
MASTER’S THESIS

Control system for mirror tilting by
deep learning

Department of Physics, School of Science,

Tokyo Institute of Technology

Yilun Hou

July 11, 2023

Abstract

In gravitational wave detection, complex optical systems are built to reach the

precision of a gravitational wave signal. There are multiple noises that affect the

precision of the detector. When a laser hits a mirror or other components of an

optical system, it will cause a movement or rotation to that component. The tradi-

tional way of solving this problem can be divided into two steps. First, when a PDH

signal is detected by a single detector, we can lock the beam and stabilize it. Then

a detection on WFS signals is possible and certain Hermite Gaussian modes can be

separated out of the beam. Usually, the 00 part and 10 part of Hermite Gaussian

modes are taken and used for controlling the mirror.

Previous study shows that deep learning is useful in developing such an auto-

matic control system with traditional calculation. A convolutional neural network

(CNN) has been built to analyse WFS signal from a Fabry-Perot cavity. The WFS

signal data set is first pre-processed by principal component analysis (PCA), where

those signals are reorganized into sets of eigenvalues of a few new bases. The data

set is then put into the CNN model and trained with 5000 epochs. Result shows the

loss of that deep learning model can be reduced to a reasonable range.

In this study, we take one step further to this simulation of Fabry-Perot cavity.

We first introduced the roughness of mirrors into the optical system. Beside CNN

model, we also added the linear artificial neural network (ANN) into comparison.

The result is interesting. We built two different deep learning models that have an

accuracy over 90% against rotations around 1 micron radian. This precision may not

be enough for the current situation in gravitational wave detection, but we believe

there are lots of ways to further optimize the current models.

2

Contents

1. Introduction 5

2. Gravitational wave 10

2.1. General relativity . 10

2.2. Solution of Einstein Equation . 12

2.3. Gravitational wave detectors . 15

2.4. Noises of gravitational wave detectors 18

3. Laser Physics 20

3.1. Gaussian Beam . 20

3.2. Beam Parameters . 25

3.2.1. Spot Size w(z) . 25

3.2.2. Beam waist z0 . 26

3.2.3. Rayleigh range zR . 26

3.2.4. Radius of Curvature R(z) . 27

3.2.5. Gouy phase η(z) . 29

3.3. Hermite Gaussian mode . 29

3.4. Fabry-Perot Cavity . 32

3.5. PDH and WFS methods . 37

4. Deep Learning 41

4.1. Machine Learning . 42

4.2. Principal Component Analysis . 43

4.3. Artificial Neural Network . 44

4.4. Convolutional Neural Network . 46

4.5. Loss Function . 49

4.5.1. L1Loss . 50

4.5.2. MSELoss . 50

4.5.3. CrossEntropyLoss . 50

4.6. Optimizer . 51

4.6.1. Gradient Descent Optimizer 51

4.6.2. Momentum Optimizer . 52

4.6.3. Optimizer with Adaptive Learning Rate 53

3

Contents 4

4.7. Activation Function . 55

4.7.1. Rectified Linear Unit (ReLU) function 55

4.7.2. Parametric Rectified Linear Unit (PReLU) function 56

4.7.3. Exponential Linear Unit (ELU) function 56

4.7.4. Scaled Exponential Linear Unit (SELU) function 57

4.7.5. Sigmoid function . 58

4.7.6. Tanh function . 59

5. Experiment 60

5.1. Methods of study . 60

5.2. Environment of study . 60

5.3. Generating data . 61

5.4. Data Analysis . 67

5.5. Deep Learning . 70

5.5.1. 1D-Classification . 71

5.5.2. 1D-Regression . 71

5.5.3. 2D-Classification . 72

5.5.4. 2D-Regression . 73

5.6. Results . 74

6. Summary 89

A. Structure of Finesse 91

B. Structure of Deep Learning 93

B.1. 1D-Classification . 93

B.2. 1D-Regression . 94

B.3. 2D-Classification . 95

B.4. 2D-Regression . 96

Acknowledgement 97

Bibliography 101

Chapter 1

Introduction

Since Einstein opened the first page of relativity, human’s vision is now one

step further and deeper into the universe. Just like the lights bring us the infor-

mation from the sky, gravitational waves also bring us the information from the

universe, more but weaker. Since then, large and complex optical system are built

for gravitational wave detection.

Based on the theory of Michelson interferometer, ground-based gravitational

wave detectors have been built to detect gravitational waves from the universe. To

finer the precision of the detection, an array of this kind of detectors has been built.

It is consist of Advanced LIGO [1] in Hanford and Livingston in United States,

Virgo [2] in Europe, and KAGRA [3] in Japan. For such a precise optical system,

there are different types of noise that affect the information from gravitational waves.

Shot noise, radiation pressure noise, thermal noise and seismic noise. When we fo-

cus on laser itself, we can see the radiation pressure noise occurs and keep pressing

and causes movement and tilting to the laser. Currently, there are multiple ways

to calculate and reduce the effect of radiation pressure noise. Such as traditional

alignment or calculating Wave-front sensing (WFS) signal with Pound–Drever–Hall

(PDH) locking technique. However, both method take a long time to react. There-

fore, the aim of this study is to build an automatic control system that allows the

optical system adjusting itself in real time. In optical systems, we usually use mirrors

to reflect and transmit the laser and pass the laser to other optical components.

In gravitational wave detection, There are multiple noises that affect the result

from a detector. Seismic noise is one of these noises and it is caused by the surround-

ing environment. Although multiple suspension systems are applied to the detector,

we cannot get rid of all these noises. The noise will cause a movement or rotation to

that affected component. In an optical system, when a small tilting angle is applied

to one of the mirrors within the system, a slight change will be caused to the signal

of the Gaussian beam. Figure 1.1 below shows a pair of Gaussian beam plots. The

plot on the left side is a simple beam profile of a normal Gaussian beam. The plot

on the right side is another Gaussian beam cut with a tilting angle applied.

5

CHAPTER 1. INTRODUCTION 6

Figure 1.1.: Comparison between two Gaussian beam

Since one can hardly tell the difference between these two beam profiles, it is

essential to plot a differential signal of the two beams. We then obtain the following

plot:

Figure 1.2.: Difference between two cuts

Clearly, with the tilting angle applied to the mirror, it causes a change in the

signal. In tradition, we solve such problem by calculating the movement or rotation

with the wave-front sensing method. Theoretically, the radiation pressure noise can

be calculated by computer in real time with traditional PDH locking and WFS

method [4]. However, the mirror is not perfectly smooth in reality, and the centre

7

of the beam can be varied through each operation period. These factors will raise

complexity of the calculation and the signal will be distorted. Therefore, we need

to find a better way to avoid the offset problem. Recently, deep learning provides

us a new method to calculate much complex problems, especially in area with large

data like astrophysics. For example, the classification of binary star systems. Thus,

we choose to use deep learning models as the automatic control system.

The purpose of this research is to build an automatic control system that react

in real time. Previous study from our laboratory shows that deep learning is useful

in developing such an automatic control system [5]. A convolutional neural network

(CNN) has been built to analyse WFS signal from a Fabry-Perot cavity. The loss

of that deep learning model can be reduced to a reasonable range. Based on that

conclusion, we also choose to use a deep learning model to help us do the calculation.

Another study from our laboratory shows the possibility of using linear combination

to build a control system for mirror tilting [6]. However, a linear combination still

cannot solve the problem of distortion in signals.

The whole research contains large amount of simulations and several models with

different feature. All of them are built in Python language with the help of several

related packages. All packages used in this study works in Windows. Therefore, the

outcome can be easily reproduced with a proper environment. The whole study can

be divided into three parts: generating data, data analysis and deep learning. We

will give a brief introduction on each part in the following paragraph.

In the first part, we use an interferometer simulation software called Finesse [7].

Finesse is originally written in C language, with the help of a wrapping package

called PyKat [8], we can run this simulation software in Python for later usage. We

used Finesse 2 in this study for it is the stable version when the study is started.

The newest version, Finesse 3, has been updated recently and is able to run the

same simulation with a faster speed. The set up for the simulation is based on a

simple Fabry-Perot cavity. A schematic of the set-up is shown in Figure 1.3. A

mirror map is applied on its front mirror to simulated complex situations. And a

tilting angle is applied on its end mirror to change the output signals. We collect

the 2-dimensional DC signal on the reflected side of the cavity by adding a beam

detector. For gravitational wave detection, we usually use photo-detectors which

contains only 1-dimensional feedback. We are expecting adding multiple photo-

detectors to form a array that can simulate a 2-dimensional signals. Therefore, the

resolution of the beam detector needs to be restricted and here we use a 4×4 sample

rate. When the 4×4 sample rate is set to the beam detector, the simulation returns

16 intensity values as the output of one run. For comparison, a few data sets with

CHAPTER 1. INTRODUCTION 8

different precision and different mirror types are generated, each data set contains

10000 samples with 100 to 10000 cuts, depends on the number of mirror maps. To

clarify, these outputs are called “raw data sets”.

Figure 1.3.: Schematic of the Set-up

In the second part, PCA technique is applied on those raw data sets to reduce

the redundant information in it. For an example, with a tiny tilting angle applied to

the cavity, the intensity from the corner of a beam detector will not change much.

Thus, even though the intensity value from the corner should be taken into training,

it should not have the same weight as the intensity value from the centre of the beam

detector. PCA technique will help us rearrange the weight of these raw data sets

and it will return another 16 values with reorganized basis, we call them “transferred

data sets”. These transferred data sets are then split into several matrices so that

they can be put into the deep learning model and are ready for training.

In the third part, we put the data sets into training. There are several Python

packages that provide deep learning related functions. Tensorflow and PyTorch [9]

are two of the most famous choice. We chose the latter one for its user-friendly

features. In this study, we built four different deep learning models based on two

groups of features. The model is either a linear model or with a convolutional neural

network structure. And the model is either a classification model or a regression

model. When all these models are fully trained by transferred data sets, we can find

out the best model and optimize it for later research.

Though the whole study is set on computer simulations, it is necessary to under-

stand the basic ideas of gravitational wave and its detection. The thesis is organized

as follows: in the first two chapters, we will discuss some physics theory used in this

study. In chapter 2, we will first explain the basic ideas of gravitational waves, how

9

we detect them and the noises of a gravitational wave detector. And in chapter 3,

some definitions and calculations from laser physics will be introduced to help un-

derstanding the basic physics within the gravitational wave detectors. In chapter 4,

there is a detailed introduction of all deep learning related ideas in this study. We

will explain everything from the basic neurons to the structure of the whole models.

Finally, in chapter 5, the methods and detailed simulation settings will be shown.

There is a explanation for the whole simulation system in this chapter. The result

of this study will also included in the same chapter. A summary will be written in

chapter 6. Some future works will also be contained in the same chapter.

Chapter 2

Gravitational wave

To figure out what how those noises affect on a gravitational detector, we need

to understand what are gravitational waves look like and how are they detected.

Basic theories like general relativity and the Einstein equation are necessary. In this

chapter, we will first introduce the basic physics of general relativity and gravita-

tional waves. Then, we will look back into the development of gravitational detector

to see the ideas of gravitational wave detection, which also shows how Fabry-Perot

cavity is introduced in the system. The chapter will end up with the main problem

of this study, which is the noises in gravitational wave detection.

2.1 General relativity

Back into 1905, Einstein created special relativity. Based on the view of special

relativity, Einstein steps further into the universe and created the theory of general

relativity. General relativity is a theory that combines time, space and gravity to-

gether. It explains the cause of gravity as a kind of curvature in the time-space. And

first developed an idea that gravity is not a normal force, but a geometric effect.

Einstein also predicted the existence of gravitational waves based on this geometric

effect [10]. For decades, this area of study stayed silenced for there is no experimen-

tal progress based general relativity. Until Jocelyn Bell Burnell detected the first

pulsar star in 1967, people started to put more attention to general relativity and

gravitational waves. Finally in 2015, LIGO directly detected the first gravitational

wave signal in human history [11]. This section will start with an introduction to

general relativity theory.

Gravitational waves are generated by gravitational events and propagate through

the space. And its one of the key conclusions of Einstein field equations. For any

points in space-time, we have:

xµ = (−ct, x, y, z) (2.1)

Which contains the information of both time and space position. If we consider

10

11 2.1. GENERAL RELATIVITY

a slight displacement dxµ from the point, we have the distance between these two

points as:

ds2 = gµνdx
µdxν (2.2)

Where gµν is the metric tensor that represent the structure of space-time near point

xµ. For a flat universe with Ω = 1, it can be represented as the tensor as follows:

gµν = ηµν =

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (2.3)

More generally, the metric tensor obeys Einstein field equations:

Gµν = Rµν −
1

2
gµνR (2.4)

=
8πG

c4
Tµν (2.5)

On the left-hand side, Gµν is the Einstein tensor which represent the status of space

and time. On the right-hand side, Energy-momentum tensor Tµν shows the status of

matters. G and c in the equation are just constant of gravitation and speed of light.

