omega)$ のシステムに $x(\omega)$ の信号が入力されたときに $y(\omega)$ の信号が出力されるとす

ると、その関係は次のようになる:

$$y(\omega) = G(\omega)x(\omega) \tag{4.1}$$

システムの入出力は図4.2のようなブロック図によって簡潔に記述することができる。

図4.2 ブロック図

4.2 フィードバック制御

フィードバック制御とは、ある系において出力信号を読み取り、その値が目標の値 になるようにフィルタによって処理した信号を入力信号へとフィードバックする制御 の体系である。伝達関数 H の系を伝達関数 F のフィルタを用いてフィードバック制 御する場合、そのブロック図は図4.3のようになる。また、直列に結合された伝達関数 は積によって表現できるため、このシステムの伝達関数は次のようになる:

$$y = Hx + FHy \tag{4.2}$$

$$y = \frac{Hx}{1 - FH} \tag{4.3}$$

このとき、右辺の x にかかる $\frac{H}{1-FH}$ (= G_{CL}) 閉ループゲインといい、システム全体の 周波数応答を表す。また FH (= G_{OL}) は開ループゲインといいフィードバック 1 回分 の応答を表す。

図4.3 フィードバック制御のブロック図

開ループゲインが1になると閉ループゲインが発散し、制御が不安定になってしま うため、フィードバック制御ではこれを避ける必要がある。一般的にシステムの周波 数応答関数は複素数で表され、 $|G_{OL}| = 1$ となるときの周波数はユニティゲイン周波 数 ω_{UG} と呼ばれる。ユニティゲイン周波数のときの位相 arg $G(\omega_{UG})$ が π よりどれ だけ大きいかを位相余裕といい、位相が π のときに $|G_{OL}|$ が1よりどれだけ小さいか をゲイン余裕と呼ぶ。
$$H(f) = \frac{100}{(1 + if/100)^3} \tag{4.4}$$

のような複素数の形で表されるため、安定性の議論をするためにはゲイン (20 log₁₀ *H* [dB])と位相 (arg *H* [Hz])の周波数応答を分けて記述するボード線図が便 利である (図4.4)。この例では、ゲイン余裕および位相余裕が負であるため全く安定し ない系であると言える。

図4.4 式(4.4)から得られるボード線図。赤色の線が安定余裕を表す。

4.3 アクチュエータ

アクチュエータとは入力された電気信号を力学的な運動に変換する制御システムの 構成要素であり、本実験ではピエゾ素子を用いる。ピエゾ素子とは変形を受けると圧 電効果が起こり、変位に応じた電流が生じる性質を持つ素子で、その逆の性質である、 逆圧電効果を利用することでアクチュエータとして用いることができる。

鏡にピエゾ素子を貼り付けて制御する場合には、その周波数応答は図4.5のようにな る。ここで、ゲインに注目すると周波数1kHz を超えたあたりにピークがあることが 分かる。このピークは機械的な共振により生じるもので、この周波数を超えると位相 が反転しまう。そのため、フィードバックのゲインを上げるためにピエゾアクチュエ ータへの印加電圧を上げても安定的な制御をすることができない。この問題を回避す るために、一般的にピエゾ素子などのアクチュエータを用いてフィードバック制御を

行う場合には、高周波の信号を遮断するローパスフィルタを介してフィードバックを 行うなどの工夫が必要である。

図4.5 ピエゾアクチュエータの周波数応答の例。[22] より引用。

4.4 ローパスフィルタ

ローパスフィルタはその名の通り低周波の信号を通し、高周波の信号を遮断するフ ィルタである。本節ではオペアンプを用いたアナログローパスフィルタの紹介をする。

ローパスフィルタとして振る舞うアナログ回路には様々なものがあるが、ここでは 例として図4.6のような回路を考える。

次に伝達関数を求める。抵抗 R₁ に流れる電流を I₁ とすると、理想的なオペアンプの入力インピーダンスは無限大であるため、R₂ に流れる電流も I₁ となるため出力電 圧は、

$$V_{\rm out} = (R_1 + R_2)I_1 \tag{4.5}$$

また、理想的なオペアンプの2つの入力は仮想短絡しているためその電位は共に *R*₁*I*₁ となる。そして、入力インピーダンスが0であるので *R*₃ を流れる電流を *I*₃ とすると、

$$R_1 I_1 - V_{\rm in} = R_3 I_3 \tag{4.6}$$

$$R_1 \dot{I}_1 = -\frac{I_3}{C_1} \tag{4.7}$$

図4.6 ローパスフィルタの回路例

が成り立つ。ここで V_{in} は入力電圧である。そして式 (4.5) から式 (4.7) までをまとめ ると次の線形微分方程式が得られる:

$$V_{\rm out} + R_3 C_1 \dot{V}_{\rm out} = \left(1 + \frac{R_2}{R_1}\right) V_{\rm in}$$
 (4.8)

さらに、この式をラプラス変換を用いて解くと、

$$V_{\rm out} = \left(1 + \frac{R_2}{R_1}\right) \frac{V_{\rm in}}{1 + R_3 C_1 s} \tag{4.9}$$

となる。すると、 $s = i\omega$ であるため、伝達関数 $F(\omega)$ は次のように得られる:

$$F_{\rm LP}(\omega) = \left(1 + \frac{R_2}{R_1}\right) \frac{1}{1 + iR_3C_1\omega}$$
(4.10)

このとき、パラメータとなる R_3C_1 はローパスフィルタの遮断周波数 f_c を決める:

$$f_{\rm c} = \frac{1}{2\pi R_3 C_1} \tag{4.11}$$

また、ここで得られた伝達関数をボード線図にプロットすると図4.7となり、遮断周波 数より高い周波数ではゲインが急激に下がっていることが分かる。この特性を活かし て実際の制御では遮断周波数とフィルタの増幅率 (ここでは 1 + $\frac{R_2}{R_1}$)を調節したり、フ ィルタの段数を増やしたりして安定な制御を実現する。

4.5 制御信号の取得

干渉計型重力波検出器ではマイケルソン干渉計や光共振器のフィードバック制御を 行う必要があるが、フィードバック制御は目標値とのずれが目標値に届くような信号

図4.7 ローパスフィルタの伝達関数。 $\frac{R_2}{R_1} = 10$ 、 $f_c = 100$ Hz とした。

をシステムに返す制御であるため、得られる誤差信号が線形な場合でしか用いること ができない。ところが、重力波検出器では干渉計や共振器の出力が線形とならないよ うな位置に制御してそれらを運用している。本節では出力が非線形になるような光学 システムから線形信号を取得し、それを制御する方法について説明する。

4.5.1 位相変調法

式 (2.2) からわかるように、マイケルソン干渉計の出力がダークフリンジやブライ トフリンジの場合には検出される信号の強度が位相変化に対して線形に変化しないた め、単純にフィードバック制御をするだけではダークフリンジにすることができない。 そこで入力信号の位相を位相変調器により細かく揺らし位相変調をかけ、その上で得 られる出力信号に位相変調と同じ周波数の信号を乗じ復調することで位相の変位を線 形信号として取り出す位相変調法を用いる (図4.8)。また、レーザーや鏡などの光学素 子を機械的に揺らすのは雑音に繋がり好ましくないため、位相変調には Electro-Optic Modulator (EOM) という位相変調器が用いられる。EOM には印加電圧に応じて屈 折率が変化 (電気光学効果) する結晶が用いられており、これによりレーザー光に位相 変調をかけることができる。

EOM によってレーザー光の位相が $m_{\rm m} \cos \omega_{\rm m} t \ (m_{\rm m} \ {\rm dz}$ 調指数で、通常は1より もかなり小さい定数である。) だけ変化したとすると、ビームスプリッタに入射する電

図4.8 位相変調法

場は次の様になる:

$$E(t) = E_0 \exp i(-\Omega_0 t + m_{\rm m} \cos \omega_{\rm m} t)$$
(4.12)

$$= E_0 e^{-i\Omega_0 t} \sum_{n=-\infty}^{\infty} J_n(m_{\rm m}) i^n e^{in\omega_{\rm m} t}$$
(4.13)

ここで $J_n(m_m)$ は第一種ベッセル関数である。さらに、 $J_{-n}(m_m) = (-1)^n J_n(m_m)$ ($n = 0, 1, 2, \cdots$) および $m \ll 1$ を用いて (4.13) を近似すると、

$$E(t) = E_0 [J_0(m_{\rm m})e^{-i\Omega_0 t} + iJ_1(m_{\rm m})e^{-i(\Omega_0 - \omega_{\rm m})t} + iJ_1(m_{\rm m})e^{-i(\Omega_0 + \omega_{\rm m})t}](4.14)$$

となり、周波数が ω_m だけずれたサイドバンドが得られることが分かる。また、次の 近似:

$$J_n(m_{\rm m}) \simeq \frac{1}{n!} \left(\frac{m_{\rm m}}{2}\right)^n \ (m_{\rm m} \ll 1)$$
 (4.15)

を使うと、電場は、

$$E_{\rm mod} = E_0 [e^{-i\Omega_0 t} + \frac{im_{\rm m}}{2} e^{-i(\Omega_0 - \omega_{\rm m})t} + \frac{im_{\rm m}}{2} e^{-i(\Omega_0 + \omega_{\rm m})t}]$$
(4.16)

となる。さらに、この電場が、腕の長さがそれぞれ L_x 、 L_y であるマイケルソン干渉 計に入射した場合、AS ポートから出力される電場^{*1}は、

$$E_{\text{AS,mod}} = E_0 e^{-i\Omega_0 t} \left(e^{2i\frac{\Omega_0 L_x}{c} - 2i\frac{\Omega_0 L_y}{c}} \right) + iE_0 \frac{m_{\text{m}}}{2} e^{-i(\Omega_0 - \omega_{\text{m}})t} \left(e^{2i\frac{(\Omega_0 - \omega_{\text{m}})L_x}{c} - 2i\frac{(\Omega_0 - \omega_{\text{m}})L_y}{c}} \right) + iE_0 \frac{m_{\text{m}}}{2} e^{-i(\Omega_0 + \omega_{\text{m}})t} \left(e^{2i\frac{(\Omega_0 + \omega_{\text{m}})L_x}{c} - 2i\frac{(\Omega_0 + \omega_{\text{m}})L_y}{c}} \right)$$
(4.17)

*1 RFL ポートでも全く同様に計算ができるため、ここでは AS ポートのみを考える。

となり、差動長と同相長のパラメータ $L_x + L_y = l$ 、 $L_x - L_y = d$ を用いると、

$$E_{\text{AS,mod}} = iE_0 e^{i\left(-\Omega_0 t + \frac{\Omega_0}{c}l\right)} \sin \frac{\Omega_0 d}{c}$$
$$-E_0 \frac{m_{\text{m}}}{2} e^{i\left(-(\Omega_0 - \omega_{\text{m}})t + \frac{\Omega_0 - \omega_{\text{m}}}{c}l\right)} \sin \frac{\Omega_0 - \omega_{\text{m}}}{c}d$$
$$-E_0 \frac{m_{\text{m}}}{2} e^{i\left(-(\Omega_0 + \omega_{\text{m}})t + \frac{\Omega_0 + \omega_{\text{m}}}{c}l\right)} \sin \frac{\Omega_0 + \omega_{\text{m}}}{c}d \qquad (4.18)$$

となる。検出される光の強度は、

$$P_{\text{mod}} = |E(t)|^{2}$$

$$= 2m|E_{0}|^{2}\sin\frac{\Omega_{0}d}{c}\cos\frac{\Omega_{0}d}{c}\sin\frac{\omega_{\text{m}}d}{c}\sin\left(\omega_{\text{m}}t - \frac{\omega_{\text{m}}l}{c}\right)$$

$$+ (\cos\omega_{\text{m}}t, \sin\omega_{\text{m}}t \ge int (4.20))$$

となる。ところで、式 (4.18) の第 2 項と 3 項から、ダークフリンジのときのサイド バンドは差動長 *d* がある程度大きいほど多く得られることが分かる。このように、信 号をより多く取得するためにつけられる非対称性をシュナップアシンメトリと呼ぶ。

4.5.2 復調

位相変調が加わった信号からは、もとの信号と同一の周波数の信号を乗じることで 線形な信号を取り出すことができる。これを復調という。復調の信号には位相の自由 度があり、とりわけ、変調信号と同じ位相のものをIフェイズ、変調信号と 90 度ずれ たものを Q フェイズと呼ぶ。

先の節において入射光にかけた位相変調は $m \cos \omega_m t$ であったため、 P_{mod} を復調 するには、復調位相を θ_m として、 $\cos (\omega_m t + \theta_m)$ を掛けてやればよい。従って、復調 した後の信号を P_{dem} とすると、

$$P_{\text{dem}} = P_{\text{mod}} \times \cos(\omega_{\text{m}}t + \theta_{\text{m}})$$

$$= 2m|E_{0}|^{2}\sin\frac{\Omega_{0}d}{c}\cos\frac{\Omega_{0}d}{c}\sin\frac{\omega_{\text{m}}d}{c}\sin\left(\omega_{\text{m}}t - \frac{\omega_{\text{m}}l}{c}\right)\cos(\omega_{\text{m}}t + \theta_{\text{m}})$$

$$+ (\cos\omega_{\text{m}}t, \sin\omega_{\text{m}}t \ge in \notin \xi \notin \Im in (\omega_{\text{m}}t - \omega_{\text{m}}t))$$

$$= \frac{m_{\text{m}}}{2}|E_{0}|^{2}\sin\frac{2\Omega_{0}d}{c}\sin\frac{\omega_{\text{m}}l}{c}\left(\sin\theta_{\text{m}}\cos\frac{\omega_{\text{m}}d}{c} - \cos\theta_{\text{m}}\sin\frac{\omega_{\text{m}}d}{c}\right)$$

$$+ (n\omega_{\text{m}}t (n \in \mathbb{N})$$

$$(4.21)$$

となり、振動する項をローパスフィルタによって落とすことでエラー信号 P_{err} が得られる:

$$P_{\rm err} = \frac{m_{\rm m}}{2} |E_0|^2 \sin \frac{2\Omega_0 d}{c} \sin \frac{\omega_{\rm m} l}{c} \left(\sin \theta_{\rm m} \cos \frac{\omega_{\rm m} d}{c} - \cos \theta_{\rm m} \sin \frac{\omega_{\rm m} d}{c} \right) (4.24)$$

エラー信号と検出器で検出される生信号 *P*_{mod} をプロットしたものを図4.9に示す。エ ラー信号の形は復調位相に問わずダークフリンジやブライトフリンジ付近で線形にな っていることが分かる。また、このときの振幅は Q フェイズの波形が最も大きいが、 これは差動長 *d* によって変化するため、効率よくエラー信号を取り出すためには設計 した干渉計によって適切な位相で復調する必要がある。

図4.9 MIのエラー信号。 $\omega_{\rm m} = 100 \,\text{Mrad/sec}, m_{\rm m} = 0.01, P_0 = 1 \,\text{W}, l = 1 \,\text{m}, とした。$

4.5.3 PDH法

式 (3.149) および式 (3.150) で求めたように、共振器の共振点付近の信号は共振器 長 *L*_c の変化に対して線形な応答をしない。そこで、共振器の制御をする場合にも位 相変調をかけて線形信号を取得する。これを Pound-Drever-Hall(PDH) 法 [2] と呼ぶ (図4.10)。

 $E_0 e^{-\Omega_0 t}$ の電場がファブリペロ共振器に入射すると、そのときの反射光は入出力 関係:

$$E_r = -r_F E_{\rm in} + t_F r_E E_{\rm cav} e^{2i\phi_c} \tag{4.25}$$

$$E_{\rm cav} = t_{\rm F} E_{\rm in} + r_{\rm F} r_{\rm E} E_{\rm cav} e^{2i\phi_{\rm c}}$$

$$\tag{4.26}$$

を考えることで、

$$E_r(\Omega_0) = r_c(\Omega_0) E_0 e^{-\Omega_0 t} \tag{4.27}$$

$$r_{\rm c}(\Omega_0) = \frac{-r_{\rm F} + r_{\rm E} e^{2i\frac{i\Omega L_{\rm c}}{c}}}{1 - r_{\rm F} r_{\rm E} e^{i\frac{2i\Omega L_{\rm c}}{c}}}$$
(4.28)

図4.10 PDH法

と書けるため、入射光に位相変調 $m_{\rm m}\cos\omega_{\rm m}t$ がかかっているときの反射光は、

$$E_{r,\text{mod}} = E_r(\Omega_0) + i \frac{m_{\text{m}}}{2} E_r(\Omega_0 - \omega_{\text{m}}) + i \frac{m_{\text{m}}}{2} E_r(\Omega_0 + \omega_{\text{m}})$$
(4.29)

となる。従って、検出器で検出される光の強度は、

$$P_{r,\text{mod}} = |E_{r,\text{mod}}|^{2}$$

$$= -m_{\text{m}}P_{0}\{\Im[r_{\text{c}}(\Omega_{0} - \omega_{\text{m}})r_{\text{c}}^{*}(\Omega_{0}) + r_{\text{c}}(\Omega_{0} + \omega_{\text{m}})r_{\text{c}}^{*}(\Omega_{0})]\cos\omega_{\text{m}}t$$

$$- \Re[r_{\text{c}}(\Omega_{0} - \omega_{\text{m}})r_{\text{c}}^{*}(\Omega_{0}) - r_{\text{c}}(\Omega_{0} + \omega_{\text{m}})r_{\text{c}}^{*}(\Omega_{0})]\sin\omega_{\text{m}}t\}$$

$$+ (\cos\omega_{\text{m}}t, \sin\omega_{\text{m}}t \ge \overline{a}c c c c \beta c \overline{q})$$

$$(4.30)$$

で、これを $\cos(\omega_{m}t + \theta_{m})$ で復調することでマイケルソン干渉計の位相変調法と同様 にエラー信号 $P_{r,err}$ を得ることができる (図4.11)。また、本節では共振器の反射光から エラー信号を取得したが、透過光でも全く同様にしてエラー信号を得ることができる。

4.5.4 信号リサイクリング干渉計の制御

信号リサイクリング共振器も一種の共振器であるため、PDH 法による制御が可能で ある。しかし、マイケルソン干渉計がダークフリンジに制御されている場合、信号リ サイクリング鏡にキャリア光が届かないため、信号リサイクリング鏡の位置の情報を 得ることができない。本項ではその問題の解決方法を述べる。

サイドバンドを用いた方法

式 (4.18) から分かるように、マイケルソン干渉計の入射光に位相変調がかかってい る場合には、マイケルソン干渉計がダークフリンジに制御されていても AS ポートに 周波数 Ω₀ ± ω_m のサイドバンドが現れる。従って、サイドバンドとキャリアが同時に SR 共振器で共振するような変調周波数であればダークフリンジでも SR 共振器内で 信号を共振させることができる。すなわち、SR 共振器の FSR が変調周波数と一致す

図4.11 FP 共振器のエラー信号。 $\omega_{\rm m} = 100 \,\text{Mrad/sec}, m_{\rm m} = 0.01, P_0 = 1 \,\text{W}, L_{\rm c} = 1 \,\text{m} \,\text{とした}.$

ればよい:

$$\frac{\omega_{\rm m}}{2\pi} = \frac{c}{2l_{\rm S}} \tag{4.32}$$

テーブルトップで SRMI を構築する場合、SR 共振器の共振器長は 2 m 程度が限界で あるため、80 MHz 程度の変調周波数が必要になるが、検出器の帯域幅やデジタル機器 のサンプルレートによる制限から簡単ではない。

サブキャリアを用いた方法

マイケルソン干渉計をダークにした状態でシグナルリサイクリング鏡の位置の情報を得るにはサイドバンドを用いた方法の他に、音響光学変調器 (Acousto-Optic Modulator: AOM) を用いた方法がある。

AOM は結晶内に発生する音波によって光を回折させる素子で、その回折光はドッ プラーシフトにより周波数がシフトする。AOM 内の音波は AOM に入力する信号 と同じ周波数 ω_{AOM} を持っており、n 次の回折光は周波数が $\Omega_0 + n\omega_{AOM}$ となる^{*2} (図4.12)。