Rµν and R are called Ricci tensor and Ricci scalar respectively, and their definitions

are as follow:

Rµν = Rλ
µλν (2.6)

R = Rµ
µ = gµνRµν (2.7)

Rλ
µλν here is a specific Riemann curvature tensor with general definition as follows:

Rγ
µρν =

∂Γγ
µν

∂xρ
− ∂Γγ

µρ

∂xν
+ Γγ

αρΓ
α
µν − Γγ

βνΓ
β
µρ (2.8)

Where Γ is called Christoffel symbol:

Γρ
µν =

1

2
gρδ
(
∂gνδ
∂xµ

+
∂gµδ
∂xν

− ∂gµν
∂xδ

)
(2.9)

To simplify, the partial derivative later in this thesis will be written as the following

notation:

Aµ,ν :=
∂

∂xν
Aµ (2.10)

CHAPTER 2. GRAVITATIONAL WAVE 12

2.2 Solution of Einstein Equation

For Minkowski space where no matter exists, the right-hand side of Einstein

Field Equation is set to 0 because of the Energy-momentum Tµν is 0 . Which gives:

Gµν = Rµν −
1

2
gµνR = 0 (2.11)

If we consider a small perturbation in flat Minkowski space, we have the metric

tensor as:

gµν = ηµν + hµν (2.12)

The Christoffel symbol are recalculated as:

Γρ
µν =

1

2

(
ηρδ + hρδ

)(∂ (ηνδ + hνδ)

∂xµ
+

∂ (ηµδ + hµδ)

∂xν
− ∂ (ηµν + hµν)

∂xδ

)
=

1

2

(
ηρδ + hρδ

)
(hνδ,µ + hµδ,ν − hµν,δ)

≈ 1

2
ηρδ (hνδ,µ + hµδ,ν − hµν,δ) (2.13)

Ricci tensor and Ricci scalar are represented as:

Rµν = Rλ
µλν

=
∂Γλ

µν

∂xλ
−

∂Γλ
µλ

∂xv
+ Γλ

αλΓ
α
µν − Γλ

βνΓ
β
µλ

≈
∂ 1
2η

λδ (hνδ,µ + hµδ,ν − hµν,δ)

∂xλ
−

∂ 1
2η

λδ (hλδ,µ + hµδ,λ − hµλ,δ)

∂xν

=
1

2
ηλδ (hνδ,µλ + hµδ,νλ − hµν,δλ) (2.14)

R = gµνRµν

≈ 1

2
ηµνηλδ (hνδ,µλ + hµδ,νλ − hµν,δλ) (2.15)

The Einstein equation can be rewritten as:

Gµν = Rµν −
1

2
gµνR

=
1

2

[
hδν,µδ + hδµ,νδ −□hµν − h,µν − ηµν

(
hδσ,δσ −□h

)]
(2.16)

With d’Alembert operator □ = ∂µ∂µ = ηµv∂µ∂ν . Then if we rewrite the perturba-

tion term and define the trace-reversed tensor as:

h̃µν = hµν −
1

2
ηµνh (2.17)

13 2.2. SOLUTION OF EINSTEIN EQUATION

We can simplify Einstein equation as:

Gµν =
1

2

(
h̃δν,µδ + h̃δµ,νδ −□h̃µν − ηµν h̃

δσ
,δσ

)
(2.18)

Now consider the following Lorenz gauge conversion:

x′µ = xµ + ξ(x) (2.19)

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ

=
(
δαµ − ξα,µ

) (
δβν − ξβ,ν

)
(ηαβ + hαβ)

= ηµν + hµν − ξµ,ν − ξν,µ (2.20)

The perturbation term of Lorenz gauge conversion is:

h′µν = g′µν − ηµν = hµν − ξµ,ν − ξv,µ (2.21)

h′ = h− ξσ,σ − ξσ,σ = h− 2ξσ,σ (2.22)

The trace-reversed tensor becomes:

h̃′µν = h′µν −
1

2
ηµνh

′

= hµν − ξµ,ν − ξν,µ − 1

2
ηµν

(
h− 2ξσ,σ

)
= h̃µν − ξµ,ν − ξν,µ + ηµνξ

σ
,σ (2.23)

We can always find one ξµ that satisfies the 1st derivative of Lorenz gauge conversion

to be 0
(
h̃′µν,µ = 0

)
. Under this harmonic condition, all Lorenz gauge term can be

omitted and we simplify Einstein’s equation as:

Gµν = −1

2
□h̃µν (2.24)

The Gravitational wave equation constrains 2nd derivative of hµν through h̃µν :

□h̃µν = −16πG

c4
Tµν (2.25)

Since in flat universe, we have the energy momentum tensor to be 0 , the gravitational

wave equation can be simplified to:

□h̃µν = 0 (2.26)

CHAPTER 2. GRAVITATIONAL WAVE 14

Assume we have a plane wave as:

h̃µν = Aµνe
i(kλxλ−ϕ0) (2.27)

We figure out:

□Aµνe
i(kλxλ−ϕ0) = Aµνη

λσ∂λ∂σe
i(kλxλ−ϕ0) = 0 (2.28)

For that, we only need ηλσkλkσ = 0. Lorenz and transverse trace-less gauges also

constrain Aµν :

kµAµν = 0, Aµνu
ν = 0, Aµ

µ = 0 (2.29)

Which gives us:

ck0 = k3, Aµ0 = Aµ3 = 0, A22 = −A11 (2.30)

The plane wave solution simplifies to:

h̃µν = hµν

= Aµνe
i(kλxλ−ϕ0)

=

0 0 0 0

0 A11 A12 0

0 A12 −A11 0

0 0 0 0

 ei(k
3(z−ct)−ϕ0)

(2.31)

Therefore, factor Aµν can be polarized into two basis tensors:

hµν =
(
A+h

+
µν +A×h

×
µν

)
e−i(ϕ0+ωt) (2.32)

Where:

A+ ≡ A11, A× ≡ A12 (2.33)

h+µν ≡

0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 , h×µν ≡

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 (2.34)

These represent the two gravitational wave polarization, usually referred to as ”plus”

and ”cross” gravitational waves. A schematic of these two polarization are as

follows[12]:

15 2.3. GRAVITATIONAL WAVE DETECTORS

Figure 2.1.: The two gravitational wave polarization

2.3 Gravitational wave detectors

Since Einstein first predicted the existence of gravitational waves. Various type

of gravitational wave detectors has been developed to fetch a real gravitational wave

signal. Around 1968, Joe Weber first started the search for gravitational waves.

His resonant mass detectors are developed and built at the university of Maryland,

called Weber bar [13]. It consisted of huge aluminium cylinders with the total size

of 2 meters in length and 1 meter in diameter. The aluminium is separated into two

parts, each end is like a test mass, while the centre is like a spring. He assumed

that a gravitational wave excites vibrational motion. And the strain gauges at the

mid-line could sense that vibration. Though Weber claimed that one gravitational

wave has been detected, he cannot reproduce any other outcome like that event. The

good thing is, Weber’s effort still motivated the researchers in this area of study.

His study became a world-wide effort to detect gravitational waves and to develop

related technologies. Interferometer groups started to be developed at Caltech, MIT

and other universities. Eventually, the idea of building a km-scale gravitational wave

detector was put into practice.

CHAPTER 2. GRAVITATIONAL WAVE 16

Figure 2.2.: Detection of gravitational waves

Basically, a ground-based gravitational wave detector is a Michelson interferom-

eter with a larger scale. Figure 2.1 shows how a gravitational wave be detected by

an interferometer detector. The laser comes from the left first hits a beam splitter.

Then the beam splitter divides the laser into two beams. Each beam then goes

through a long tunnel, hits the mirror and reflected back to the beam splitter. Two

beams combine as one signal at this point and the Detector collects the reflected

signal.

Assume we have the initial laser as Ein. It will be split by the beam splitter as

follows:

Figure 2.3.: Beam splitter

For a 50:50 lossless beam splitter:

Er = r̃bsEin (2.35)

17 2.3. GRAVITATIONAL WAVE DETECTORS

Et = t̃bsEin (2.36)

|r̃bs| =
∣∣t̃bs∣∣ = 1√

2
(2.37)

The interference is the sum of multiple waves. We have the transmitted wave and

reflected wave as:

Er =
1√
2
Ein1 +

1√
2
Ein2 (2.38)

Et =
1√
2
Ein1 −

1√
2
Ein2 (2.39)

Assuming beam splitter phase relation I on transmission, we have:

Er =
1√
2
Ein1

1√
2
e

2iωL2
c +

1√
2
Ein2

1√
2
e

2iωL1
c

= −i sin

(
2ω∆L

c

)
Eine

2iωL
c

(2.40)

Where L1 = L+∆L and L2 = L−∆L. Given that P = E∗E, we can calculate the

laser power changes as:
Pr

Pin
=

1− cos 4ω∆L
c

2
(2.41)

And the maximum and minimum power of signal are respectively:

Pmax ≡ (Er + Et)
2 (2.42)

Pmin ≡ (Er − Et)
2 (2.43)

Remember we have discussed the propagation of gravitational waves along z-axis

with two different modes, the plus wave and the cross wave. When a gravitational

wave hits from the top of a Michelson interferometer, it will cause a phase change

in its two arms. Thus, we can detect the gravitational wave from the interference

pattern or the interferometer.

The first direct observation of gravitational waves has been made by LIGO

and Virgo in 2015. Nowadays we even have multiple ground-based interferometer

detectors that works together, and indeed we have a lot more advantages than

one single detector. We currently have aLIGO (Advanced LIGO) in Hanford and

Livingston in United States, Virgo in Europe, and KAGRA [14] in Japan working

together as one whole system. And this study is based on the noise problems in this

type of detectors.

CHAPTER 2. GRAVITATIONAL WAVE 18

2.4 Noises of gravitational wave detectors

We know the gravitational wave is so weak that resonant mass detectors failed

to detect it directly. A plot of estimated signal strengths for both the interferometer

detectors and other detectors is as follows:

Figure 2.4.: Estimated signal strengths for various detectors

For interferometer detectors like LIGO, noises are sill one of the main problems

for a good observation. In this section, we will introduce some of the main noises in

gravitational wave detection. They are shot noise, radiation pressure noise, thermal

noise and seismic noise.

As long as we use laser beam as our tool, we cannot avoid shot noise. The

cause of shot noises is the quantum fluctuation of photon number in the laser. To

be simple, shot noise is the error of photon counting from the photon detector. Shot

noises can be reduced by increasing the intensity of the laser. However, this method

also causes other problems such as the radiation pressure noise.

As the laser passes through the interferometer and hits the mirror and other

optical equipment, the photon within the laser will lose a part of its energy to

the mirror, causing the mirror to move back and forth. Such movement is called

radiation pressure noise. Unlike shot noise, radiation pressure noise will raise as the

laser intensity raises. This is why we cannot handle these two noises at the same

time. The balance between these two noises gives us a limitation we can reach. This

limit is called is called standard quantum limit (SQL). Although this limitation is

the mechanical limit of lasers, technologies such as quantum squeezing are developed

and used to break through this limitation [15, 16].

19 2.4. NOISES OF GRAVITATIONAL WAVE DETECTORS

Factors of the global system also affect the detector. As temperature of the

system changes, fluctuation appears on both the mirror and other equipment like

the suspension systems of the experiment, which causes mirror thermal noise. The

vibration of the equipment itself also moves as a pendulum, which causes suspended

thermal noise. To avoid these kinds of noises, it is better to choose an experiment

environment with lower temperature. For example, KAGRA attempted to lower the

temperature of the whole tunnel to reduce thermal noises.

By far, all these interferometers are ground-based detectors. The seismic noise

is an unavoidable problem. Earth vibration are the main cause of this kind of noise.

For underground detector like KAGRA, underwater flows also become one of the

main reasons of seismic noise. To avoid this kind of noise, we usually apply multiple

suspension system on the mirrors. There is also another approach to develop a space-

based detector, called LISA. The pathfinder of LISA program has been launched

since 2015.

In this study, we focus on the noises that will cause a displacement to the optical

system, such as seismic noises and radiation pressure noise. The automatic control

system we develop shall be able to recognize the displacement of the mirror and see

if we can add another movement to counter the radiation pressure noise.

Chapter 3

Laser Physics

To build an automatic control system against radiation pressure noise, it would

be too complex to analyse the whole interferometer detector in one model. Therefore,

our aim is to build a simple optical system just like what previous study did, and

make one step further. In this chapter, we will start with a brief review on the

features of Gaussian beam. And we will end up with an explanation on the simple

optical system we choose, which is the Fabry-Perot cavity.

3.1 Gaussian Beam

In optics, a Gaussian beam is an electromagnetic wave beam whose electric field

on transverse direction and intensity distribution approximately satisfy a Gaussian

function. In experiment, many lasers can be approximately treated as a Gaussian

beam. When it is refracted in a near-diffraction-limited lens, a Gaussian beam is

transformed into another Gaussian beam with different beam parameters. Therefore,

a Gaussian beam is a convenient and widely used model in optical systems. The

wave equation of a particular Gaussian beam can be found by Maxwell’s Equation

in electromagnetism. The first step is to find out the equation for electromagnetic

waves. Remember we have Maxwell’s Equation with vacuum condition as follows:

∇ · E = 0 (3.1)

∇ ·B = 0 (3.2)

∇× E = −∂B

∂t
(3.3)

∇×B =
1

c2
∂E

∂t
(3.4)

If we take the curl on Maxwell-Faraday equation, we have:

∇× (∇× E) = − ∂

∂t
∇×B (3.5)

20

21 3.1. GAUSSIAN BEAM

We can replace the terms with Gauss’s law and Ampere’s circuital law:

∇× (∇ · E)−∇2E = − ∂

∂t

1

c2
∂E

∂t
(3.6)

−∇2E = − 1

c2
∂2E

∂t2
(3.7)

Rearrange the equation and we have the wave equation as follows:(
∇2 − 1

c2
∂2

∂t2

)
E = 0 (3.8)

To solve this equation, assume we have the following solution for a plane wave:

E(x, t) = u(x, y, z)ei(ω0t−kz) (3.9)

The wave propagates along z-axis. The real part of this solution represents the

electric field, while ω0 hear is the angular frequency, k is the wave number defined

by k = ω0
c , and u is called displacement vector, which represents the displacement

from the plane. We take this solution back into the wave equation and we will find:(
∇2 − 1

c2
∂2

∂t2

)
E =

(
∇2 − 1

c2
∂2

∂t2

)
u(x, y, z)ei(ω0t−kz)

=

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2

)
u(x, y, z)ei(ω0t−kz)

=

(
∂2

∂x2
+

∂2

∂y2

)
u(x, y, z)ei(ω0t−kz)

+
∂

∂z

[
∂

∂z
u(x, y, z)− iku(x, y, z)

]
ei(ω0t−kz)

+ k2u(x, y, z)ei(ω0t−kz)

=

(
∂2

∂x2
+

∂2

∂y2

)
u(x, y, z)ei(ω0t−kz)

+

(
∂2

∂z2
u(x, y, z)− 2ik

∂

∂z
u(x, y, z)

)
ei(ω0t−kz)

=

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 2ik

∂

∂z

)
u(x, y, z)ei(ω0t−kz) (3.10)

Therefore, the condition is:(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 2ik

∂

∂z

)
u(x, y, z) = 0 (3.11)

CHAPTER 3. LASER PHYSICS 22

Furthermore, we assume the wave does not change along z-axis to make it simpler.

We take ∂2u
∂z2

≈ 0 and the condition is simplified to:(
∂2

∂x2
+

∂2

∂y2
− 2ik

∂

∂z

)
u(x, y, z) = 0 (3.12)

This is called the par-axial approximation of Helmholtz equation. We can assume a

general solution for it as follows:

u = A(z)e
−i k

2q(z)
(x2+y2)

(3.13)

If we take this solution back into the left-hand side of par-axial approximation of

Helmholtz equation, we have:(
∂2

∂x2
+

∂2

∂y2
− 2ik

∂

∂z

)
A(z)e

−i k
2q(z)

(x2+y2)

= A(z)
∂2

∂x2
e
−i k

2q(z)
(x2+y2)

+A(z)
∂2

∂y2
e
−i k

2q(z)
(x2+y2) −A(z)2ik

∂

∂z
e
−i k

2q(z)
(x2+y2)

= −k2

q2
A(z)(x2 + y2)e

−i k
2q(z)

(x2+y2) − 2i
k

q
A(z)e

−i k
2q(z)

(x2+y2)

− 2ik
dA(z)

dz
e
−i k

2q(z)
(x2+y2)

+
k2

q2
A(z)

dq

dz
(x2 + y2)e

−i k
2q(z)

(x2+y2)

=

[
k2

q2

(
dq

dz
− 1

)
(x2 + y2)− 2ik

(
1

q
+

1

A

dA

dz

)]
A(z)e

−i k
2q(z)

(x2+y2)
(3.14)

To satisfy the par-axial approximation of Helmholtz equation, we find out the fol-

lowing conditions:

−1 +
dq

dz
= 0 (3.15)

1

q
+

1

A

dA

dz
= 0 (3.16)

To solve these conditions, we solve first order differential equations for the first

condition and we have the equation of q(z) in the following form:

q(z) = z + q0 (3.17)

The second condition can be rewrite into following form:

1

A

dA

dz
= −1

q
(3.18)

logA = − log q + c (3.19)

23 3.1. GAUSSIAN BEAM

Since we need to find the relationship between there parameters, we need to fit

the boundary conditions into the equation. Simply bring in boundary condition

A(0) = A0 and we have:

c = logA0q0 (3.20)

Therefore, we can see that A(z) is a function of q(z). We now take boundary

condition into consideration. We assume the beam intensity µ goes to 0 when it is

far from the beam centre r2 = x2 + y2 → ∞, which means:

|µ|2 ∝ e
−i k

2q(z)
r2
e∗e

−i k
2q(z)

r2

= e
−i k

2
r2

(
1

q(z)
− 1

q(z)∗

)

= e
−i k

2q(z)2
r2(q(z)∗−q(z))

= e
− k

q(z)2
r2 Im(q(z))

(3.21)

Thus, to satisfy the boundary condition, we need the imaginary part of q(z) to be

positive. We see that q0 is related to the movement of the beam along z-axis. If we

take the centre of the beam of q(z) and note it with z0. And we can also note the

imaginary part of q(z) as zR, we can have the following equation:

q0 = −z0 + izR (3.22)

q(z) = (z − z0) + izR (3.23)

We now have a full view on the shape of the beam:

u(r, z) = A0
−z0 + izR

(z − z0) + izR
e
−i k

2(z−z0)+2izR
r2

(3.24)

The shape of the beam can be determined by the two variables above. z0 defines

the centre of the beam, called the beam waist. While zR defines the divergence rate

of the beam, called Rayleigh range. zR can also be rewritten as follows:

zR =
kw2

0

2
(3.25)

CHAPTER 3. LASER PHYSICS 24

Furthermore, if we look back into the parameter of the beam. We can expand the

parameter as follows:

−z0 + izR
(z − z0) + izR

=
izR (z − z0 − izR)

(z − z0 − izR) (z − z0 + izR)

=
zR

(z − z0)
2 + z2R

[zR + i (z − z0)]

=
zR

(z − z0)
2 + z2R

√
(z − z0)

2 + z2R e
i arctan

z−z0
zR

=
1√(

z−z0
zR

)
+ 12

e
i arctan

z−z0
zR (3.26)

We can also expand the exponential part of the beam as follows:

e
−i k

2(z−z0)+2iR
r2

= e
−i

1zR(z−z0−izR)
w2
0(z−z0)

2+z2
R

r2

= e

− 1

w2
0

1+i z
zR

1+

(
z−z0
zR

)2 r
2

(3.27)

Bringing these two expansions back into the beam equation and we have

u(r, z) = A0
1√(

z−z0
zR

)
+ 12

e

i arctan
z−z0
zR

− 1

w2
0

1+i z
zR

1+

(
z−z0
zR

)2 r
2

(3.28)

To simplify the beam equation, we define the following new parameters:

w2(z) = w2
0

[
1 +

(
z − z0
zR

)2
]

(3.29)

R(z) = (z − z0)

[
1 +

(
zR

z − z0

)2
]

(3.30)

η(z) = arctan
z − z0
zR

(3.31)

Here, ω(z) is called spot size, which represent radius of them beam at the beam

waist z0. R(z) is radius of curvature, which represent how the beam get diverse.

And η(z) is called Gouy phase of the beam. Gouy phase is a dimensionless value

which contains higher order information of the beam.

Remember that we already have beam waist z0 and Rayleigh range zR. We now

have altogether five beam parameters determined, and the general form of beam

25 3.2. BEAM PARAMETERS

equation is as follows:

u(r, z) = A0
w0

w
e
−
(

1
w2+i k

2R

)
r2+iη

(3.32)

3.2 Beam Parameters

Next, we will explain the physical meaning of those five beam parameters in

details: spot size, beam waist Rayleigh range, radius of curvature and Gouy phase.

Here is a simple schematic figure for a Gaussian beam from the side:

Figure 3.1.: Gaussian Beam

3.2.1 Spot Size w(z)

Spot size of the beam shows the spread of the beam along xy-plane. The inten-

sity of the beam is:

I(r, z) = |u|2 = A2
0

w2
0

w2
e−

2r2

w2 (3.33)

Intensity of the beam will gradually decrease as it goes far away from the beam

centre. As is shown in the following figure:

Figure 3.2.: Side view of Gaussian Beam

CHAPTER 3. LASER PHYSICS 26

The power can be calculated as:

P (r0) =

∫ ∞

−∞

∫ ∞

−∞
I(r, z)dxdy

=

∫ 2π

0

∫ r0

0
I(r, z)rdrdθ

= 2π

∫ r0

0
I(r, z)rdr

= 2π

∫ r0

0
A2

0

w2
0

w2
e−

2r2

w2 rdr

= π

∫ r0

0
A2

0

w2
0

w2
e−

s2

w2 ds

=
π

2
A2

0w
2
0

(
1− e−

2r2

ω2

)
(3.34)

If we calculate the total power towards infinity, we have:

P0 =
π

2
A2

0w
2
0 (3.35)

While the power within the spot size is:

Pω =
π

2
A2

0w
2
0

(
1− e−2

)
(3.36)

= P0

(
1− e−2

)
(3.37)

We can see the area within the spot size contains about 86.4% of total beam power.

This can be used to represent the radius of the beam quite well.

3.2.2 Beam waist z0

Beam waist represent the position where the gaussian beam if most conversed.

That is to say, at z = z0, we have the spot size w(z) reaches its minimum. Usually,

we also note the spot size at the beam waist as w0 = w (z0). And can be calculated

by Rayleigh range as follows:

w0 =

√
λ

π
zR (3.38)

3.2.3 Rayleigh range zR

Rayleigh range represents the divergence rate of the beam:

zR =
1

2
kw2

0 (3.39)

27 3.2. BEAM PARAMETERS

By definition, it is the distance along the propagation direction of a beam from the

beam waist to the place where the spot size is doubled:

w (z0 ± zR) =
√
2w0 (3.40)

Therefore, a large Rayleigh range means the beam will extend a longer distance be-

fore its spot size get doubled, which also means that the beam would stay converged

for a longer distance in total.

3.2.4 Radius of Curvature R(z)

Radius of Curvature of a gaussian beam basically has the same physical meaning

as it is in mathematics:

R(z) = (z − z0)

[
1 +

(
zR

z − z0

)2
]

(3.41)

It equals to the radius R(z) of the circular arc which best approximates the curve

at the very point z. If we take a look at the phase of a gaussian beam:

ϕ = − k

2R(z)
r2 − kz + η(z) (3.42)

We can always find a sphere Mϕ that has the same phase ϕ. If we note zϕ as the

cross point between z-axis and that sphere, we can simplify the above equation and

have the phase as:

ϕ = −kzϕ + η (zϕ) (3.43)

Thus, the sphere Mϕ can be represented as:

−kzϕ + η (zϕ) = − k

2R(z)
r2 − kz + η(z) (3.44)

Rearrange this equation and we can have the change of Gouy phase as:

η(z)− η (zϕ) =
k

2R(z)
r2 + kz − kzϕ (3.45)

We know the Gouy phase a defined by arc-tan function and we have the summation

law of arc-tan as follows:

arctanx− arctan y = arctan
x− y

1 + xy
(3.46)

We also know that for the region near the sphere of same phase, we can assume

|z − zϕ| ≪ zR. Which means we can use the 1st order Maclaurin expansion and

CHAPTER 3. LASER PHYSICS 28

simplify the arc-tan term as follows:

arctanx = x− x3

3
+

x5

5
+ · · · ≈ x (3.47)

Expanding our phase equation with these two assumptions and we have:

η(z)− η (zϕ) = arctan
z − z0
zR

− arctan
zϕ − z0
zR

= arctan

z−z0
zR

− zϕ−z0
zR

1 + z−z0
zR

zϕ−z0
zR

= arctan
zR (z − zϕ)

z2R + (z − z0) (zϕ − z0)

≈
zR (z − zϕ)

z2R + (z − z0) (zϕ − z0)
(3.48)

For a normal laser well used in optical systems, the wave length λ is about 10−7 m.

Which is far smaller than the Rayleigh range, which at about 10◦m order of magni-

tude. Therefore, we can assume λ ≪ zR and make a simplification as follows:

η(z)− η (zϕ) ≈
1

zR
(z − zϕ) ≪ k (z − zϕ) (3.49)

Therefore, change of the Gouy phase can be omitted when we are calculating near

sphere Mϕ, which gives:
k

2R(z)
r2 + k (z − zϕ) = 0 (3.50)

By the definition, we also have the change of the radius of curvature as:

R(z)−R (zϕ) = (z − z0)

[
1 +

(
zR

z − z0

)2
]
− (zϕ − z0)

[
1 +

(
zR

zϕ − z0

)2
]

= (z − z0) +
z2R

z − z0
− (zϕ − z0) +

z2R
zϕ − z0

= z − zϕ +
z2R

z − z0
−

z2R
zϕ − z0

= z − zϕ + z2R

[
zϕ − z

(z − z0) (zϕ − z0)

]
= (z − zϕ)

[
1−

z2R
(z − z0) (zϕ − z0)

]
(3.51)

29 3.3. HERMITE GAUSSIAN MODE

Rearrange the equation of sphere Mϕ and we have:

r2 + 2R(z) (z − zϕ) = 0 (3.52)

r2 + 2

[
R (zϕ) + (z − zϕ)

[
1−

z2R
(z − z0) (zϕ − z0)

]]
(z − zϕ) = 0 (3.53)

Just like what we did above, we assume z ≈ zϕ near the sphere and thus we can

omit the 2nd order term:

r2 + 2R (zϕ) (z − zϕ) = 0 (3.54)

r2 + [z − [zϕ −R (zϕ)]]
2 = R (zϕ) (3.55)

Therefore, we find out the radius of curvature of one point from the sphere Mϕ with

the same phase, where the centre of the sphere located at (0, zϕ −R (zϕ)). As we

check the boundary of R(z), we found it reaches infinity around point z0 :

lim
z→z0

R(z) = ∞ (3.56)

And for beam distance of infinity, we have:

lim
z→∞

R(z) = z − z0 (3.57)

Therefore, we can assume the gaussian beam to be a plane wave near the beam

waist. However, for those parts of beam that are far away, it can only be considered

as a spherical wave.

3.2.5 Gouy phase η(z)

Gouy phase is the phase shift as gaussian beam propagates away from the beam

waist. We usually treat a gaussian beam as a plane wave, but we found that the

beam is actually a spherical wave as it propagates far away. Therefore, there is a

phase shift between the gaussian beam and a plane wave, and it is called the Gouy

phase η(z) :

η(z) = arctan
z − z0
zR

(3.58)

At infinitely far away, it approaches to π
2 . At Rayleigh range, it equals to π

4 . In

addition, Gouy phase will become larger with a higher order mode.