ここで、AOM の 1 次の回折光を SRMI に入れることを考える。このとき、周波数 シフトされた光はサブキャリアと呼ばれ、次のような電場となる:

$$E(t) = E_{\rm sub} e^{-i(\Omega_0 + \omega_{\rm AOM})t}$$
(4.33)

^{*&}lt;sup>2</sup> 回折の強さは入力する信号の振幅に依存するため、キャリア光のパワーを回折光に捨てることで強度 の変調も行うことができる。

図4.12 AOM による回折

すると、この電場は、

$$E_{\rm AS,sub} = iE_{\rm sub}e^{-i(\Omega_0 + \omega_{\rm AOM})t}e^{i\frac{\Omega_0 + \omega_{\rm AOM}}{c}l}\sin\frac{\Omega_0 + \omega_{\rm AOM}}{c}d \qquad (4.34)$$

として SR 共振器内に入ることができる。そのため、サブキャリアにも位相変調をか けることで、SR 共振器の PDH 法による制御が可能となる。また、サイドバンドを用 いた SR 共振器の制御手法と同様に ω_{AOM} を SR 共振器の FSR と一致させる必要が あるが、この場合は ω_{AOM} での復調は行わないため、問題にならない。

図4.13 サブキャリアを用いた SRMI の制御

図4.13にこの手法のセットアップを示す。キャリアとサブキャリアのロスを抑えて 合流させるためにこの手法では偏光ビームスプリッタ (PBS) が用いられる。そのた め、キャリアとサブキャリアは干渉計内での偏光の向きが異なったものとなる。これ は全ての鏡で光が垂直に反射されていれば問題とならないが、実際の実験系では光路 長を稼いだり、アライメントを行うために、多くの折り返し鏡が用いられる。従って、 P 偏光と S 偏光の間で位相差が生じ、キャリアとサブキャリアの間で光路長差ができ るため、ω_{AOM} と SR 共振器の FSR が一致していても 2 つの光は同時に共振しない。 そのため、実際には ω_{AOM} を SR 共振器の FSR からさらにずらすことで光路長差を 補償している。

周波数 Ω の光が SRMI に入ったときの干渉計全体の透過率は、電場についての入出 力関係を考えることで、

$$t_{\rm SRMI}(\Omega) = \frac{t_{\rm S} \frac{e^{2i\phi_y} - e^{2i\phi_x}}{2} e^{i\phi_{\rm S}}}{1 - r_{\rm S} \frac{e^{2i\phi_y} + e^{2i\phi_x}}{2} e^{2i\phi_{\rm S}}}$$
(4.35)

$$\phi_x = \frac{L_x\Omega}{c}, \ \phi_y = \frac{L_y\Omega}{c}, \ \phi_S = \frac{l_S\Omega}{c}$$
(4.36)

と求まるため、これを用いてマイケルソン干渉計がほとんどダークフリンジのときの キャリアとサブキャリアをプロットすると図 2 のようになり、サブキャリアの周波数 が <u>c</u> <u>2(l_s+^{L_x+L_y})</u>のときにサブキャリアが強い強度でキャリアの共振点で共振すること が分かる。また、このことからダークフリンジのときの SR 共振器の FSR がそれぞれ の腕のエンド鏡から SR 鏡までの距離の平均で決まることも分かる。次に、サブキャ

図4.14 SRMI がほとんどダークフリンジのときに AS ポートから出力されるキャ リアとサブキャリアの強度。 $L_y = 1.064 \,\mathrm{m}, L_x = 1.596 + 10^{-8} \,\mathrm{m}, \frac{c}{2\left(l_s + \frac{L_x + L_y}{2}\right)},$ $P_0 = P_{\mathrm{sub}} = 1 \,\mathrm{W} \,\mathrm{とし} \,\mathrm{c}.$

リアのエラー信号について考える。サブキャリアに ω_m の位相変調がかかっているとき、その電場は、

$$E_{\rm sub,mod} = E_{\rm sub} \left[e^{-i\Omega_{\rm sub}t} + \frac{im_{\rm m}}{2} e^{-i(\Omega_{\rm sub}-\omega_{\rm m})t} + \frac{im_{\rm m}}{2} e^{-i(\Omega_{\rm sub}+\omega_{\rm m})t} \right]$$
(4.37)
$$\Omega_{\rm sub} = \Omega_0 + \omega_{\rm AOM}$$
(4.38)

と書けるため、ファブリペロ共振器の PDH 法と同様に計算することでエラー信号:

$$P_{\text{SRCL,err,AS}} = -\frac{m_{\text{m}}}{2} P_{\text{sub}} [\Im\{t_{\text{SRMI}}(\Omega_{\text{sub}} - \omega_{\text{m}})t_{\text{SRMI}}^{*}(\Omega_{\text{sub}}) + t_{\text{SRMI}}(\Omega_{\text{sub}} + \omega_{\text{m}})t_{\text{SRMI}}^{*}(\Omega_{\text{sub}})\} \cos \theta_{\text{m}} - \Re\{t_{\text{SRMI}}(\Omega_{\text{sub}} - \omega_{\text{m}})t_{\text{SRMI}}^{*}(\Omega_{\text{sub}}) - t_{\text{SRMI}}(\Omega_{\text{sub}} + \omega_{\text{m}})t_{\text{SRMI}}^{*}(\Omega_{\text{sub}})\} \sin \theta_{\text{m}}]$$

$$(4.39)$$

が得られる。添え字の SRCL は SR 共振器長を意味する。これをプロットしたものが 図4.15である。復調位相が 90°の場合のエラー信号を見るとサブキャリアの共振点付 近で線形な信号が得られることが分かる。

図4.15 SRMI がほとんどダークフリンジのときの SRCL のエラー信号。 $m_{\rm m}=0.01, \omega_{\rm m}=100 \,{\rm Mrad/sec}$ とした。

次に SR 共振器が入っている場合のマイケルソン干渉計のエラー信号について考え る。SRMI を透過し、AS ポートから出てくる電場は式 (4.38) で Ω_{sub} をキャリアの周 波数である Ω₀ に書き換えたものであるので、エラー信号もサブキャリアとまったく 同様に計算ができる:

$$P_{\text{MICH,err,AS}} = -\frac{m_{\text{m}}}{2} P_0 [\Im\{t_{\text{SRMI}}(\Omega_0 - \omega_{\text{m}})t_{\text{SRMI}}^*(\Omega_0) + t_{\text{SRMI}}(\Omega_0 + \omega_{\text{m}})t_{\text{SRMI}}^*(\Omega_0)\} \cos \theta_{\text{m}} - \Re\{t_{\text{SRMI}}(\Omega_0 - \omega_{\text{m}})t_{\text{SRMI}}^*(\Omega_0) - t_{\text{SRMI}}(\Omega_0 + \omega_{\text{m}})t_{\text{SRMI}}^*(\Omega_0)\} \sin \theta_{\text{m}}]$$

$$(4.40)$$

添え字の MICH はマイケルソン干渉計の作動長を意味する。SR 共振器が共振してい る場合にはエラー信号は図4.16のようになる。マイケルソン干渉計単体の場合と異な り、必ずしもダークフリンジにすることができないため、適切な復調位相を選ぶ必要 がある。また、SR 共振器が離調されることでもエラー信号の形は変化し適切な復調位 相が変わってくる (図4.17) ため離調角に合わせた復調位相を選ぶ必要がある。さらに、 アシンメトリが SR 共振器長に比べてかなり小さい場合には復調位相をどのように選 択しても適切なエラー信号が得られない場合 (図4.18) があるため、作動長は十分に大 きくなるように光学系を設計する必要がある。

図4.16 SR 共振器が共振しているときの MICH のエラー信号

図4.17 離調が 45°のときの MICH のエラー信号

図4.18 作動長が 0.1064 m のときの MICH のエラー信号。離調は 0°とした。

4.5.5 コヒーレント制御法

内部スクイージングによる信号増幅を行うためにはキャリアの強度が最も増幅され るようにポンプ光とキャリア光の相対位相を制御する必要がある。そのため、OPA さ れた信号をポンプ光の位相にフィードバックしても制御することができない。そこで、 OPA の制御にはキャリア光からわずかに周波数をずらしたサブキャリア光を同時に OPA させ、サブキャリアのシグナル光とアイドラー光とのビートを復調することでエ ラー信号を取得する、コヒーレント制御 (CC) 法 [17] が用いられる。

図4.19 シングルパスでのコヒーレント制御

はじめに図4.19のようなシングルパスで OPA を行う系を考える。コヒーレント制 御のためのサブキャリア光 (CC 光)を、

$$E = E_{\rm cc} e^{-i(\Omega_0 + \omega_{\rm cc})t} \tag{4.41}$$

として、周波数 2Ω₀ のポンプ光で OPA すると式 (3.84)、(3.85) より、結晶から出力 されるシグナル光とアイドラー光の電場はそれぞれ次のようになる:

$$E_{\rm cc,s} = E_{\rm cc} e^{-i(\Omega_0 + \omega_{\rm cc})t} \cosh u \tag{4.42}$$

$$E_{\rm cc,i} = i e^{i\phi_{\rm p}} E_{\rm cc}^* e^{-i(\Omega_0 - \omega_{\rm cc})t} \sinh u \tag{4.43}$$

u は非線形結晶の出口でのスクイージングファクタ <u>*gl*_{NLC}</u> である。すると、検出器で 捉えられる CC 光の強度は、

$$P_{\rm cc} = |E_{\rm cc,s} + E_{\rm cc,i}|^2 \tag{4.44}$$

$$= P_{\rm cc}(\cosh^2 u + \sinh^2 u) - 2\cosh u \sinh u \sin (2\omega_{\rm cc}t + \Delta\phi) \qquad (4.45)$$

となる。 $\Delta \phi$ はポンプ光とキャリア光の相対位相である。すると、これは周波数 $2\omega_{cc}$ の信号で復調できるため、 $\cos(2\omega_{cc} + \theta_{cc})$ で復調することでエラー信号が得られる:

$$P_{\rm cc,err} = -P_{\rm cc} \cosh u \sinh u \sin \left(\Delta \phi - \theta_{\rm cc}\right) \tag{4.46}$$

また、OPA されたキャリアの強度については式 (3.88) より、

$$P_{\text{OPA}} = P_0(\cosh 2u - \sin \Delta\phi \sinh 2u) \tag{4.47}$$

図4.20 シングルパスの CC 法のエラー信号。u = 0.1、 $P_0 = 1$ W、 $P_{cc} = 1$ W とした。

図4.21 内部スクイージング型 SRMI での電場の入出力関係

となる。これと式 (4.46) で求めたエラー信号を図4.20にプロットした。エラー信号の 位相は CC 光の復調位相によって変化するが、図の条件 (θ_{cc} = 90°) ではキャリアの 増幅のピークで線形な信号が得られることが分かる。

次に、SRMI で OPA を行う場合について考える。図4.21のようにそれぞれの箇所で の電場を定めると、その入出力関係は、

$$C = \frac{e^{2i\phi_y} - e^{2i\phi_x}}{2}A + \frac{e^{2i\phi_y} + e^{2i\phi_x}}{2}B$$
(4.48)

$$B = De^{i\phi_{\rm s}}, \ E = C\cosh u e^{i\phi_{\rm s}} + i e^{i\phi_{\rm p}} e^{-2i\Omega_0 t} C^* \sinh u e^{i\phi_{\rm s}}$$
(4.49)

$$D = r_{\rm s}E, \ F = t_{\rm s}E \tag{4.50}$$

となる。これを *E* について整理すると、

$$\mathcal{E}_1 E + e^{-2i\Omega_0 t} \mathcal{E}_2 E^* = \mathcal{A}_1 A + e^{2i\Omega_0} \mathcal{A}_2 A^*$$
(4.51)

$$\mathcal{E}_1 = 1 - \frac{e^{2i\phi_y} + e^{2i\phi_x}}{2} r_{\rm s} e^{2i\phi_{\rm s}} \cosh u \tag{4.52}$$

$$\mathcal{E}_{2} = -ie^{i\phi_{\rm p}} \frac{e^{-2i\phi_{y}} + e^{-2i\phi_{x}}}{2} r_{\rm s} \sinh u \tag{4.53}$$

$$\mathcal{A}_1 = \frac{e^{2i\phi_y} - e^{2i\phi_x}}{2} e^{i\phi_s} \cosh u \tag{4.54}$$

$$\mathcal{A}_2 = ie^{i\phi_{\rm p}} \frac{e^{-2i\phi_y} - e^{-2i\phi_x}}{2} e^{i\phi_{\rm s}} \sinh u \tag{4.55}$$

となる。このとき、入射電場が CC 光 $(A = E_0 e^{-i(\Omega_0 + \omega_{cc})t})$ の場合には、出力電場は $E = \epsilon_+ e^{-i(\Omega_0 + \omega_{cc})t} + \epsilon_- e^{-i(\Omega_0 - \omega_{cc})t}$ と書けるので、これを式 (4.51) に入れて整理すると、

$$\epsilon_{+} = \frac{\mathcal{A}_{1}\mathcal{E}_{1}^{*} - \mathcal{A}_{2}^{*}\mathcal{E}_{2}}{|\mathcal{E}_{1}|^{2} - |\mathcal{E}_{2}|^{2}}E_{0}$$
(4.56)

$$\epsilon_{-} = \frac{\mathcal{A}_{1}^{*} \mathcal{E}_{2} - \mathcal{A}_{2} \mathcal{E}_{1}^{*}}{|\mathcal{E}_{1}|^{2} - |\mathcal{E}_{2}|^{2}} E_{0}$$
(4.57)

となり、これを用いると AS ポートから出力される CC 光の強度は、

$$P_{\rm cc,AS} = |t_{\rm s}E|^2 \tag{4.58}$$

$$= Ts |\epsilon_+ e^{-i(\Omega_0 + \omega_{cc})t} + \epsilon_- e^{-i(\Omega_0 - \omega_{cc})t}|^2$$
(4.59)

$$= T_{\rm s}[|\epsilon_+|^2 + |\epsilon_-|^2 + 2\Re(\epsilon_+\epsilon_-^*)\cos 2\omega_{\rm cc}t + 2\Im(\epsilon_+\epsilon_-^*)\sin 2\omega_{\rm cc}t] \quad (4.60)$$

となるため、これを $\cos(2\omega_{cc} + \theta_{cc})$ で復調することでエラー信号が得られる:

$$P_{\rm cc,err} = T_{\rm s} \Re(\epsilon_+ \epsilon_-^*) \cos \theta_{\rm cc} - T_{\rm s} \Im(\epsilon_+ \epsilon_-^*) \sin \theta_{\rm cc}$$
(4.61)

また、AS ポートのキャリア光の強度については、式 (4.60) で $\omega_{cc} = 0$ とすればよいだけなので、

$$P_{\rm OPA,AS} = T_{\rm s} |\epsilon_{+}|^{2} + T_{\rm s} |\epsilon_{-}|^{2} + 2T_{\rm s} \Re(\epsilon_{+} \epsilon_{-}^{*})$$
(4.62)

となる。これとそのエラー信号 (式 (4.61))を、SRMI がほとんどダークフリンジでか つ SR 共振器が共振している場合についてプロットすると図4.22のようになり、適切 な復調位相 (この場合 $\theta_{cc} = 35^{\circ}$)を選べば OPA の増幅のピークで線形なエラー信号 が得られることが分かる。また、これは、SR 共振器が共振している場合だけでなく、 SR 共振器が離調されている場合でも同じく、復調位相を適切に選ぶことで線形信号が 取り出せる (図4.23)。

図4.22 SR 共振器が共振しているときの CC 法のエラー信号。

図4.23 離調が 45°のときの CC 法のエラー信号

第5章

デジタル制御

干渉計型重力波検出器の制御は一般に非常に多くの自由度を持つ同時制御であるた め、これらの制御信号すべてをアナログシステムで扱うのは非常に困難なことである。 そのため、実際の重力波検出器にはデジタルフィルタによる制御が用いられている [3]。 デジタルフィルタとは入力された信号を離散信号に変換してからコンピュータによる 処理を行うフィルタで、その体系をデジタルシステムと呼ぶ [28, 29]。

5.1 デジタル信号

デジタルシステムでは入力された信号を一定の時間間隔 (サンプリング周期) でサン プリングすることでアナログ信号をデジタル信号へと変換する。

デジタル信号は離散時間信号であり、アナログ信号の正弦波信号が

$$x(t) = \cos \omega_a t \tag{5.1}$$

であるとき、離散時間正弦波信号は次の様に表現される:

$$x[n] = \cos \omega_d n \tag{5.2}$$

ここで t は連続時間であり、n はそれに対応した離散時間 (整数) である。 ω_d はデジタ ル信号の角周波数であり、1 サンプリング時間あたりに進む位相に対応する。ここでサ ンプリング周波数を f_s とすると、アナログ信号の角周波数 ω_a とデジタル信号の角周 波数の関係は

$$\omega_a = \omega_d f_s \tag{5.3}$$

と表すことができる。

5.2 エイリアシング

離散時間正弦波信号では式 (5.2) より

$$\cos(2\pi - \omega_d)n = \cos\omega_d n \tag{5.4}$$

であるため、サンプリング周波数が小さいときには ω_d と $2\pi - \omega_d$ を区別できないた めに入力された信号を再現できなくなってしまう。これを折り返し雑音 (エイリアシン グ) と呼び、連続時間信号を再現するためにはサンプリング周波数は連続時間信号の周 波数を f_a とすると

$$f_s > 2f_a \tag{5.5}$$

を満たさなければならない。これをナイキスト定理といい、*f_s*/2 を一般にナイキスト 周波数と呼ぶ。入力信号の周波数がナイキスト周波数を超えると、その信号は雑音に なってしまうため、アナログ信号をデジタル信号に変換するときにはナイキスト周波 数よりも高い周波数の信号をカットオフするためのローパスフィルタ (アンチエイリ アシングフィルタ) を入れる必要がある。

5.3 離散時間 LTI システム

時刻 n = 0 でのみ 1 を持つ信号を単位インパルス信号 $\delta[n]$ と呼び、次式によって定義される:

$$\delta[n] = \begin{cases} 0, & n \neq 0\\ 1, & n = 0 \end{cases}$$
(5.6)

単位インパルス信号を用いると任意の離散時間信号は次のように簡潔に表現できる:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$
(5.7)

入力 $\delta[n-k]$ に対するシステムの応答をインパルス応答 $h_k[n]$ と呼ぶ。これを用いると次式が得られる:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h_k[n]$$
(5.8)

ここで h_k[n] が時間によって変化しないとすると、

$$h_k[n] = h[n-k] \tag{5.9}$$

とかける。この性質をシステムの時不変性といい、式 (5.8) は次のようになる:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
(5.10)

式 (5.10)の右辺の和はたたみ込みと呼ばれ、次のように表記できる:

$$y[n] = x[n] * h[n] = h[n] * x[n]$$
(5.11)

このような時不変性をもち、かつ線形なデジタルシステムを離散時間線形時不変 (Linear Time-Invariant:LTI) システムという。

離散時間 LTI システムで表現できるシステムの簡単な例として移動平均を表す差分 方程式を考える:

$$y[n] = \frac{x[n] + x[n-1]}{2} = 0.5x[n] + 0.5x[n-1]$$
(5.12)

これは、次の離散時間 LTI システム:

$$y[n] = h[0]x[n] + h[1]x[n-1]$$
(5.13)

においてインパルス応答が

$$h[0] = 0.5, \quad h[1] = 0.5$$
 (5.14)

の場合であると考えることができる。これをブロック図で表すと図5.1のようになる。 ここで q⁻¹ のブロックは遅延素子といい、単位時間の遅延を行う。また、このよう に有限個のインパルス応答からなるシステムを有限インパルス応答 (Finite Impulse Response (FIR)) システムという。

図5.1 簡単な FIR システム

つぎに、図5.2のようなブロック図を考える。このシステムを表現する差分方程式は

$$y[n] = h_0 y[n-1] + x[n]$$
(5.15)