3.3 Hermite Gaussian mode

A gaussian beam have infinite mode at the same time. What we have calcu-

lated in the former section merely showed its basic mode, for we took the par-axial

CHAPTER 3. LASER PHYSICS 30

approximation of Helmholtz equation. When we consider the gaussian beam not as

a simple plane wave, it will contain many higher order modes. If we decompose a

coherent par-axial beam using the orthogonal set, we will get a group of higher order

modes and they are called the Hermite Gaussian mode [17]. Here are two figures for

the 00 mode (base mode) and 10 mode:

Figure 3.3.: Hermite Gaussian 00 mode

Figure 3.4.: Hermite Gaussian 10 mode

The general form of Hermite Gaussian mode is as follows:

Ulm(x, y, z) = Ul(x, z)Um(y, z)e−ik(z−z0)+i(l+m+1)η (3.59)

We see it is given by the product of a factor in x and a factor in y. The term Un(x, z)

31 3.3. HERMITE GAUSSIAN MODE

is the component of factor in x :

Un(x, z) =

(
2

πω2

) 1
4

√
1

2nn!
Hn

(√
2x

w

)
e−(

x
w)

2−i kx
2

2R (3.60)

Where Hn(x) is called Hermite polynomials and is as follows:

Hn(x) = (−1)nex
2 dn

dxn
e−x2

(3.61)

The Hermite Gaussian mode has the same beam parameter just as the one of basic

mode has:

w2(z) = w2
0

[
1 +

(
z − z0
zR

)2
]

(3.62)

R(z) = (z − z0)

[
1 +

(
zR

z − z0

)2
]

(3.63)

η(z) = arctan
z − z0
zR

(3.64)

Consider the previous basic mode in notation of Hermite Gaussian mode:

U00(x, y, z) = U0(x, z)U0(y, z)e
−ik(z−z0)+iη

=

√
2

πω2
e
−ik(z−z0)+iη−(x2+y2)

(
1

w2+
ik
2R

)
(3.65)

We can rewrite the general form of Hermite Gaussian mode in terms of basic mode

as:

Ulm(x, y, z) =

√
1

2ll!2mm!
Hl

(√
2x

w

)
Hm

(√
2y

w

)
U00(x, y, z)e

i(l+m)η (3.66)

With the Hermite Gaussian mode explained, we can finally calculate the move-

ment of the beam. It can be separated into two movement, translation and rotation.

For beam translation, we have the original coordinate as (x′, y′, z′), and the

translated coordinate as (x, y, z). Assume a gaussian beam is translated along x-

axis for a small translation δx. The basic mode of the beam can be represented

as:

U00(x, y, z) = U00

(
x′ − δx, y, z

)
(3.67)

Like how we calculated beam parameter in the previous section, if we take the 1 st

order Maclaurin expansion, we can have the beam translation for 00 mode and 10

CHAPTER 3. LASER PHYSICS 32

mode as follows:

U00(x, y, z)|z′=0 ≈ U00

(
x′, y′, 0

)
+

δx

w0
U10

(
x′, y′, 0

)
(3.68)

U10(x, y, z)|z′=0 ≈ U10

(
x′, y′, 0

)
− δx

w0
U00

(
x′, y′, 0

)
(3.69)

For beam rotation, we use similar coordinates as in translation and apply a small

rotation δθ. In form of matrix, the rotation is as follows:(
x

z − z0

)
=

(
cos δθ sin δθ

− sin δθ cos δθ

)(
x′

z′ − z0

)
(3.70)

With the same assumption, the rotation of the beam with 00 mode and 10 mode

can be represented as:

U00(x, y, z)|z′=0 ≈ U00

(
x′, y′, 0

)
+ i

δθ

α0
U10

(
x′, y′, 0

)
(3.71)

U10(x, y, z)|z′=0 ≈ U10

(
x′, y′, 0

)
+ i

δθ

α0
U00

(
x′, y′, 0

)
(3.72)

Where:

α0 =
2

kω0
(3.73)

3.4 Fabry-Perot Cavity

In this section, we will introduce an basic optical structure that is widely used in

telecommunications, lasers and spectroscopy to control and measure the wavelengths

of light [18]. It is applied in both arms of all interferometer-type gravitational wave

detector. It is also the main structure of our setup for simulation, the Fabry-Perot

cavity. A simple schematic figure of a Fabry-Perot cavity is as follows:

Figure 3.5.: Fabry-Perot Cavity

A Fabry-Perot cavity is a pair of mirrors in parallel position. Both mirrors have

high reflectivity on the surface facing each other. For such structure, optical waves

can pass through the optical cavity only when they are in resonance with it. Those

33 3.4. FABRY-PEROT CAVITY

resonant waves will travel back and forth through this cavity for a long time, in order

to extend the optical path. The phenomenon here is called resonant enhancement.

In general, the mirror on the laser source side is called front mirror and the other

one is called end mirror. Usually, the end mirror has a higher reflection rate than the

front mirror. Assume the input laser has the resonant frequency of the Fabry-Perot

cavity. Its wave equation is given by:

Ein = E0e
iωt (3.74)

We note the reflect coefficient for both mirrors as rF , rE and the transmit coefficient

as tF , tE . The wave equation inside the cavity can be calculated by summing up the

transmitted beam inside the cavity with all other beams that get reflected by the

front mirror as follows:

Ecav (ϕ) = tFEin + rErF tFEine
iϕ + r2Er

2
F tFEine

2iϕ + · · ·

=
tFEin

1− rF rEeiϕ
(3.75)

Where ϕ is the phase shift for one back and forth process. It is proportional to the

length of the cavity and is defined by:

ϕ =
2ωL

c
(3.76)

The reflected wave equation can be calculated by taking the combination of the

reflected component from the front mirror and the transmitted component from the

cavity in the inverse direction:

Er(ϕ) = rFEin + tFEcav(ϕ)

=

(
rF −

t2F rEe
iϕ

1− rF rEeiϕ

)
Ein (3.77)

And the transmitted wave equation is then:

Et(ϕ) = tEEcav(ϕ)e
iϕ

=
tF tEe

iϕ

1− rF rEeiϕ
Ein (3.78)

From these two wave equations, we can calculate the reflection rate and transmission

CHAPTER 3. LASER PHYSICS 34

rate by the following division:

rcav(ϕ) =
Er

Ein
= rF −

t2F rEe
iϕ

1− rF rEeiϕ
(3.79)

tcav(ϕ) =
Et

Ein
=

tF tEe
iϕ

1− rF rEeiϕ
(3.80)

If we take the square of the reflected wave equation and transmitted wave equation,

we have the power of those two waves as follows:

Pr(ϕ) = |Er(ϕ)|2

= |rcav(ϕ)|2 Pin

=

[
rF −

t2F rEe
iϕ

1− rF rEeiϕ

]∗ [
rF −

t2F rEe
iϕ

1− rF rEeiϕ

]
Pin

=

[(
t2F + r2F

)
rE − rF

]2
+ 4rErF

(
t2F + r2F

)
sin2 ϕ

2

(1− rF rE)
2 + 4rF rE sin2 ϕ

2

Pin (3.81)

Pt(ϕ) = |Et(ϕ)|2

= |tcav(ϕ)|2 Pin

=

[
tF tEe

iϕ

1− rF rEeiϕ

]∗ [
tF tEe

iϕ

1− rF rEeiϕ

]
Pin

=
(tF tE)

2

(1− rF rE)
2 + 4rF rE sin2 ϕ

2

Pin (3.82)

To simplify, we defined another parameter F = 4rF rE
(1−rF rE)2

, the power can be rewrited

into:

Pr(ϕ) =

[(
t2F + r2F

)
rE − rF

]2
+ 4rErF

(
t2F + r2F

)
sin2 ϕ

2

(1− rF rE)
2
[
1 + F sin2 ϕ

2

] Pin (3.83)

Pt(ϕ) =
(tF tE)

2

(1− rF rE)
2
[
1 + F sin2 ϕ

2

]Pin (3.84)

The properties of a Fabry-Perot cavity depend on the parameters of the cavity.

If we want to check out how the relative transmittance between the two mirrors

affects the reflected, circulating, and transmitted fields in a clear view, we can build

a simulation model in FINESSE. We will dive into this simulation system later in

data generation section, but now we only took a glance at these different signals of

Fabry-Perot cavity against a frequency offset. Figure 3.6 below shows the reflected

signal, circulating signal and transmitted signal of a 4 km Fabry-Perot cavity. Note

the circulating signal is detected on the side of front mirror:

35 3.4. FABRY-PEROT CAVITY

Figure 3.6.: Signals of Fabry-Perot Cavity

For a typical Fabry-Perot cavity, the resonant condition is:

ϕc = 2nπ (3.85)

Under this frequency, the transmitted light and circulating light will reach their

maximum power. Therefore, it is called the resonant state of cavity. We know this

resonant condition depends on the angular frequency ωc and the length L of the

cavity as follows:

ϕ =
2Lω

c
(3.86)

Based on the above formula, our resonant condition can be rewrite with regard of

the angular frequency ωc and the length L as follows:

Lωc = nπc (3.87)

In figure 3.6, we can see several gaps between two resonant states. These gaps are

called free spectrum range. There are two types of gaps depending on the variables.

For a fixed laser frequency, the length gap of free spectrum range can be calculated

by its frequency as follows:

LFSR =
c

2f
(3.88)

While for a fixed cavity length, the frequency gaps of free spectrum range can be

calculated by its length using the same way:

fFSR =
c

2L
(3.89)

CHAPTER 3. LASER PHYSICS 36

Usually, when we are talking free spectrum range, we mean the frequency gaps fFSR.

Figure 3.7.: Free Spectrum Range

In addition, it is obvious to see that the difference between every two resonant

frequency and cavity length are proportional to each other. If we take several points

on the resonant state of Fabry-Perot cavity and add a fitting line to it, we achieve

the following figure:

Figure 3.8.: Fitting line for FSR

We see that the signals from a Fabry-Perot cavity are periodical functions

against frequency. The blue points are the intensity peaks of the resonant states.

The red line is the fitting line. When we keep focusing on one of those peaks, we

could calculate the full width at half maximum of that peak from the phase shift at

half maximum power.

37 3.5. PDH AND WFS METHODS

Figure 3.9.: Full Width Half Maximum

Simply bring in the power at resonant frequency and we can find:

Pt (ϕhalf) =
1

2
Pt (ϕc) (3.90)

1

1 + F sin2 ϕhalf
2

Pin =
1

2
Pin (3.91)

sin
ϕhalf

2
= ± 1√

F
(3.92)

ϕhalf ∼ ± 2√
F

(3.93)

Therefore, when we bring ϕhalf into frequency domain, we have the full width at

half maximum in the form of free spectrum range:

fFWHM =
c (2ϕhalf)

4πL
=

1− rF rE
π
√
rF rE

fFSR (3.94)

The frequency ratio between free spectrum range and full width of half maximum

is called finesse, written in F :

F =
fFSR

fFWHM
=

π
√
rF rE

1− rF rE
(3.95)

3.5 PDH and WFS methods

The traditional method of mirror control is to first use the Pound-Drever-Hall

(PDH) technique to lock the beam, and use the Wave-front sensing (WFS) signals

to calculate the tilting angle of the mirror [19, 20]. With a modulated laser, we have

CHAPTER 3. LASER PHYSICS 38

a laser with side band as follows:

E = E0e
i(ωt+β sinΩt)

≈ E0

[
J0(β)e

iωt + J1(β)e
i(ω+Ω)t − J1(β)e

i(ω−Ω)t
]

(3.96)

Where β is modulation index, Ω is modulation frequency and Jn is Bessel function

of the first kind. Here we only consider the first-order side band. The intensity of

transmitted light is now:

Pt = |Et|2

=P0

[
|J0(β)t(ω)|2 + |J1(β)t(ω +Ω)|2 + |J1(β)t(ω − Ω)|2

]
+ 2P0J0(β)J1(β)Re

(
[t(ω)t∗(ω +Ω)− t∗(ω)t(ω +Ω)] e−iΩt

)
+O(2Ω) (3.97)

The first term is the DC component of the beam. If we omit the higher order term

and treat the second term as our RF component, we have PDH signal as:

P I
demod = P0J0(β)J1(β) Im (t(ω)t∗(ω +Ω)− t∗(ω)t(ω +Ω)) (3.98)

PQ
demod = P0J0(β)J1(β)Re (t(ω)t

∗(ω +Ω)− t∗(ω)t(ω +Ω)) (3.99)

The first signal is called the demodulated signal of in phase and the second one is

called the demodulated signal of quadrature phase. We can stabilize the Gaussian

beam by keeping the first signal maximized around the resonant frequency.