となる。これは漸化式になっているため、

$$y[n] = x[n] + h_0 x[n-1] + h_0^2 x[n-2] + \cdots$$
(5.16)

のように無限個の項を持つことがわかる。このようなシステムを無限インパルス応答 (Infinite Impulse Response (IIR)) システムと呼ぶ。

図5.2 簡単な IIR システム

式 (5.15) を変形すると

$$y[n] - h_0 y[n-1] = x[n]$$
(5.17)

となる。

式 (5.13) および式 (5.17) から、有限個の素子からなる離散時間 LTI システムの一 般化は次のように考えられる:

$$y[n] + a_1 y[n-1] + \dots + a_N y[n-N] = b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$$
(5.18)

5.4 離散時間 LTI システムの伝達関数

アナログシステムでの伝達関数は線形微分方程式をラプラス変換することで得ることができた (式 (4.9))。一方、離散時間 LTI システムの周波数応答を考えるには z 変換:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
(5.19)

において $z = e^{i\omega_d}$ としたものを用いる。z 変換とは、ラプラス変換を離散時間で定義 したもので、これを式 (5.18) に用いると

$$\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z) \ (a_0 = 1)$$
(5.20)

となり、これより離散時間 LTI システムの伝達関数

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$
(5.21)

が得られる。インパルス応答を適当に選択すればローパスフィルタや位相補償フィル タなどのフィルタの伝達関数を作り上げることができるため、デジタル制御ではこれ らのデジタルフィルタが用いられる。

5.5 デジタル PID 制御

PID 制御とはフィードバック制御において、比例 (proportional)、積分 (integral)、 微分 (derivative) の 3 つの動作を用いる方法である。この手法はエアコンの温度制御 や自動車の速度制御などあらゆるシステムの制御で用いられる、最も主要な制御方法 である。

図5.3 PID 制御のブロック図

PID 制御ではシステムから出力される物理量 y(t) と目標値 r(t) とのズレ e(t) (偏差) が 0 になるように比例、積分、微分の動作が行われる。これをブロック図に表すと 図5.3のようになり、このとき、操作量 u(t) と偏差の間には次のような関係がある:

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + P_d \frac{de(t)}{dt}$$
(5.22)

これをラプラス変換することで PID 制御の伝達関数が次のように得られる:

$$G_{\rm PID}(s) = \frac{U(s)}{E(s)} = K_p + \frac{K_i}{s} + K_d s$$
 (5.23)

ここで、 K_p 、 K_i 、 K_d それぞれ比例、積分、微分動作のゲインを表す。式からも分かる ように、P 動作は偏差 e(t) を K_p 倍の操作量としてフィードバックすることで e(t) を 減らすように制御する動作である。しかし、I 動作だけだと定常偏差と呼ばれるオフセ ットが生じてしまう可能性があり、I 動作はこれを減らすために、偏差を絶えず積分し て操作量として出力するような操作である。ところが、I 動作ではゲインが高い場合に 目標値を通り過ぎたり、出力が振動したりするため、安定性が下がる傾向がある。そ のような不安定な PI 制御の応答を改善するために、偏差の変化をフィードバックする D 動作が効果的になる。

PID 制御はアナログコントローラだけでなく、デジタルフィルタとしても広く活用 されている。ここで、連続時間での PID 動作 (式 (5.22)) を離散時間で考えると、

$$u(k) = K_p e(k) + K_i \sum_{i=0}^{k} e(i) + K_d [e(k) - e(k-1)]$$
(5.24)

となり、これをz変換することでデジタル PID 制御の伝達関数が得られる:

$$G_{\rm PID}(z) = \frac{U(z)}{E(z)} = K_p + \frac{K_i}{1 - z^{-1}} + K_d(1 - z^{-1})$$
(5.25)

これを式 (5.21) の表式に書き換えると、

$$G_{\rm PID} = \frac{(K_p + K_i + K_d)z^{-0} - (K_p + 2K_d)z^{-1} + K_s z^{-2}}{1z^{-0} + (-1)z^{-1}}$$
(5.26)

となるため、デジタル PID 制御は IIR システムによる制御であると言える。

5.6 FIR と IIR の比較

FIR システムを用いたフィルタを FIR フィルタという。FIR フィルタはブロック 図に表すと図5.4のようになる。また同様に IIR フィルタのブロック図は図5.5のよう になる。

ブロック図からも分かるように、FIR フィルタにはループになっている部分が存在 しないため、リミットサイクル (ループ部における誤差の蓄積による発振) が生じない。 また、伝達関数が発散することもないため、FIR フィルタは非常に安定性が高いフィ ルタであると言える。一方、IIR フィルタはフィルタ内でフィードバックを用いること により FIR フィルタよりもはるかに次数の小さなフィルタを作成することができるた め、位相遅れを FIR フィルタよりも小さくすることが出来る。

図5.4 FIR フィルタのブロック図

図5.5 IIR フィルタのブロック図

5.7 デジタルフィルタの利点と欠点

デジタルフィルタにはアナログフィルタにはない数々の利点がある。本節ではそれ らをまとめる。

デジタルフィルタの利点
 ハード化が容易なため小型化・大量生産が可能

- 論理回路によって構成されるため信頼性が高い
- フィルタ係数を変えるだけで特性の変更が可能
- 温度変化、経年変化に影響されない
- アナログでは存在しないフィルタが実現可能
- デジタルフィルタの欠点
 - サンプリング時に発生するノイズ
 - ループ回路におけるリミットサイクル
 - デジタル機器の処理速度に由来する遅延

第6章

実験

本研究では、信号リサイクリング干渉計内部での光パラメトリック増幅を用いた光 バネの強化による重力波の信号増幅手法の原理検証に向けた実験を行なった。本章で はこれらの実験について詳細を記述する。

6.1 概略

内部スクージングを用いた光バネの強化による重力波検出器の高感度化の理論につ いては3.6.4章で述べた。図3.31や図3.31ではこの技術を重力波検出器に導入した際の 量子雑音のみを考えている。これをテーブルトップ実験において直接検証するのは環 境的な雑音や光源、検出器の古典的な雑音により制限されてしまうため困難である。一 方、光バネ自体は輻射圧と復元力の結合によって現れる古典的な効果であるため、内 部スクイージングによる光バネの強化は、その光学系の伝達関数測定によって確かめ ることができる。

本研究室での先行研究 [27] では懸架鏡の入った信号リサイクリング干渉計 (SRMI) とポンプ光生成のための SHG 共振器を構築し、それらをアナログ制御することで SR 共振器長、MI 差動長、SHG 共振器長の3自由度の制御に成功している。また、実験で は非線形結晶を設置した実験ではマイケルソン干渉計の片腕の光を遮断した状態 (イ ンプット鏡の反射率が 50% の共振器と考えることができる。) での OPA の観測に成 功している。ところが、これらの先行研究では OPA の位相制御および、光バネの確認 には至っていない。そこで、本研究ではデジタルシステムを駆使し、より安定性の高 い制御を実現することで、SRMI 内での光バネ生成の確認とコヒーレント制御法によ る OPA の位相制御を行なった。

6.2 原理

本節では光バネ強化の検証実験の実験原理を説明する。

共振器内に光バネが発生しているとき、鏡の位置が変化 δx すると、それが共振器 内光量の変化 δP_{cav} になり、共振器内光量の変化が、懸架鏡に加わる力の変化 δF に なり、それがさらに鏡の変位になるようなフィードバックループを考えることができ る [7]。鏡が受ける力から鏡の変位への伝達関数は、共振周波数 ω_{m} 、ダンピング係数 $\Gamma_{m} = 2m\gamma_{m}$ の懸架鏡に力 F(t) が加わっているときの運動方程式:

$$m\frac{d^2x(t)}{dt^2} = -m\omega_{\rm m}^2 x - 2m\gamma_{\rm m}\frac{dx}{dt} + f(t)$$
(6.1)

をフーリエ変換を用いて解くことで、

$$G_{F \to X}(\omega) = \frac{X(\omega)}{F(\omega)} = \frac{1}{m} \frac{1}{\omega_{\rm m}^2 + 2i\gamma_{\rm m}\omega - \omega^2}$$
(6.2)

となる。さらに、鏡の位置から輻射圧への伝達関数は、光バネ共振周波数 ω_{OS} とダン ピング係数 2mγ_{OS} の光バネに束縛された懸架鏡の運動方程式:

$$m\frac{d^2x(t)}{dt^2} = F(t) = -m\omega_{\rm OS}^2 x - 2m\gamma_{\rm OS}\frac{dx}{dt}$$
(6.3)

を解くことで、

$$G_{X \to P_{\text{cav}} \to F} \frac{F(\omega)}{X(\omega)} = -m(\omega^2 + 2i\gamma_{\text{OS}}\omega)$$
(6.4)

と分かる。従って、光バネのフィードバックループにおける開ループ伝達関数は、

$$G_{\rm OS} = -\frac{\omega_{\rm OS}^2 + 2i\gamma_{\rm OS}\omega}{\omega_{\rm m}^2 + 2i\gamma_{\rm m}\omega - \omega^2} \tag{6.5}$$

と分かる。これを踏まえて、図6.1のようにピエゾ付き鏡へ出力信号をフィードバック することで制御された SRMI の内部で光バネが発生しているときの伝達関数を考え る。このとき、フィルタの伝達関数を F、入力電圧がピエゾの変位に伝わり、さらに 腕内光量に伝わるまでの伝達関数を G_{in}、腕内光量が AS ポートから出力される光量 に伝わり、検出器から出力される電圧に伝わるまでの伝達関数を G_{out} とすると、系全 体の開ループ伝達関数は、

$$G_{\rm OL} = G_{\rm in} \frac{1}{1 - G_{\rm OS}} G_{\rm out} F \tag{6.6}$$

$$=\frac{H_{\rm SRMI}F}{1-G_{\rm OS}}\tag{6.7}$$

となる。ここで、 $H_{\text{SRMI}} = G_{\text{in}}G_{\text{out}}$ は固定鏡で構成された SRMI の開ループ伝達関数である。従って、測定した伝達関数を適当にキャリブレーションすることで光バネの閉ループ伝達関数:

$$G_{\rm OS,CL}(\omega) = \frac{1}{1 - G_{\rm OS}(\omega)} \tag{6.8}$$

を得ることができる。これを図6.2にプロットした。上側のピークに注目すると、光バ ネが硬くなることで高周波にシフトしていくことが分かる。

図6.1 SRMIの伝達関数測定

ところで、内部スクイージングを行った SRMI で発生する光バネの共振周波数は、 式 (3.202) から式 (3.200) を求めるときと同様の計算を行うことで、

$$f_{\rm OS,OPA} = \frac{1}{2\pi} \sqrt{\frac{4P_A \Omega_0}{mc^2} \frac{\sin 2\phi_{\rm S}}{s(r_{\rm S} + 1/r_{\rm S}) - (1 + s^2)\cos 2\phi_{\rm S}}}$$
(6.9)

となる。本実験ではマイケルソン干渉計の片腕にのみ懸架鏡を入れており、これは両 腕に懸架鏡が入っている場合に比べ、光バネのバネ定数が半分になることと理解でき るため、この場合光バネの共振周波数は、

$$f_{\rm OS,OPA,single\,sus} = \frac{1}{2\pi} \sqrt{\frac{2P_A \Omega_0}{mc^2}} \frac{\sin 2\phi_{\rm S}}{s(r_{\rm S} + 1/r_{\rm S}) - (1+s^2)\cos 2\phi_{\rm S}} \qquad (6.10)$$

と書き換えられる。さらに、本実験では *x* アームがほぼ垂直に折り返されるように懸 架鏡を設置しており、この場合には懸架鏡に加わる光のパワーが 2 倍になるため、本 実験での光バネの周波数は結局、

$$f_{\rm OS,OPA,single\,sus,fold} = \frac{1}{2\pi} \sqrt{\frac{4P_A \Omega_0}{mc^2} \frac{\sin 2\phi_{\rm S}}{s(r_{\rm S} + 1/r_{\rm S}) - (1+s^2)\cos 2\phi_{\rm S}}} \quad (6.11)$$

図6.2 光バネの伝達関数。 $f_{\rm m} = 40$ 、 $\gamma_{\rm m} = 1 \, \text{rad/s}$ 、 $\gamma_{\rm OS} = 0 \, \text{rad/s}$ とした。

となる。これを図6.3にプロットした。横軸が反転していることに注意してグラフを見 ると、スクイージングが強くなるほど光バネが硬くなることが分かる。従って、OPA のゲインを上げながら離調された SRMI の伝達関数を測定することで内部スクイージ ングによる光バネの強化を確認することができる。

6.3 光学系の設計

光学系の模式図を図6.4に示す。それぞれの素子の種類については表6.1に示されて いる。 本実験では、より強いキャリア光を得るためにファイバアンプを用いており、 これにより最大で 12 W 程度までキャリア光を増幅させることができる。

AOM には変調帯域が (30 MHz $\leq f_{AOM} \leq 50$ MHz) の物を使用しており、1 次回 折光を往復させるように設置することで周波数が $2f_{AOM}$ がシフトしたサブキャリア 光を作り出している。このサブキャリアを使って SR 共振器を共振状態に制御するに は、ダークフリンジのときの SRMI の FSR:

$$f_{\rm FSR,SRMI} = \frac{c}{2\left(l_{\rm s} + \frac{L_x + L_y}{2}\right)} \tag{6.12}$$

が、

$$60\,\mathrm{MHz} \le f_{\mathrm{FSR,SR}} \le 100\,\mathrm{MHz} \tag{6.13}$$

図6.3 SRMI で内部スクイージングを行った場合の $f_{\rm OS}$ の変化。 $P_A=5$ W、 m=0.2g、 $R_{\rm s}=0.98$ とした。

図6.4 光学系の全体図

素子の名称	メーカー	補足
STEMlab 125-14 (RP)	Red Pitaya	$125\mathrm{MS/s}, 14\mathrm{bit}$
外部クロック (Ext. CLK)	Abracon	$125\mathrm{MHz}$
ファラデーアイソレータ (FI)	Thorlabs	
ビームスプリッタ (BS)	Thorlabs	
ダイクロイックミラー (DM)	Thorlabs	
偏光ビームスプリッタ (PBS)		
ビームサンプラ (Samp)	Thorlabs	
信号リサイクリング鏡 (SRM)		$r_{ m s}^2=98\%$
半波長板 $(\lambda/2)$		
四半波長板 $(\lambda/4)$		
ファイバーカプラ (FC)		
レンズ (LA)	Thorlabs ほか	
光検出器 (PD)	Thorlabs	
ピエゾ素子 (PZT)	Thorlabs ほか	
非線形光学結晶 (NLC)	Coversion ほか	
EOM	Thorlabs ほか	$f_{\rm EOM1} = 22.7 \mathrm{MHz},$
		$f_{\rm EOM2} = 15 \rm MHz$
AOM	IntraAction	$30 \mathrm{MHz} \le f_{\mathrm{AOM}} \le 50 \mathrm{MHz}$

表6.1 実験で用いた素子

を満足する必要があるため、懸架鏡側の腕の長さ L_x 、固定鏡側の腕の長さ L_y 、SR 鏡からビームスプリッタまでの距離 l_s を次のように設計した:

$$l_s = 1260 \,\mathrm{mm}$$
 (6.14)

$$L_x = 600 \,\mathrm{mm} \tag{6.15}$$

$$L_y = 400 \,\mathrm{mm} \tag{6.16}$$

すると、このときの FSR は $f_{\text{FSR}} = 85 \text{ MHz}$ 程度となり、十分に変調できることが分かる。懸架鏡には Layertec 社製の 0.2g の鏡を用いており、これを本研究室で開発したベリリウム銅製のサスペンション [21] により懸架している (図6.5)。また、懸架鏡の共振周波数が $f_{\text{m}} \sim 40 \text{ Hz}$ 程度と低く、風や音による外乱を受けやすいため今回の実験では、3D プリンタにより懸架鏡全体を覆うカバーを作成した。

図6.5 懸架鏡。サスペンションの切り抜きと懸架鏡のステンレス製マウントの加工 は東工大オープンファシリティセンター設計制作部門 [25] に依頼した。

6.4 光バネ生成実験

本研究室での SRMI を使った先行研究では、光学系の安定性の低さから懸架鏡の共 振点付近での伝達関数が十分に測定できず、光バネの観測には至らなかった。本研究 ではエアサスペンションによる光学台の防振やフードによる防音・防風に加え、デジ タル制御システムを構築することでフィードバック制御の高い安定性と簡便な制御・ 計測スキームを実現し、SRMI 内での光バネの生成を確認した。

6.4.1 SRMI の制御

本研究ではマイケルソン干渉計の作動長 (MICH)、SR 共振器長 (SRCL)、SHG 共 振器長さ、コヒーレント制御 (CC) に加え、位相同期ループ (PLL) 法による CC 光 の周波数制御の 5 つの自由度をフィードバック制御により制御した。これらの制御 をより簡便に行うために本実験では市販のシングルボードコンピュータである、Red Pitaya 社の STEMlab 125-14 (以下 Red Pitaya) を導入した。また、Red Pitaya を 使った制御のために、本研究室の共同研究先である Kastler Brossel 研究所で光学系 制御用に開発されたソフトウェアである PyRPL (: Python Red Pitaya Lockbox)[9] を用いた。

PyRPL には光学実験に必要な様々なモジュールが実装されており、とくに lockbox モジュールでは PDH 法のエラー信号の取得とデジタル PID 制御による光学系の制御 を行うことができる。

MICH および SRCL の制御の模式図は図6.6のようになっており、PD1 および PD2 は MICH の制御に、PD3 は SRCL の制御に用いられている。キャリア光とサブキャ リア光はそれぞれ独立した Red Pitaya により位相変調がかけられており、それぞれ の自由度の制御信号はピエゾドライバを介してピエゾ素子へと送られる。

図6.6 MICH と SRCL の制御

MICH と SRCL を制御したときの AS ポートのキャリアの信号 (PD1) を図6.7に示 す。-7s から -5.8s では MICH・SRCL 共にピエゾを三角波で掃引しており、5.8s からは SRCL が制御され、-4s から MICH が制御されている。SRCL の制御を始め る前後のダークフリンジ側の電圧レベルからは SR 共振器の共振点にロックされてい ることが分かり、MICH をロックした後の電圧レベルから、ダークフリンジに制御が できていることが分かる。

6.4.2 伝達関数測定

伝達関数測定は PyRPL の network analyzer モジュールを使った。 network analyzer モジュールでは正弦波の信号 $X(\omega)$ を測定対象に入力し、Red Pitaya 内で取 得される信号 $Y(\omega)$ を $X(\omega)$ で割ることで周波数応答 $\frac{Y(\omega)}{X(\omega)}$ を測ることができる。周 波数応答 $F(\omega)$ のフィルタで制御された系 $H(\omega)$ の伝達関数測定を行う場合のブロッ ク図は図6.8の通りで、 $Y(\omega)$ を Red Pitaya から出力される制御信号^{*1}にした場合に

^{*1} $Y(\omega)$ には Red Pitaya への入力信号や、エラー信号を選ぶこともできる。

図6.7 SRCL・MICH 制御時の AS ポートキャリアの信号

図6.8 Red Pitaya を用いた伝達関数測定

は次のような閉ループ伝達関数を取得することができる:

$$\frac{Y(\omega)}{X(\omega)} = \frac{1}{1 - F(\omega)H(\omega)}$$
(6.17)

懸架鏡によって構成された SRMI では光学系の伝達関数に光バネの伝達関数が加わるため、SRMI の伝達関数を *H*_{SRMI} とすると、測定される伝達関数は、

$$G_{\text{SRMI,CL}} = \frac{Y(\omega)}{X(\omega)} = \frac{1}{1 - F(\omega)H_{\text{SRMI}}(\omega)G_{\text{OS,CL}}(\omega)}$$
(6.18)

となる。さらに、懸架鏡の共振周波数周りのみを考えると、Gos 以外は一定と考える

ことができるため、それらを*C*としてまとめることで、

$$G_{\rm SRMI,CL}(\omega \sim \omega_{\rm m}) = \frac{1}{1 - CG_{\rm OS,CL}(\omega)}$$
(6.19)