After the beam is stabilized, we start to consider the calculation for WFS sig-

nals [21, 22]. Assuming that we have an aligned Gaussian beam, the reflection rate

of the 00 mode is already shown in previous section as:

rcav,00 = rcav = −rF +
t2F rEe

iϕ

1− rF rEeiϕ
(3.100)

The 10 mode is different from 00 mode with a Gouy phase shift ηFP as:

rcav,10 = −rF +
t2F rEe

i(ϕ−2ηFP)

1− rF rEei(ϕ−2ηFP)
(3.101)

We can combine these reflection rate as a reflection matrix:

Ralign
FP =

(
rcav,00 0

0 rcav,10

)
(3.102)

39 3.5. PDH AND WFS METHODS

With a mis-alignment γ from the laser source, we have:

Rmis-align
FP = M∗ (γr)R

align
FP M(γ)

=

(
1 γ∗r

−γr 1

)(
rcav,00 0

0 rcav,10

)(
1 γ

−γ∗ 1

)

=

(
rcav,00 − rcav,10γ

∗
rγ

∗ rcav,00γ + rcav,10γ
∗
r

rcav,00γr − rcav,10γ
∗ −rcav,00γγr + rcav,10

)
(3.103)

Omitting the second order term of the mis-alignment, we can simplify the matrix

as:

Rmis-align
FP =

(
rcav,00 rcav,00γ + rcav,10γ

∗
r

rcav,00γr − rcav,10γ
∗ rcav,10

)
(3.104)

If we assume the laser is generated with only the base mode, we have our mis-aligned

reflection rate as:

rmis−align
cav = rcav,00U00 + (rcav,00γr − rcav,10γ

∗)U10 (3.105)

To simplify, we note rc as the reflection rate of the gaussian beam, rs as the reflection

rate of the side band, we can rewrite the PDH signal of input phase as:

P I
demod = iP0J0(β)J1(β) (r

∗
crs − rcr

∗
s) (3.106)

We can calculate the interference of the beam and its side band as follows:

r∗crs − rcr
∗
s = U00U

∗
00 (r

∗
c0rs0 − rc0r

∗
s0)

+ U00U
∗
10 [rc0 (rs0γ

∗
r + rs1γ)− rs0 (rc0γ

∗
r + rc1γ)]

+ U10U
∗
00 [r

∗
10 (rc0γr + rc1γ

∗)− r∗c0 (rs0γr + rs1γ
∗)] (3.107)

The first term is the PDH signal of the base mode, which equals to 0 and will be

omitted when it is in resonant state. The last two terms are the interference of the

00 mode and 10 mode, which is the components of WFS signal. We note U ≡ U00U
∗
10

and rewrite the components into:

W = U [rc0 (rs0γ
∗
r + rs1γ)− rs0 (rc0γ

∗
r + rc1γ)]

+ U∗ [r∗10 (rc0γr + rc1γ
∗)− r∗c0 (rs0γr + rs1γ

∗)]

= (rc0rs1 + rc1rs0) (Uγ − U∗γ∗)

= (rc0rs1 + rc1rs0)

[
(U − U∗)

δx

w0
+ (U + U∗) i

δθ

α0

]
(3.108)

CHAPTER 3. LASER PHYSICS 40

Bring back U and U∗ and we have the WFS signal under the resonant frequency as:

P I
WFS = iP0J0(β)J1(β)W

= 2P0J0(β)J1(β)U
∗
1U

∗
0U0U0 (rc0rs1 + rc1rs0)

(
δx

w0
sin η − δθ

α0
cos η

)
(3.109)

Chapter 4

Deep Learning

In this chapter, we will introduce some theories in computer science rather than

physics. In this study, the main idea is using deep learning technology to build

an artificial neural network that has the function of a control system. Though the

title of this chapter is named by deep learning technology, we need to make a clear

statement that deep learning is a sub-field of machine learning methods [23]. The

following figure shows the relationship between deep learning, machine learning and

artificial intelligence:

Figure 4.1.: Sub-fields of AI

Since there are many other methods under this topic, we will begin with a brief

introduction on different approaches of machine learning. Then follows up with the

details of those methods we used in this study: principal component analysis and

two types of neural networks. After we finish all the structures of these methods,

we will end up this chapter by introducing details during the learning process.

41

CHAPTER 4. DEEP LEARNING 42

4.1 Machine Learning

Artificial beings with intelligence can be traced back to Greek mythology. As

the development of computer hardware allows people to save massive amount of

structured data, the idea of artificial intelligence starts to show up. Machine learning

is the experimental branch of artificial intelligence, which means making machines to

”learn” the way of solving a particular problem. Usually, the approaches of machine

learning can be divided into three categories: supervised learning, unsupervised

learning and reinforcement learning. They are categorized by the type of learning

results and how these results change the learning models.

Supervised learning is a machine learning method for problems where there

is a clear goal. It is used for solving complex problems that has massive data. Data

sets of supervised learning consist of two parts, the training sets and the label sets

(or sometimes called target sets). Traditional algorithms such as Bayesian statistics

and decision tree are supervised learning. In this study, the artificial neural network

we built belongs to this category.

Unsupervised learning is another method that handles massive data. The

different of this type of learning from supervised one is that there are no label sets

during learning period. A typical example for unsupervised learning is clustering.

Later in this chapter, we will introduce an algorithm called principal component

analysis (PCA), which we will see how the models transfer our raw data sets into

something that contains less redundant information.

Reinforcement learning is another basic method that has different way of

learning. This kind of learning emphasis on taking action to the whole environment

rather than certain data sets. Unlike the other two methods, reinforcement does not

have direct feedback through back-propagation to optimize the model. Instead, it

seeks for a balance between the current information and new information from the

environment. An example for this kind of learning would be the game theory. We

would dive into this method for there is no usage of this method in this study.

By far, all three well used machine learning methods are introduced. There

are also lots of different methods that can be roughly categorized into these three

methods but have their unique characteristics. For this study, only the first two

methods are used and they share the same algorithm while training.

43 4.2. PRINCIPAL COMPONENT ANALYSIS

4.2 Principal Component Analysis

Principal component analysis (PCA) method is a kind of statistical analysis that

helps simplify the complexity of a data sets and remove redundant information. It

is the most basic method among multidimensional data analysis methods without

external criteria. Figure 4.2 is a simple example of analysing 2-dimensional data

sets by PCA method:

Figure 4.2.: Example of 2-dimensional PCA

It can be treated as a linear function that maps the original data to a new basis.

The first step is to find the centre of all data in its original coordinates, choosing it

as the new original points. Then it starts turning the axis to maximize the variance

of all data. This axis is set to be the first coordinate, called the first principal

component. The second step is to find the second axis whose correlation coefficient

with the first component is 0 . This axis is then set to be the second coordinate.

For data sets with higher dimension, the second step will repeat until it all

coordinates are found. The PCA method is often used when there are too many

dimensions. If we set a proper number for the mapped coordinates, the redundant

values within the original data sets will be merged into the other coordinates and

make the new data set looks simpler. For the example in Figure 4.1, we could omit

the second component if we need to further simplify the data set, for the values in

the first coordinate already spread out and the difference between each other is clear

enough.

CHAPTER 4. DEEP LEARNING 44

4.3 Artificial Neural Network

The idea of using artificial neurons to help solving complex problems are pro-

posed by Warren McCulloch and Walter Pitts [24]. The artificial neural network

(ANN) is a mathematical model that is made up of multiple layers and nodes. ANN

is inspired by the biological neural networks that constitute animal brains so that

the aim of an ANN to learn and solve problems. Like a biological neural network,

an ANN model connects its neurons with weights, and using nodes to represent

neurons. A positive weight between two nodes reflects an excitational connection,

while negative values mean inhibitory connections.

First, we will introduce the basic node within a ANN. A node saves the value

of multiple weights and one bias. Each node will take multiple input through those

weights and calculate the summation of these inputs with the bias. Figure 4.3 shows

how a node adding up all its input:

Figure 4.3.: Node

The summation a node simply using the following formula:

y =

n∑
i=1

wixi + b (4.1)

We can say this process act just like a linear combination. Therefore, sometimes

ANN is also called linear neural network. Then, we combine these separated nodes

to form a model. A model contains multiple layers, and each layer is made up of

lots of nodes. A simple schematic figure of an ANN model is as follows:

45 4.3. ARTIFICIAL NEURAL NETWORK

Figure 4.4.: Artificial Neural Network

In this figure, we can see that there are three types of layers and each layer has

multiple nodes.

Input layer on the left-hand side layer is the input side of ANN. The function

of this layer takes in the training data in pass them into the node. The input layer

does not contain the summation process, but just passing one value to each node.

Hidden layer in this figure is the main part of ANN, or sometimes it is just called

middle layer. The number of hidden layers may vary. It depends on the complexity

of the data we want to handle. A larger amount of input value usually means there

needs to be more hidden layers to analyse.

Output layer on the right-hand side returns the result of this ANN model. There

are two types of output for deep learning model, classification and regression. For a

classification model, the output layer contains multiple nodes whose number is equal

to the number of labels. For example, a cat-dog classification model contains an

output layer with two nodes. Each output node in such model means the probability

of the labelled feature. For a regression model, the output layer contains only one

node, and the output from this node returns a float. Using the same cat-dog as an

example, it is a cat if the model returns a number closer to 1 , and it is a dog if the

model returns a number closer to 0 .

In addition, after every node returns an output, there is a function called activa-

CHAPTER 4. DEEP LEARNING 46

tion function. An activation function will control the amplitude of the output before

it is passed to the next layer. We will introduce more about activation function in

the last section of this chapter.

When training an ANN model, we need to set a constant called epoch which

decide how many loops we will train this model. This is necessary because an ANN

model may fall into an over-fitting trap. Then, the model will continually be running

the following training loop until it reaches the epoch number we set. This figure

shows how an ANN model are trained:

Figure 4.5.: Schematic of Training Loop

This loop contains four steps. First, it put the data set into the model and

let the model calculate its output. Then, it compares the output with the label

by a certain loss function and returns the difference between them. After that, the

model will use a certain optimizer to find out how to change the weights and bias

to minimize the loss. Finally, the difference from the loss function is applied to the

model in the opposite direction, which is called back propagation. After the loop

reaches the epoch number, we say the model is trained and can be saved for future

experiment.

4.4 Convolutional Neural Network

Convolutional neural network (CNN) is the second type of model we used in

this study and is proved to be an efficient algorithm with GPU-accelerating technol-

ogy [25]. CNN model is a specific type of artificial neural network that is well known

for its unique ability in analysing visual image. The earliest attempt of using CNN

models is to classify the image of cats and dogs [26]. We know that in ANN model,

nodes build up layers by a 1-dimension order. In CNN model, a layer is constructed

in a 2dimension way. Therefore, there is a stronger relationship between the values

who are neighbouring to each other. And the weights and bias were not saved in

form of nodes, but in form of kernel (or filter). There are several features for CNN

models. Some of them are the same as an ANN model, we just put our emphasis

47 4.4. CONVOLUTIONAL NEURAL NETWORK

on its unique structures. They are convolutional layer, pooling layer, padding layer

and channelling.

Convolutional layer calculates the convolution between the input and a kernel.

Here is a figure shows how values are passed from one layer to another[27]:

Figure 4.6.: Convolutional Layer

When data are passed through a convolutional layer, a kernel with the shape

n× n will be applied on each area of data until it is fully covered. Its output would

be a summation of those values with the kernel unit like what nodes do in ANN.

Pooling layer is used to reduce the number of values. We know convolutional

layer in a CNN model will cause the reduction of value numbers. When there are

too many values in a data set, pooling layer is a good choice. An example of pooling

layer is as follows:

CHAPTER 4. DEEP LEARNING 48

Figure 4.7.: Pooling Layer

Instead of applying a kernel, the pooling layer takes the maximum value of a

certain area and return it as output. We can decide the size of the maximum area

to control the speed of value reduction.

Padding layer increases the number of values by adding some space area on the

outside of a visual image as the following figure:

Figure 4.8.: Padding Layer

Though the padding layer adds a bunch of redundant value into the image, it

is useful when there is a need in blurring the image. As long as the image is large

49 4.5. LOSS FUNCTION

enough, we can omit the negative effect brought by these zeroes.

For some small data set, we cannot build a model that is complex enough with

only these layers, so there is another unique feature that is well used in CNN models.

An image may have multiple channels. For example, an RGB image contains three

channels where each channel saved the information of one colour. Not only for the

difference in colours, any of the difference could be treated as different channels.

Here is an example of increasing the channels of a cat image:

Figure 4.9.: Increasing channels

We can see from the figure that it creates several new channels that allows us

to increase the complexity of our model. The image on the left saved its RGB

information in three channels. After we apply four filters to each of its channel, the

information of this image is transferred into 12 mono-colour channels. Which means

the number of values is four times than before. This technique can be combined with

other layers so that we can increase the number of channels and do convolutional

calculation at the same time.

4.5 Loss Function

We have discussed about the loss function in the training loop. When a neural

network is training, we need to evaluate the different between current output from

the model and the true output it should be. The loss function compares the current

output with the label and returns the difference between them. In addition, usually

the batched loss function with more than one data is also called cost function. In

this thesis, we will not put too much emphasis on this part and just call them loss

functions. There are many different loss functions, each has a particular formula to

calculate the difference. We will introduce three basic loss functions that are well

used in deep learning.

CHAPTER 4. DEEP LEARNING 50

4.5.1 L1Loss

L1Loss is a loss function for regression problems. It creates a criterion that

measures the mean absolute error between each element in the output x and label

y, it first calculated an un-reduced loss as follows:

L = l(x, y) = {l1, . . . , lN}⊤ , ln = |xn − yn| (4.2)

Here, N is the batch size of training. The batch size it a pre-defined constant that

represent the number of samples that will be propagated through the network in the

same time. Then the loss is calculated depend on the reduction we chose, either the

mean value of L or the summation of L. The merit of L1Loss is that it has a fast

convergent rate, which allows the gradient decent to find its direction in a higher

accuracy. The disadvantage of L1Loss is also obvious. It has a high sensitivity on

outlier.

4.5.2 MSELoss

MSELoss is a loss function for regression problems. It creates a criterion that

measures the mean squared error between each element in the output x and label

y. Therefore, it is also called M2Loss function. The formula of an MSELoss is as

follows:

L = l(x, y) = {l1, . . . , lN}⊤ , ln = (xn − yn)
2 (4.3)

Like L1Loss, the loss is then calculated either using the mean value of L or the sum-

mation of L. The merit of MSELoss is that it is less affected by outliers. However, it

is not continuous at original points, which means its not likely to return a valuable

loss for small differences.

4.5.3 CrossEntropyLoss

CrossEntropyLoss [28] is a much complex loss function and is a loss function for

classification problems. The formula for this loss function is:

L = l(x, y) = {l1, . . . , lN}⊤ , ln = −
C∑
c=1

wc log
ex,c∑C

c=1 e
xn,i

yn,c (4.4)

The cross entropy comes from information theory. By definition, the cross entropy

between two probability distributions p and q over the same underlying set of events

measures the average number of bits needed to identify an event drawn from the

set if a coding scheme used for the set is optimized for an estimated probability

distribution q, rather than the true distribution p. Therefore, it is used to handle

51 4.6. OPTIMIZER

discrete losses and is useful in classification problems.

Of course, there are many other loss functions, such as SmoothL1Loss, CTCLoss

or other type of entropy loss. In this study, we only use MSELoss for regression

models and CrossEntropyLoss for classification models.