と表すことができる。これを踏まえ、懸架鏡の共振周波数 $f_{\rm m} \sim 40 \, {\rm Hz}$ 付近で伝達関 数測定を行なった。

キャリア光強度 P_A が 5 W、サブキャリアの周波数シフト f_{AOM} が 34 Hz の場合と $P_A = 8$ W、 $f_{AOM} = 38$ Hz の場合での伝達関数測定の結果を図6.9の点によるプロッ トに示す。実線のプロットは、式 (6.8) でフィットしたもので、フィッティングパラメ ータより、 $P_A = 5$ W、 $f_{AOM} = 34$ Hz の場合には共振周波数が 3.4 Hz 程度の光バネ が生じ、 $P_A = 8$ W、 $f_{AOM} = 38$ Hz の場合には共振周波数が 6 Hz 程度の光バネが生 じていることが分かった。

図6.9 G_{OS,CL}の測定結果

6.5 OPA 実験

安定制御された SRMI の内部に非線形結晶を挿入し OPA 実験を行なった。本実験 では SRMI の制御に加え、SHG 共振器の制御、位相同期ループ (PLL) 法による CC 光の位相制御を行なった上で OPA のコヒーレント制御を行なった。

図6.10 SHG 共振器の制御

6.5.1 ポンプ光生成

共振器長 1100 mm の蝶ネクタイ型共振器内に Coversion 社製の PPLN 結晶を設置 し、キャリア光で SHG を起こすことで OPA のためのポンプ光を生成した (図6.10)。

キャリア光は位相変調されてから干渉計と SHG にパスが分けられるため、エラー 信号を復調するには、復調信号の周波数が MICH の制御をしている Red Pitaya の $f_{\rm EOM1} = 22.7 \,\mathrm{MHz}$ と完全に一致している必要がある。そのため、本実験では Abracon 社の水晶振動子を使い、外部クロック回路を自作し 2 台の Red Pitaya を同期させ た。掃引時の信号から見積もられる結晶が入った状態でのフィネスは 100 程度であ った。また、制御時には温度コントローラによって結晶の温度を摂氏 33.1 度に保つ ことで 800 mW のキャリア光から 450 mW のポンプ光が生成されることを確認した (図6.11)。

6.5.2 OPA の確認

SR 鏡とビームスプリッタの間に Raicol Crystals 社製の PPKTP 結晶を挿入し、結 晶内に SHG で作ったポンプ光を入射させることで OPA を起こした。6.12。

図6.11 共振時の SHG 共振器。キャリア光の倍波は波長 532 nm の可視光である ため、制御時には緑色の強い光が放出される。

キャリアとポンプ光の相対位相はそれぞれの光を合流させるダイクロイックミラ ーの直前にあるピエゾ付き鏡でポンプ光の入射位相を動かすることで操作される。 図6.13はポンプ光が入射していない状態でポンプ光の位相を操作するピエゾを振りな がら途中でポンプ光を入射させたときの AS ポートの信号で、ポンプ光が入っている ときには OPA によるキャリア光の増減が確認できる。このとき、OPA の結晶の直前 でのポンプ光強度は 300 mW で、結晶を摂氏 31.1 度に温調することで 0.47 dB 程度 の増幅を確認した。

6.5.3 CC 光の周波数制御

CC 光にはキャリア光とは異なるレーザー光源 (補助レーザー)を使った (図6.14)。 2 つの光は強度反射率 10% のビームサンプラによってカップルさせた。また、CC 光はキャリア光と位相をそろえる必要があるため、2 つのレーザーは位相同期ループ (PLL) 法により位相を同期させた。PLL とは、2 つのレーザー光の間に生じる光ビー トの周波数を一定に保つことで 2 つの光の相対位相を同期させる制御手法で、本実験 ではキャリア光との間に発生するビートに 7 MHz の信号をかけ、光ビートと 7 MHz の信号の間で発生するビートをエラー信号として補助レーザーのピエゾ入力に返した。 このとき、Red Pitaya では CC 法のエラー信号を作るために必要な 14 MHz の信号が 7 MHz の信号の 2 倍の周波数との間に僅かな周波数差があり、CC 法のエラー信号が

図6.12 SRMI 内での OPA

図6.13 OPA の確認。–0.45 s からポンプ光が入っている。信号には Red Pitaya 内でゲインがかけられているため電圧レベルが上がっている。

図6.14 PLL による CC 光の周波数制御

低周波で揺らいでしてしまうという問題が発生ため、PLL では2 チャンネルのファン クションジェネレータと市販のゲイン付ローパスフィルタによるアナログ制御を用い た。さらに、補助レーザーのピエゾ入力のみにフィードバックをかけると、レーザー光 源を立ち上げてからあまり時間が経過していないときにはレーザー光源の結晶温度が 平衡状態に達しておらず、PLL の制御信号がドリフトして数 10 秒程で制御が外れて しまうため、Red Pitaya でレーザー光源の温調にフィードバックするような PID 制 御をすることで制御信号のドリフトを補償し、長時間の PLL を可能にした。

6.5.4 OPA のコヒーレント制御

周波数 f_0 + 7 MHz の CC 光が OPA されると f_0 – 7 MHz の光が発生するため、検 出される信号 (本実験では PD1 で検出される信号を用いた。)を 14 MHz で復調する ことで CC 法の復調信号が得られる。さらに、復調信号をローパスして得られるエラ ー信号を Red Pitaya に送り、デジタル PID 制御でポンプ光の位相を操作するピエゾ にフィードバックした。

本実験では図6.15に示した通り、サンプラの前でのキャリア光および CC 光をそれ ぞれ 1.65 W、450 mW とした。キャリア光とポンプ光の位相を掃引したときのエラー

図6.15 CC 法による OPA のコヒーレント制御

信号を図6.16に示す。AS ポートの DC 信号と比較すると、エラー信号が赤破線の電圧 になるように相対位相を制御すれば、干渉計から漏れ出たキャリアが常に増幅される ような相対位相に保つことができると分かる。図6.17は得られたエラー信号で実際に OPA のコヒーレント制御を行ったときの信号である。掃引時の電圧と比べると信号が 増幅される位置に OPA が制御されていることが分かる。

図6.16 CC 法のエラー信号

図6.17 OPA の制御。橙色のプロットはピエゾドライバに送っている信号で –0.6 s までは相対位相が掃引されている。

第7章

議論

本章では実験で得られたそれぞれの結果について議論する。

7.1 光バネ生成実験

本実験では $P_A = 5$ W、 $f_{AOM} = 34$ MHz の場合と $P_A = 8$ W、 $f_{AOM} = 38$ MHz の 場合について伝達関数測定を行った。理論式でフィッティングを行った結果、それぞ れの場合で発生している光バネの共振周波数は、それぞれ $f_{OS} \simeq 3.4$ Hz、 $f_{OS} \simeq 6$ Hz であった。また、それぞれの測定での変調周波数 f_{AOM} の差が $\Delta f_{AOM} = 4$ MHz であ ることと、ダークフリンジのときの FSR が $f_{FSR} \simeq 85$ MHz であることを考えると、 離調角の差は、

$$\Delta\phi_{\rm s,calc} = \frac{2 \times \Delta f_{\rm AOM}}{85\,\rm MHz} \times 180^{\circ} \simeq 17^{\circ} \tag{7.1}$$

程度である必要がある。ここで、実験で得られた光バネの周波数から、式 (6.8) を用いてそ れぞれの離調角を推定すると、それぞれ $\phi_s \simeq 65^\circ$ ($P_A = 5$ W) と $\phi_s \simeq 48^\circ$ ($P_A = 8$ W) 程度である (図7.1) ことが分かる。従って実験で得られた離調角の差は $\Delta \phi_{s,meas} \simeq 17^\circ$ となり、 $\phi_{s,calc}$ とよく一致している。この結果は SRMI の内部でも光バネが形成され ることを示している。

また、サブキャリアとキャリアの偏光の違いにより離調を $\phi_s = 0^\circ$ にするサブキャリアの周波数は明らかになっていなかったが、この測定結果から $\phi_s = 0^\circ$ にするには変調周波数を $f_{AOM} \simeq 49$ MHz にすればよいことが分かった。従ってこの付近の離調角で伝達関数測定を行えばさらに硬い光バネ ($f_{os} \leq 70$ Hz) を作ることができる(図7.2)。

図7.1 $P_A = 5 \text{ W}, 8 \text{ W}$ のときの光バネの共振周波数

図7.2 $\phi_{\rm s}=0^\circ$ 付近の $f_{\rm os}$

7.2 OPA 実験

先行研究では OPA の相対位相制御のためのエラー信号をキャリア光のサイドバン ドから取り出していた。その際、SHG の結晶にかける温調の揺らぎによって発生する エラー信号のドリフトがエラー信号の振幅より遥かに大きかったため制御することが できないという問題が生じていた。本研究では2台目のレーザー光源を導入し、その 光の周波数を制御することで OPA 制御用のサブキャリアを作った。その結果、振幅の 大きなエラー信号が得ることができるようになり、動作点がエラー信号からはみ出る ことがなくなった (図6.16)。

さらに、OPA による信号増幅のピークの位置に動作点を持ってくることができる ように復調位相を調節した上で OPA の制御を試みたところ、信号が増幅されるよう な位相に5分間制御することができた (図6.17)。制御が落ちてしまう原因には懸架鏡 が受ける外乱の影響が大きいと考えられる。音や振動による外乱は光学定盤のエアー サスペンションと光学系全体を覆うフードにより以前に比べ大きく抑えられているが、 本実験には AOM の信号入力に用いている RF アンプやファイバアンプなど、動作音 が大きい機器が用いられており、この音で振動が励起されてしまう。