4.6 Optimizer

After we find the loss of training in one batch, we need to go back propaga-

tion. An optimizer in deep learning decides the calculation during bark propagation.

Based on the definition of optimizers in deep learning, it will find the parameters

θ of a neural network that significantly reduce a loss function L(θ), which typically

includes a performance measure evaluated on the entire training set as well as ad-

ditional regularization terms. Like the loss function, there are many optimizers to

choose from. In this study, we used Adam optimizer. It is a well-used optimizer in

recent deep learning studies. To understand Adam optimizer better, we have to start

with other basic optimizers first. In the following paragraph, we will introduce from

the original gradient descent optimizers. A short introduction of momentum opti-

mizers will also be included. And we will end up with the development of optimizers

with adaptive learning, which contains Adam.

4.6.1 Gradient Descent Optimizer

Gradient Descent [29] is the base optimizer of the first type. It is built on the

gradient decent method in partial derivatives. It is an iteration method that is well

used in unconstrained problems. The formula of gradient decent is as follows:

θt+1 = θt − α · ∇θL(θ) (4.5)

Assume the parameter is θ, loss function is L(θ). The optimizer will update parame-

ter θ by the gradient ∇θL(θ) with a learning rate α. Gradient decent is the simplest

optimizer and it is later developed into the following new optimizers.

Batch Gradient Descent (BGD) is the optimizer with a batched loss func-

tion (cost function). The formula of batch gradient decent is as follows:

θt+1 = θt − αt ·
1

n
·

n∑
i=1

∇θLi

(
θ, xi, yi

)
(4.6)

Assume the batch size is n and the samples noted as
{(

x1, y1
)
, . . . , (xn, yn)

}
, and the

model parameter is still θ. We have the gradient of sample
(
xi, yi

)
as ∇θLi

(
θ, xi, yi

)

CHAPTER 4. DEEP LEARNING 52

with learning rate αt. Since BGD needs to calculate the gradient for the whole batch

while updating the parameters, this optimizer is slower than normal gradient decent.

The merit of this optimizer is that it takes the mean gradient of each data point, so

it is much likely to find the global solution.

Stochastic Gradient Descent (SGD) is another optimizer that it the oppo-

site of the BGD optimizer above. It takes the result from a batched loss function and

update the parameter with one randomly chose sample. The formula is as follows:

θt+1 = θt − α · ∇θLi

(
θ, xi, yi

)
(4.7)

Only one gradient is calculated by SGD among the whole batch. Therefore, the

training speed is a lot faster than the previous optimizers. The disadvantage of

SGD is also obvious. There will be a fluctuation in SGD training, which causes a

high possibility for the model to jump between local optimum.

Mini-Batch Gradient Descent (MBGD) is the last optimizer we will in-

troduce based on gradient descent. It is an optimizer that takes a balance between

BGD and SGD. A MBGD formula looks like:

θt+1 = θt − α · 1

m
·
i=x+m−1∑

i=x

∇θLi

(
θ, xi, yi

)
(4.8)

For a batched data sets with n samples. It chooses a sub-batch with size m(m < n)

which is the quite like a combination of BGD and SGD. It takes a balance between

the training time and the accuracy. It avoided the fluctuation part that is well seen

in SGD and thus will give a global optimum like BGD.

4.6.2 Momentum Optimizer

Momentum is the basic idea of all second type optimizers [30]. When updating

the parameter, it will take the previous update into consideration as follows:

mt+1 = µ ·mt + α · ∇θL(θ)

θt+1 = θt −mt+1 (4.9)

The idea of momentum optimizer is that, to some extent, it remains the previ-

ous parameter θ, and combine the previous parameter with some fine adjustment.

Therefore, when there is a change in direction of gradient, the momentum can lower

the converge speed and prevent the fluctuation. For the same direction, the momen-

tum optimizer will accelerate the converge speed of the model. Based on this idea,

the following optimizer is developed.

53 4.6. OPTIMIZER

Nesterov Accelerated Gradient (NAG) is a typical momentum optimizer.

It fully remains the previous gradient and doing another adjustment after that. Its

formula is as follows:

mt+1 = µ ·mt + α · ∇θL (θ − µ ·mt)

θt+1 = θt −mt+1 (4.10)

The change in loss function is called Nesterov term. Nesterov term allows the opti-

mizer to adjust the current gradient after a large parameter update. Note that in

PyTorch, there is no simple SGD optimizer, the optimizer called SGD is actually

using momentum optimizer.

4.6.3 Optimizer with Adaptive Learning Rate

Adaptive Learning Rate leads to the third type of optimizers. We know that

learning rate is usually a pre-defined constant that controls the balance between

learning speed and fluctuation. An optimizer with adaptive learning rate will adjust

the learning rate during the training period and help the model train faster.

Adaptive Gradient (AdaGrad) [31] is the first and simplest optimizer with

adaptive learning rate. The optimizer is constituted by the following three steps:

rt+1 = rt + [∇θL(θ)]
2

∆θ =
α√

rt+1 + ϵ
· ∇θL(θ)

θt+1 = θt −∆θ (4.11)

We can see that r and ϵ here are some new parameters, r represents the gradient

accumulation variable and ϵ ≈ 10−8 is an extremely small constant. When updating

parameter θ, the term 1√
rt+1+ϵ

becomes a regularizing term. For a small r, the

regularizing term is big so that it may enlarge the gradient, and vice versa. AdaGrad

has all the merit as an optimizer with adaptive learning rate, but there are still many

disadvantages. The learning rate α need to be set carefully or the regularizing term

would be too sensitive to learn. One more problem is that when the updating part

gets smaller and smaller, sometimes the model stopped learning before it reaches

the global optimum. Therefore, many other improved optimizers have been designed

after AdaGrad.

Adadelta [32] is an optimizer improved from AdaGrad. Adadelta changes the

way of updating parameters. Gradient accumulation variable r is updated by a

CHAPTER 4. DEEP LEARNING 54

certain rate v. The formula is as follows:

rt+1 = v · rt−1 + (1− v) · [∇θL(θ)]
2

∆θt =
1√

rt+1 + ϵ
·
t−1∑
i=1

∆θt

θt+1 = θt −∆θt (4.12)

With an iteration on ∆θ, the optimizer no longer depends on the learning rate. By

this method, the model keep training until it reaches a local optimum with a small

fluctuation.

Root Mean Squared Propagation (RMSprop) is another optimizer im-

proved from AdaGrad. The update of gradient accumulation variable r has been

changed from squared summation into exponential average with weights as follows:

rt+1 = ρ · rt + (1− ρ) · [∇θL(θ)]
2

∆θ =
α√

rt+1 + ϵ
· ∇θL(θ)

θt+1 = θt −∆θ (4.13)

Using RMSprop optimizer still needs a learning rate α, but it also introduced a new

parameter called decay rate ρ ≈ 0.9. This method provided us another approach in

reducing the updating speed of gradient accumulation variable r.

Adaptive Moment Estimation (Adam) [33] is the last optimizer we will

introduce in this section. It is also the optimizer we use in this study. It is like

a combination of Adadelta and RMSprop. In Adam optimizer, the momentum is

introduced and take effects on the gradient update. The formula of Adam is given

by the following 3 steps:

mt = β1 ·mt−1 + (1− β1) · ∇θL(θ)

vt = β2 · vt−1 + (1− β2) · [∇θL(θ)]
2

θt+1 = θt −
α

ϵ+ vt
1−βt

2

mt

1− βt
1

(4.14)

Clearly, it is the most complex optimizer by far. The parameter is β1 = 0.9 and

β2 = 0.999 by default. mt and nt are the first and second order estimation on

momentum matrix. The feature of Adam optimizer has a stable learning rate after

a few iterations, which also stabilize the parameter θ. It is automatically suitable

for most problem with large data sets and complex data structure. And that is why

we use Adam in our study.

55 4.7. ACTIVATION FUNCTION

4.7 Activation Function

An activation function is a function that is used right after each layer. By defini-

tion, an activation function decides the output of that node. The simplest example

for activation functions is a digital network that can be either 1 of 0 , depending

on input. Using different activation function will slightly affect the accuracy of the

neural network. Here we will introduce four activation functions. The first one is

the simple ReLU function, and the other three are PReLU, ELU and SELU func-

tions which are the improved variants of ReLU. There are dozens of other activation

functions in PyTorch, like sigmoid function and tanh function. We will not put too

much emphasis on them. We simply take a look at the functions mentioned above

as examples for understanding how activation functions may look like and why there

are so many activation functions developed after ReLU function.

4.7.1 Rectified Linear Unit (ReLU) function

ReLU is the simplest activation function. It is set to be the default activation

function for many neural network samples because it makes people easier to under-

stand the importance of an activation function in a deep learning model. Basically,

it will drop the negative value and only return the positive values as follows:

ReLU(x) = (x)+ = max(0, x) (4.15)

Figure 4.10.: ReLU function

CHAPTER 4. DEEP LEARNING 56

4.7.2 Parametric Rectified Linear Unit (PReLU) function

PReLU is an activation function developed by ReLU function. It changes the

negative half of ReLU function and allows a negative signal as follows:

PReLU(x) = max(0, x) + a ∗min(0, x) (4.16)

Figure 4.11.: PReLU function

PReLU functions add a learning parameter a (default: 0.25) that controls the

negative half of the activation function. To some extent, it raises the fitting proba-

bility for each learning loop and only has low possibility causing over-fitting.

4.7.3 Exponential Linear Unit (ELU) function

ELU is another activation function that returns negative values, its definition is

as follows:

ELU(x) = max(0, x) + α ∗min (0, ex − 1) (4.17)

57 4.7. ACTIVATION FUNCTION

Figure 4.12.: ELU function

From the figure we can see that there is a limit in negative returns, which has

the same merit as PReLU function and can prevent over-fitting with any parameter

α (default: 1). Therefore, it is a balanced choice for most situation.

4.7.4 Scaled Exponential Linear Unit (SELU) function

SELU is an activation functions that induce self-normalizing properties. The

function is developed by ELU function. The formula and figure are as follows:

SELU(x) = scale ∗ (max(0, x) + min (0, α ∗ (ex − 1)))

α ≈ 1.6733, scale ≈ 1.0507 (4.18)

Figure 4.13.: SELU function

CHAPTER 4. DEEP LEARNING 58

SELU function controls the total output with a scalar. And the scalar gives

SELU function the property of internal normalization which helps adjust the mean

and average of the layers. Comparing SELU with the above activation functions and

we can see that all of these functions have nearly the same shape. It is one of the

improved version of ReLU function and contains all the merit of ReLU function. In

this study, we are using SELU function for our ANN models.

4.7.5 Sigmoid function

Sigmoid is an activation function that is out of the ReLU family and has its own

characteristics. The formula and figure of Sigmoid are as follows:

Sigmoid (x) = δ (x) =
1

1 + e−x
(4.19)

Figure 4.14.: Sigmoid function

Sigmoid function is a special activation function. It always give positive feed-

backs to the model. From the formula we know that Sigmoid function is a non-linear

function, which means the output will also be a non-linear function of the weighted

sum of inputs. The merit of such function is that it provide a steady learning

speed, while the disadvantage of such function is that it is much likely to cause an

over-fitting problem.

59 4.7. ACTIVATION FUNCTION

4.7.6 Tanh function

Tanh function is another activation function out of the ReLU family. It is named

by the hyperbolic tangent function tanh. Its formula and figure are as follows:

tanh (x) =
ex − e−x

ex + e−x
(4.20)

Figure 4.15.: Tanh function

By using Tanh function, we will achieve a stead learning speed like Sigmoid

function. Meanwhile, comparing the feedbacks on the negative input with Sigmoid

function, such a negative feedback prevent the model from falling into the over-fitting

problem to fast like the previous models.

Among all these functions, there is no particular activation function that is the

correct choice for all models. SELU is used in this study is because it is the most

developed function and our model using this function returns a better accuracy after

a few test runs.

Chapter 5

Experiment

Now that all the foundations are built, we finally move into our own study.

Our study can be divided in three main parts: generating data, data analysis and

applying deep learning. In this chapter, we will first take a review on the method

through the whole study. Then, we will show the environment set for this study. In

the end of this chapter, we will dive into these three parts for more details on how

they work.

5.1 Methods of study

Our study can be divided into the following steps:

1. Launch finesse2 with PyKat to set up the optical simulation and generate a

simple raw data set with 100 samples, at 4×4 resolution.

2. Use scikit-learn to apply PCA on the raw data and transfer it into matrix form

for deep learning.

3. Build four type of deep learning models for comparison with PyTorch. Put the

transformed data set into these models to make sure the codes are successfully

running.

4. Generate several raw data sets with different precision, each with 10000 sam-

ples. Apply PCA on them and put them into the first deep learning model.

Train and check how much precision we can get.

5. Generate massive rat data sets with different mirror type, each with 10000

samples. Apply PCA on them and put them into all four deep learning models.

Train and check which model gives us the best result.

5.2 Environment of study

For this study, we use the following system environment:

60

61 5.3. GENERATING DATA

• OS: Microsoft Windows 11 pro

• CPU: AMD Ryzen 5 3600 6-Core Processor 3.59Hz

• GPU: NVIDIA GeForce RTX 2060

• RAM: 32.0 GB

In order to reproduce the results of this study, the following coding environment

is recommended:

• Python: 3.9.0

• Notebook: 6.5.2

• PyKat: 1.2.81

• scikit-learn: 1.2.1

• torch: 1.13.1

5.3 Generating data

What we need from the simulation is beam detector signals under different

angles with different maps. By far, we do not know how complex a neural network

can learn. We assume the best result for a trained model is that it will be able to

return a correct tilting angle regardless of roughness for the mirror. We also expect

the least result is that it only returns the correct angle when the system contains

only perfect flat mirror. Therefore, we make four data sets with different kinds of

mirror maps . The first data set contains no mirror map that represent the perfect

flat mirror, noted as ”nomap”. The second data set contains only one mirror map

with a pre-defined random roughness, noted as ”map”. The third data set contains

a group of random mirror map generated by random numbers, noted as ”random”.

The last data set contains one mirror map but with is mis-centered laser input,

noted as ”miscenter”. In this section, we will introduce how we use finesse2 to run

an optical simulation of Fabry-Perot cavity and generate the raw data sets.

Finesse2 is an interferometer simulation program that is originally written under

C language. All of its code can be run under a script-like file called kat. We use a

wrapping package PyKat to run finesse2 in Python language. Here is an example

on how to run a Fabry-Perot cavity simulation with Python:

Sample Code for Fabry-Perot Cavity

from pykat import finesse

CHAPTER 5. EXPERIMENT 62

kat1=finesse.kat() # initialising Finesse

kat1.verbose = False

basecode = """

The laser

l laser 1 0 n0 # Laser (Power=1W, wavelength offset=0)

s s1 1 n0 n1 # Space (Length=1m)

The beam splitter

s sbs1 0 n1 n2

bs bs 0.1 0.9 0 45 n2 dump n3 n4 # Beam splitter (Angle=45)

s sbs2 0 n3 nc1

The cavity

m m1 0.7 0.3 0 nc1 nc2 # Mirror (R=0.7, T=0.3, phi=0)

s sL 4000 nc2 nc3 # Space (Length = 4 km)

m m2 0.8 0.2 0 nc3 nc4 # Mirror (R=0.8, T=0.2, phi=0)

Detectors

pd refl nc1 # Reflected field

pd circ nc2 # Circulating field

pd tran nc4 # Transmitted field

Simulation instructions

xaxis m1 phi lin -450 90 2000 # Tuning of input mirror

yaxis abs

"""

kat1.parse(basecode) # Parsing the FINESSE-code

out1 = kat1.run() # Running the FINESSE-simulation

First, an empty kat file are created named ”kat1”. Codes with red highlights are

the scripts for kat file. It is consist of optical equipment, spaces and a variable.

Optical equipment are added by its type, name, parameters and connections. Spaces

connects with optical equipment are defined by its length and connections. These

two components build up the Fabry-Perot cavity. The variable decides the output

of this simulation. It is usually defined by moving or tilting a certain parts within

the set-up. After the scripts are written, we pass them into the kat file we created

and the simulation is able to run.

63 5.3. GENERATING DATA

Now we understand how a simulation is generated through finesse2, the next

step is to build up the set-up for a Fabry-Perot cavity. The cavity we train should

be a part of gravitational wave detector, so it is actually a part of a Michelson

interferometer. Thus, we use beam splitter to divide the laser into two direction,

but dump the signals on the vertical arm. The whole set-up is as follows:

Figure 5.1.: Simulation Set-up

Note that we have modulated laser and curved mirror with our study. We

also need to add the optimization for Gouy phase to the mirror. In Python, these

attributes can be modified easily. After we set up a Fabry-Perot cavity with beam

splitter like the codes above, we only need to parse some new lines of scripts into

the basecode kat file as follows:

Adding attributes

code = """

Modulation

const fsb1 15M # Frequency modulation

const mfsb1 -15M

Attributes

attr ITM Rc 0 # Adding radius of curvature to a mirror

attr ETM Rc 2

attr gouy_phase_tuner g 90 # Apply optimized Gouy phase by WFS

"""

kat1.parse(code)

Since the basic version of our Fabry-Perot cavity is built, there are only two more

steps to go. To add mirror maps on the front mirror, and to replace the variable

with the rotation of the end mirror. A mirror map used in finesse is a text file

which contains the information of this map and a table of reflectivity. Usually the

table consists of measured values from a randomly generated continuous functions. A

CHAPTER 5. EXPERIMENT 64

simple example of a map file is down below, where the beam can only be transmitted

from the center of this mirror:

−−−
% Sur face map

% Name : map1

% Type : absorpt ion both

% S i z e : 6 6

% Opt ica l c en t e r (x , y) : 3 . 5 3 . 5

% Step s i z e (x , y) : 1e−003 1e−003

% Sca l i ng : 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 0 0 1 1

1 1 0 0 1 1

1 1 1 1 1 1

1 1 1 1 1 1

−−−

In our study, we need a much more precise mirror map instead of this 6×6 example.

We generated 100 random maps with the following formula:

F (x) = r1 ∗ cos(nxπx+ r2π) ∗ cos(nyπy + r3π) (5.1)

Figure 5.2.: Random map

After we have the random maps generated, we take 101×101 samples from this

continuous maps to create the discrete map which fits the simulation in finesse2:

65 5.3. GENERATING DATA

Generating random maps

for i in tqdm(range(map_number)):

map = [[0 for _ in range(101)] for _ in range(101)]

for x in range(101):

for y in range(101):

map[x][y] = absorption(x/100, y/100, seed)

** 2

map_arr = np.array(map)

np.savetxt(f'./mirror_map/mirror_map_{i}.txt',

map_arr)

textfile.insert(f'mirror_map/mirror_map_{i}.txt',

'''

% Surface map\n

% Name: sub\n

% Type:absorption both\n

% Size: 101 101\n

% Optical center (x,y): 51 51\n

% Step size (x,y): 1e-004 1e-004\n

% Scaling: 1e-1\n

''' , line = 0)

In figure 1.1, we saw the signal of a Gaussian beam. When such a map is applied to

the beam, the center of the beam will become hard to analysis, an sample plot will

be the following:

Figure 5.3.: Gaussian beam with mirror map

CHAPTER 5. EXPERIMENT 66

It is time to add the new variable into the simulation. Because we want to make

analysis on 4×4 intensity array. In simulation, we can simply take the signals from a

beam detector and set the sample rate at 4×4. We replaced those photon detectors

in previous codes with a beam detector. We also need to add the rotations of the

mirror by adding attributes to the script. We prepared a loop to change the tilting

angle and insert them by Python f-string and the variable ”tilt” down below is the

tilting angle calculated outside the script. Parsing those maps, variable, and new

attributes into the simulation and we have the additional codes as follows:

Adding maps, variable and new arributes

code = """

Mirror map

map ITM './mirror_map/mirror_map_{data_count}.txt'

knm ITM sub_map

conf ITM save_knm_binary 1

conf ITM interpolation_method 2

conf ITM integration_method 1

Attributes

attr {variable_mirror} xbeta {tilt}

attr gouy_phase_tuner g 90 #optimized

Simulation instructions

beam ccd REFL

xaxis ccd x lin -2 2 {ccd_size-1}

x2axis ccd y lin -2 2 {ccd_size-1}

"""

kat1.parse(code)

Using the above Python codes, we are finally able to create the four data sets with

the following parameters:

Table 5.1.: Parameters of Data Sets

Mirror ETM rotation

Map-type no-map map random mis-center

Map-number 0 1 100 100

Step number 10000 10000 100 100

CCD size 4 * 4

Total data number 10000

67 5.4. DATA ANALYSIS

Each data sets contains 10000 samples like the following plot:

Figure 5.4.: Sample Raw Data

By far, we have explained how to generate four groups of data sets by finesse2

and some detailed parameters of them. The precision of these data sets are defined

by the bound ranges and the step sizes. These two parameters will vary through the

main steps. Therefore, we actually creates more than four data sets. We only need

to keep in mind that no matter the precision, the rest of parameters are always the

same as is shown above.

5.4 Data Analysis

Now we have four different type of data sets, each with 10000 intensity samples

and the resolution is 4×4. What we need to do next is to apply principal component

analysis (PCA) to these data for removing the redundant information. After the

raw data sets get through a PCA model, we also need transform these data sets into

array-like form so that the deep learning model can read them.

We will get into the details of how we apply PCA to our data sets first. In

chapter IV, we have already introduced the basic idea of PCA and showed a 2-

dimensional example. We know that PCA is an unsupervised learning model that

can be trained with input data sets. Our raw data sets contains 16 intensity values,

so we can treat as we have 16 dimensions. For a PCA model, if it is trained by a

m-dimensional data sets, the output can have at most n-dimension for any n < m.

However, the reduction of dimensions is not necessary for all PCA models. In our

case, 16 eigenvalues is already a small number for a deep learning model. Thus, we

do not want to reduce the dimension further. What we do is just to put one of the

CHAPTER 5. EXPERIMENT 68

raw data sets into an empty PCA model, telling it to return the same dimension

with the raw data set. By doing this, we will get a sorted data sets that put the

principal components at the front and leave the less relevant components to behind.

Here is a schematic for how we use PCA to handle our data sets:

Figure 5.5.: Schematic of PCA

For this step, we use a package called scikit-learn. Scikit-learn is a tool package

for predictive data analysis that is built on other basic python packages such as

numpy, scipy, and matplotlib. The scikit-learn package [34] helps us apply PCA

method to our raw data sets. We import this package and set the number of output

be equal to the input intensity number as follows:

Training and applying PCA model

from sklearn.decomposition import PCA

pca = PCA(copy=True, n_components=ccd_size**2, whiten=False)

pca.fit(ipt) # Training PCA model with a raw data set

print(pca.components_.shape)

ipt_transformed = pca.transform(ipt) # Apply PCA

We first defined an empty PCA model with the correct component number. By

fitting our raw data set to the empty PCA model, it is fully trained. We then

simply input the same data set once again into the model and the result will be the

transformed data set.

When this PCA model is trained by a raw data set with 16 intensity values, we

get 16 new basis. These basis are ordered by their importance to the data set. A

sample of these basis is as follows:

69 5.4. DATA ANALYSIS

Figure 5.6.: 16 Basis of PCA

Then, we can put the same raw data set back into this PCA model to get

its transformed version. The transformed data contains 16 values in an array. A

transformed data may look like the following figure:

Figure 5.7.: Sample Transformed Data

The figure shows that this ample transformed data is consist of the first principal

components of the 16 basis and no other basis. The 16 intensity values are fully

CHAPTER 5. EXPERIMENT 70

transformed into the amplitude of 16 basis. We can repeat this process for the rest

data sets to create their own PCA models.

After all of the raw data sets are transformed by their own PCA model, we

need to reshape these data sets for the deep learning models. We have four types of

models and they need different input and output forms.

On the input side, For an ANN model, it needs an n×m matrix as its input,

where n is the samples number, and m is the number of eigenvalues. For a CNN

model, it needs a 2-dimensional figure as input. Since we can simply reshape the

matrices of ANN model into a figure when launching the CNN model, we do not

need to prepare an extra input file for CNN models.

On the output side, for a classification model, we need to transfer the tilting

angle into a bunch of labels with integer. We can use the label encoder method to

create a simple map between tilting angles an the labels. For a regression model,

we can directly leave the tilting angle as the output since a regression model is able

to handle floating numbers.

Therefore, for each kind of data set we need to prepare three files for deep

learning. The first file is an input file that contains 10000 samples with 16 amplitude

values from PCA. The second file is a label file that contains the labels for 10000

samples. The third file is a tilt file that contains the tilting angles for 10000 samples.

The labeled file can also be generated by a method in scikit-learn package:

Applying label encoder and save files

from sklearn import preprocessing

le = preprocessing.LabelEncoder()

le.fit(opt_le.reshape(-1))

opt_transformed = le.transform(opt_le.reshape(-1)).reshape(samples, 1)

opt_transformed = np.asarray(opt_transformed)

5.5 Deep Learning

From the previous section, we already knew that we have four deep learning

models and these models can be categorized by the structure and the output of the

model. To make it simple, we call ANN model as 1D model and CNN model as 2D

model. In this section, we will introduce the detailed structure of our model.

71 5.5. DEEP LEARNING

5.5.1 1D-Classification

The 1-dimensional linear classification model is the first model of our study. The

aim of the model is to return one of the ten labels after 16 eigenvalues are given.

The structure of this model is as follows:

Figure 5.8.: Schematic of 1D-Classification

The 16 eigenvalues are first spread into 1024 nodes to increase the complexity

of the model to a proper state. Then we let the number of nodes decreases layer by

layer and come to 10 nodes after four layer. Those 10 nodes are correspond to the 10

labels which represent the tilting angles. Activation function SELU are applied to

connect every two layer and we use CrossEntropyLoss for this model. The optimizer

it uses is Adam and so do the other three models. We will use the accuracy of the

labels to check if this classification model is learning and if it is valuable.

5.5.2 1D-Regression

The 1-dimensional linear regression model has almost the same structure as the

previous classification model. The aim of this model is to return the tilting angle

after 16 eigenvalues are given. The structure of this model is as follows:

CHAPTER 5. EXPERIMENT 72

Figure 5.9.: Schematic of 1D-Regression

For this model, we use the same complexity with 1D-Classification model. The

only difference between them is the output layer. Instead of dividing into 10 labels,

the regression directly returns the tilting angle of the signal. Activation functions

are still SELU function while the loss function is changed into MSELoss, which is a

better choice for regression model. The output from this model will be a float number

and it is impossible to return exactly the correct number with a deep learning model.

Therefore, we do not use accuracy as our criteria to the model but use the results in

the loss function. We check the order of magnitude for that result and calculate the

difference range between the output and the true value. If the difference is equal or

smaller than the precision of the tilting angle, we can say the model is valuable.

5.5.3 2D-Classification

The 2-dimensional classification model mixed by both convolutional layers and

linear layers. Like the previous classification model, the aim of this model is to return

one of the ten labels. However, the input layer takes images rather than matrix.

We reshaped the image from 16 eigenvalues like the transformed data example in

previous section. Its structure is as follows:

73 5.5. DEEP LEARNING

Figure 5.10.: Schematic of 2D-Classification

The reshaped input is in form of 4×4 image with one channel. Like what we

did for 1-dimensional models, we increased the channel to 512, which allows the

complexity of the model to raise to a proper level. Then, we gradually reduce

the number of channels and use convolutional layer to converge the nodes at the

same time. When the total values are reduced to 512, we flatten the 2-dimensional

structure into 1-dimension. With a few linear layers, we reached 10 labels like 1D-

classification model. Activation function and loss function of this model are the

SELU function and CrossEntropyLoss respectively.