40 Hz 付近で点数の多い伝達関数を測るには制御時間を 30 分程度まで増やす必要が ある。制御の持続時間を伸ばすためには、マイケルソン干渉計の差動長を制御してい る Red Pitaya 内の IIR フィルタで位相補償をし、ゲインをさらに上げることで差動 長の制御をより硬くするか、サスペンションを磁気ダンピングしたり、懸架鏡を真空 槽にいれることで外乱の影響を減らすなどの対策が可能である。また、伝達関数測定 の1 点当たりの平均化回数減らしと周波数間隔を大きくすることで1 回の測定時間を 5 分以内にすることは可能であるので、その上でロックを掛け直しながら伝達関数測 定を行えば、OPA で強化された光バネの伝達関数を測定することができる。

第8章

まとめ

最後に本論文の結論と今後の課題について述べる。

8.1 結論

本研究では光パラメトリック増幅 (OPA) による光バネの強化を用いた重力波信号 の増幅技術開発に向けた実験を行った。先行研究 [27] では、懸架鏡を用いた信号リサ イクル干渉計 (SRMI) の差動長と共振器長の制御に OPA のポンプ光生成のための共 振器の長さ制御を加えた 3 自由度の同時制御に成功している。また、マイケルソン干 渉計の片腕の光を遮断した SR 共振器での OPA では 0.21 dB 程度の増幅と、位相変 調を用いた手法により OPA の位相を制御するためのエラー信号が得られることが確 認された。本実験ではシングルボードコンピュータを用いたデジタル制御システムを 導入することで、より安定性の高い制御系を実現し、さらに、ファイバーアンプを導 入して光源のハイパワー化を行った。これらの改良の結果、光学系の伝達関数測定で は光バネの生成を確認することができた。これまで、SRMI 型の干渉計では光バネが 作られることが実証されていなかったため、本研究は SRMI 型の干渉計としては世界 で最初の光バネの観測となる。

OPA による信号の増幅は先行研究によりすでに確認されているため、この結果は SRMI 内で光バネの強化が可能であることを示唆するものである。また、OPA 実験で は安定に制御された SRMI と高強度なポンプ光を用いることで、0.47 dB 程度の増幅 を確認した。さらに、OPA の制御のためのサブキャリア光として 2 台目のレーザー光 源を導入し、2 台のレーザー光の位相同期とコヒーレント制御法によるポンプ光の位 相制御を行うことで、内部スクイージング型 SRMI の 5 自由度同時制御を実現した。 このとき、制御の持続時間は 5 分程度であったが、懸架鏡の共振周波数付近でのみ測 定するのであれば OPA による光バネの強化を確かめるための伝達関数測定は可能だ と結論した。

8.2 今後の課題

SRMI で光バネを確認し、さらに、OPA のコヒーレント制御に成功したので、次の 課題はこれらを組み合わせた伝達関数測定を行うことである。OPA を制御した状態 でポンプ光強度を変えながら伝達関数測定を行い、光バネの周波数シフトが見えれば、 この技術の原理検証が完了したことになる。

OPA 結晶の挿入によるロスなどで周波数シフトが見えなかった場合には、パワーリ サイクリング共振器を導入して干渉計内光量を増やし、さらに、両腕の鏡を懸架鏡に することで光バネの効果をより強くすることを検討している。また、高周波での信号 増幅技術の真の実証には光バネの共振周波数を kHz 帯にまで持っていく必要があるの で、光バネのシフトが確認できた場合にも、パワーリサイクリングや 2 枚目の懸架鏡 の導入は必要である。

最終的には量子雑音を直接測定することを考えているが、そのためには地面振動や 熱雑音を量子雑音以下に減らす必要があるため、光学系を真空槽の中に入れ、さらに、 Q値と防振性の高いサスペンションを開発する必要があると考える。

参考文献

- B. P. Abbott et al. Observation of gravitational waves from a binary black hole merger. *Phys. Rev. Lett.* 116, 061102. arXiv:1602.03837, 2016.
- [2] E. D. Black. An introduction to pound-drever-hall laser frequency stabilization. AM. J. Phys. 69. 79, 2001.
- [3] R. Bork et al. advligorts: The advanced ligo real-time digital control and data acquisition system. *Volume 13, 100619, 2021.*
- [4] A. Buonanno and Y. Chen. Optical noise correlations and beating the standard quantum limit in advanced gravitational-wave detectors. *Classical and Quantum Gravity, Vol. 18, No. 15, pp. L95–L101*, 2001.
- [5] H. B. Callen et al. Irreversibility and generalized noise. *Phys. Rev.*, Vol. 83, pp. 34–40, 1951.
- [6] C. M. Caves and B. L. Schumaker. New formalism for two-photon quantum optics. i. quadrature phases and squeezed states. *Phys. Rev. A*, Vol. 31, pp. 3068–3092, 2016.
- [7] J. Cripe et al. Radiation-pressure-mediated control of an optomechanical cavity. Phys. Rev. A 97, 013827, 2018.
- [8] K. L. Dooley. Status of geo 600. arXiv, 1411.6588, 2014.
- [9] L. neuhaus et al. What is PyRPL? https://pyrpl.readthedocs.io/en/ latest/#.
- [10] L. McCuller et al. Frequency-dependent squeezing for advanced ligo. Phys. Rev. Lett. 124, 171102, 2020.
- [11] J. Mizuno et al. Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors. *Physics Letters A*, Vol. 175, No. 5, pp. 273 – 276, 1993.
- [12] E. Polini. Broadband quantum noise reduction via frequency dependent squeezing for advanced virgo plus. *Phys. Scr.* 96 084003, 2021.
- [13] California institute of technology. Welcome to LIGO Livingston. https:

//www.ligo.caltech.edu/LA.

- [14] Science org. Remembering Joseph Weber, the controversial pioneer of gravitational waves. https://www.science.org/content/article/ remembering-joseph-weber-controversial-pioneer-gravitational-waves.
- [15] D. Shoemaker et al. Noise behavior of the garching 30-meter prototype gravitational-wave detector. *Phys. Rev. D 38*, 423, 1988.
- [16] K. Somiya et al. Parametric signal amplification to create a stiff optical bar. Physics Letters A, Vol. 380, No. 4, pp. 521-524, 2016.
- [17] H. Vahlbruch et al. Coherent control of vacuum squeezing in the gravitationalwave detection band. Phys. Rev. Lett., Vol. 97, p. 011101, 2006.
- [18] 三尾典克. 相対性理論. サイエンス社, 2007.
- [19] 上滝致孝ほか. 制御理論の基礎と応用. オーム社, 1986.
- [20] 中村卓史ほか. 重力波をとらえる. 京都大学学術出版会, 1998.
- [21] 久富正博. 光ばね実験における懸架系の開発及びその性能評価. 宗宮研究室, 2017.
- [22] 喜多直紀. 巨視的量子系の観測に向けた光学浮上法の安定性検証. 東京大学大学 院 理学系研究科 物理学専攻, 2020.
- [23] 国立天文台 重力波プロジェクト推進室. 重力波とは. https://gwpo.nao.ac. jp/about_gw/.
- [24] 国立天文台 重力波プロジェクト推進室. KAGRA の属性値. https://gwcenter. icrr.u-tokyo.ac.jp/researcher/parameters.
- [25] 東京工業大学.オープンファシリティセンタ設計制作部門. https://www.ofc. titech.ac.jp/department/design-production/.
- [26] 松岡正造. 量子光学. 裳華社, 2000.
- [27] 草柳浩平. 次世代重力波検出器のための非線形光学効果を用いた信号増幅. 宗宮 研究室, 2019.
- [28] 足立修一. MATLAB によるディジタル信号とシステム. 東京電機大学出版, 2002.
- [29] 金原昭臣ほか. デジタル制御入門. 日刊工業新聞社, 1990.
- [30] 鈴木孝典. 重力波望遠鏡 KAGRA における地下水の重力勾配雑音のシミュレーションによる研究. 宗宮研究室, 2021.

謝辞

本修士論文は多くの方々のご支援の元に完成致しました。本論文の締めくくりとし て、お世話になった方々へ感謝の意を綴らせていただきます。

指導教員である宗宮先生は、重力波検出器の帯域拡張のための新技術の開発とい う、未知の重力波の検出に直接つながる、非常にやりがいのある研究テーマを与えて くださりました。先生には実験で起きた問題についていつも的確な助言をしていただ き、その度に壁を乗り越えることができました。また、修士2年次の春にはフランス の Kastler Brossel 研究所へ赴き、現地で行われている量子光学実験に参加する機会を 与えてくださりました。フランスで学んだことは本修士論文にも生きており、非常に 有難い経験になりました。宗宮研での充実した3年間を送ることができたのは宗宮先 生の手厚いサポートのおかげでございます。

特任講師の原田先生には、私が研究室に所属し実験に従事し始めたころから光学実 験におけるありとあらゆるノウハウをマンツーマンで指導していただきました。原田 先生と実験室で過ごした3年間は私の研究者としての能力を大幅に引き伸ばし、未知 の現象を明らかにするということの面白さに気づかせてくれました。私がアカデミア の道に進む決断を下せたのは原田先生から頂いた沢山の技術と知識のおかげでござい ます。

博士課程3年の小田部さんは、重力波検出器に関する豊富な知識で実験の理論面で 私が躓いている箇所について相談に乗っても解決してくださりました。また、実験を 着実に進め、成果を生んでいく小田部さんの姿は研究室の先輩として、また一人の研 究者としても私の大きな目標になりました。

研究室の同期の鈴木孝典君には、東工大に入学したころから仲良くして頂き、いつ も学修面などでの相談に乗っていただき大変お世話になりました。また、何事も簡単 にこなしてしまう孝典君にはいつも余裕があり、私のゼミの準備が間に合わないとき などには何度も救われました。コロナ禍での研究室生活で、研究室で会うことはあま り多くありませんでしたが、一緒に飲みに行ったり、雑談を交わしたりした時間は私 の研究室生活の大切な思い出となりました。

また、修士課程では学部の卒業論文を書いていたころに比べて新型コロナウイルス

の流行が落ち着いたため、宗宮研究室のその他のメンバーとも沢山過ごすことができ ました。研究室の皆さんと居室や居酒屋での交流を通じて関わりあうことは私が研究 を進める上での心の支えとなりました。楽しい研究室生活が過ごせたのは皆様のおか げです。

そして最後に、大好きな物理をこれからも修めることのできる道を選ばせて下さっ た両親に深く感謝いたします。