5.5.4 2D-Regression

The 2-dimensional regression model has almost the same structure as the 2D-

classification model. The aim of this model is to return the tilting angle after an

image is given. The structure of this model is as follows:

CHAPTER 5. EXPERIMENT 74

Figure 5.11.: Schematic of 2D-Regression

Our last model can be treated as it has the structure of the 2-dimensional classi-

fication model but with an output of 1-dimensional regression model. Its activation

function are loss function are still SELU and MSELoss for the regression model. We

use the difference from loss function to check if the model is learning and valuable.

5.6 Results

All of the data sets and deep learning models are now prepared. In this section,

we will show the results for our study followed by the main steps. Note that all

of the samples are generated by loops in Python, which means that these data are

sorted by the tilting angle. We need to shuffle these files before passing them to the

deep learning model. Our next step is to test the precision of our model. We use

the simplest data set with no mirror map and test the 1D-classification model with

various rotations. We find our model is workable for a bound range of 10−5 radian,

with a precision of 10−6 radian. When we increase the precision to 10−7 radian, the

model is no longer learning and return the result as follows:

75 5.6. RESULTS

Figure 5.12.: Accuracy and loss on 10−7 radian

For the above figure we can see that the accuracy of both training and validation

are about 0.1. It equals to the result that if we choose a label randomly from 10

choices. We found out for our current setting, the best precision is 1 micro radian.

We generated all four kinds of data sets with a precision of 10−6 radian and put them

into all of the models. We will talk about these results in the following paragraphs.

For the 1D-classification model, we trained the model with 50 epochs to achieve

a stable outcome. The results are as follows:

Figure 5.13.: Accuracy and loss for 1D-Classification nomap

CHAPTER 5. EXPERIMENT 76

Figure 5.14.: Accuracy and loss for 1D-Classification map

Figure 5.15.: Accuracy and loss for 1D-Classification random

Figure 5.16.: Accuracy and loss for 1D-Classification miscenter

Except for the model trained by data with random mirror map, we have a quite

successful training for the other three data sets. All three models could reach an

accuracy over 90%. Especially for the mis-centered one, for this data set is the

77 5.6. RESULTS

closest situation to gravitational wave detection in reality. After the taking the

average accuracy over 5 training, the mis-centered model returns an accuracy of

91.24%. No over-fitting problem can be found from the line of validation accuracy.

As for the model with random mirror map, there are several possibilities why the

model failed to learn. We think the randomly generated maps have no connections

to each other, so they might get messy when applying PCA method to these non-

related data. We also consider that the model may not be able to find the center of

the beam in a group of random maps, which made this data set become an impossible

task.

For the 1D-regression model, we also trained the model with 50 epochs to make

sure there is a stable outcome. Actually the model takes about 20 epoch and its

result is as follows:

Figure 5.17.: Accuracy and loss for 1D-Regression nomap

Figure 5.18.: Accuracy and loss for 1D-Regression map

CHAPTER 5. EXPERIMENT 78

Figure 5.19.: Accuracy and loss for 1D-Regression random

Figure 5.20.: Accuracy and loss for 1D-Regression miscenter

Since we use MSELoss for our regression models. MSELoss is calculated by

square of the differences between the output and the true value. Therefore, if we

take the square roots for the training and validation loss, it should be smaller than

the chosen precision. From the figure we can see that there is an obvious decrease in

the beginning, which means the regression model is learning. However, the loss varies

from 10−5 to 10−3. If take the square roots for the loss values, we will have a number

around 10−2 radian, which is far bigger than our expected precision, which is 10−6

radian. We can make a simple conclusion based on the result. Based on the same

complexity, the result of 1D-regression model does not match with 1D-classification

model.

For the 2D-classification model, we also trained the model with 50 epochs to

achieve a stable outcome. The results are as follows:

79 5.6. RESULTS

Figure 5.21.: Accuracy and loss for 2D-Classification nomap

Figure 5.22.: Accuracy and loss for 2D-Classification map

Figure 5.23.: Accuracy and loss for 2D-Classification random

CHAPTER 5. EXPERIMENT 80

Figure 5.24.: Accuracy and loss for 2D-Classification miscenter

Most of the 2D-classification models are well trained after 50 epoch, except for

the one with random mirror maps. We assume it is caused by the same reason as

the 1D-classification model with the same input. The other results are also similar

to what we have for 1D-classification model, the loss function is reduced to less than

0.1 and both training and validation results from the model gives us an accuracy

over 90%. There is no obvious over-fitting problem from the validation accuracy.

For the mis-centered model, we see a much stable line of training loss, which seems

to be a good result. The average accuracy over 5 training for mis-centered model is

90.95%, which is close to 91.24% for linear models.

For our final model, the 2D-regression one, we also trained the model with 50

epochs to make a stable outcome. Except for the first training loss, the result seems

to be the same as follows:

Figure 5.25.: Accuracy and loss for 2D-Regression nomap

81 5.6. RESULTS

Figure 5.26.: Accuracy and loss for 2D-Regression map

Figure 5.27.: Accuracy and loss for 2D-Regression random

Figure 5.28.: Accuracy and loss for 2D-Regression miscenter

For our last model, we see that the training and validation loss are enormous

compared to the 10−6 radian precision we have. What’s worse is that except for the

CHAPTER 5. EXPERIMENT 82

first training loss, the rest of the loss values look like a flat line. This feature means

that the model barely learns nothing.

By far, we have 2 kinds of classification models that gave us quite successful

results. Meanwhile 2 kinds of regression models does not work well with the same

complexity. We need to step a little bit further to find out which of the classification

model work better. A detailed training results for classification models can be found

in the following tables:

Table 5.2.: Accuracy Table for Classification model

Mirror ETM rotation

Map-type no-map map random mis-center

Model-type 1D-Cl 2D-Cl 1D-Cl 2D-Cl 1D-Cl 2D-Cl 1D-Cl 2D-Cl

Acc 1 0.962 0.970 0.962 0.967 0.110 0.111 0.919 0.909

Acc 2 0.959 0.970 0.959 0.971 0.110 0.111 0.906 0.914

Acc 3 0.961 0.971 0.963 0.970 0.106 0.109 0.902 0.915

Acc 4 0.957 0.970 0.961 0.966 0.108 0.118 0.926 0.902

Acc 5 0.964 0.967 0.960 0.971 0.124 0.110 0.909 0.908

Avg Acc 0.961 0.970 0.961 0.969 0.112 0.112 0.912 0.910

Both classification models have a stable result after several training. However,

we still do not know which model is better only by the accuracy table. Here we

introduced confusion matrices [35] to help us check the details within in these re-

sults. It is a well used table layout that allows visualization of the performance of a

supervised model. It may also help us find out some hidden problems that can not

be seen by accuracy. So we calculated the confusion matrices for these two models.

The confusion matrices for the model without a mirror map are as follows:

Figure 5.29.: Confusion Matrix for 1D-Classification nomap

83 5.6. RESULTS

Figure 5.30.: Confusion Matrix for 2D-Classification nomap

For this group of data set, there is not much difference between two kinds of

models. Those incorrect output only took a tiny part of the whole data sets and the

loss are just some small mis-classification rather than outliers. In such case, following

the output will not mis-leading the mirror too much. Since this is the simplest case

of all four groups of training and can actually be solve by linear method in traditional

way, we expect it to have the highest accuracy and stability. The result matched

with our assumption.

Then, we keep moving on the next group of data sets, which is the group with

a single mirror map. The results are as follows:

Figure 5.31.: Confusion Matrix for 1D-Classification map

CHAPTER 5. EXPERIMENT 84

Figure 5.32.: Confusion Matrix for 2D-Classification map

In reality, adding a single map to the optical system does mess up the output.

But as we expected, it does not affect the result from deep learning models. Because

the roughness of the mirror is trained as a whole part, like adding a simple bias to

the model without mirror map. The result also matched with our assumption.

We then skip the random group and jump into the mis-centered group because

we already the random group of model fails to learn. The confusion matrices for the

last group are as follows:

Figure 5.33.: Confusion Matrix for 1D-Classification miscenter

85 5.6. RESULTS

Figure 5.34.: Confusion Matrix for 2D-Classification miscenter

Here we see some interesting features. For the ANN model, we noticed that

the model returns the correct label when there is a rotation applied to it. But the

model has a poor accuracy on small rotations near the origin point. We also noticed

that there is a high error rate at the upper boundary. This may happens because

the lack of training data around that boundaries. However, this situation does not

happens at the lower boundary. So we are not sure if it is this very reason that

lead to this problem. For the CNN model, we see a slightly worse confusion matrix

than the ANN model. The problem of poor accuracy around origin point still exist.

While the boundary problem seems to affect on the lower bounds. To make sure

if this is a normal problem, we did several extra training on both models. The

result shows that sometimes this problem happens on upper or lower bound, and

sometimes it happens on both sides. For a rare condition, the problem disappeared.

The boundary problem randomly occurs shows a high opportunity that it is not the

model that causes this problem, but the shuffled data sets. A solution would be

extending the simulated data on the boundary. In addition, we check the average

consumed by these two models:

Table 5.3.: Time Consumed for a Single Signal

time (s)

ANN 1.7E-6

CNN 1.037E-4

The linear model is about a hundred times faster than using CNN models, which

gives a faster speed of reaction when applied to data in real time. We can see both

of the reaction speeds are in reasonable range.

CHAPTER 5. EXPERIMENT 86

We know the classification models work well on current data sets. Both ANN

and CNN models are trained with a high accuracy at the precision of 10−6 radian.

Though the accuracy around origin point is still a problem, we can say the model

is quite stable at current state. We restricted the resolution of the signals to make

sure it is possible to apply the model into real gravitational wave detection. But

it is also possible that with a higher resolution, we will get a better precision for

the model. Therefore, we remain the complexity of the model at the current state,

changed the input resolution from 4×4 to 8×8, and increased the precision of the

output. Our test begin with data sets that have a precision of 10−7 radian:

Figure 5.35.: Accuracy and loss for 1D-Classification on 10−7 radian

Figure 5.36.: Accuracy and loss for 2D-Classification on 10−7 radian

Remember at this precision, the 1D-classification model failed to train with an

input of 4×4 signal. Now with a 8×8 signal, we see there is an obvious improvement

in that model. Despite the 2D-classification model failed to train with an extra res-

olution, the 1D-classification model is actually learning something. Unfortunately,

the model is unstable even when the epoch is increased to 100. We see the model

87 5.6. RESULTS

reaches an accuracy around 85% to 90%, but with a strong fluctuation. During the

current state, we cannot use such an unstable model.

We then tried training both of the classification models with a precision of

5 ∗ 10−7 radian, which is a precision between this test and the previous data sets.

We want to make sure if the previous 10−6 radian is already the best precision we can

reach. This time, we only trained the model with 50 epochs to achieve a relatively

stable outcome. The result is as follows:

Figure 5.37.: Accuracy and loss for 1D-Classification on 5 ∗ 10−7 radian nomap

Figure 5.38.: Accuracy and loss for 2D-Classification on 5 ∗ 10−7 radian nomap

This figure looks much better than the previous one. The accuracy of 1D-

classification model is again stable around 90%. Its fluctuation is not that obvious

like the result with finer precision. For 2D-classification model, we see the model

started learning at this state. Although it only reaches an accuracy at about 85%

and has some fluctuations, we will be glad to test on this model for a few more

times.

CHAPTER 5. EXPERIMENT 88

So we generated the data set with single map and the data set with mis-centered

map under the precision of 5 ∗ 10−7 and started training with these new data sets.

After training on both 1D-classification and 2D-classification models for five times,

we took the average accuracy as what we did before. The following table shows the

details of the results:

Table 5.4.: Accuracy Table for Classification model

Mirror ETM rotation

Map-type no-map map mis-center

Model-type 1D-Cl 2D-Cl 1D-Cl 2D-Cl 1D-Cl 2D-Cl

Acc 1 0.918 0.811 0.922 0.821 0.110 0.110

Acc 2 0.873 0.797 0.870 0.823 0.110 0.108

Acc 3 0.873 0.819 0.872 0.816 0.110 0.102

Acc 4 0.911 0.834 0.863 0.789 0.110 0.102

Acc 5 0.865 0.819 0.914 0.764 0.110 0.109

Avg Acc 0.881 0.816 0.888 0.803 0.110 0.106

From the table we can see that the ANN model works better than CNN model

for the first group of models with no mirror map. The second group has nearly

the same accuracy as the first group, as we expected. But both models failed with

mis-centered data sets. Therefore, for the current model, the best precision is 10−6

radian.

Chapter 6

Summary

In this study, we tried to use deep learning technology to develop an automatic

control system for mirror tilting in gravitational wave detection. All of our data

and models are built on Python language, with the help of several related packages.

We prepared dozens of data sets, all generated from a simulation program. Each

simulation gave us the reflected signal from a Fabry-Perot cavity. And these data

sets vary in the type of the mirror, precision of the tilting angle and the signal

resolutions. Four deep learning models are built to compete with each other. To

make sure the models to be stable and the results to be reproducible, we took average

accuracy over five training for each model.

The best precision we can reach was 10−6 radian, with a 4×4 resolution. Among

all of the four models, both classification models successfully obtained a high accu-

racy over 90% and was stable enough to be used. The 1D-regression model was

learning, but it did not give us a valuable return. However, the 2D-regression model

failed to learn anything and was the worst model among the four.

As for the mirror type of the data sets, both of the classification models have

stable results under three groups of data sets. They both have high accuracy on

the simplest data set with perfect flat mirror. They also kept that accuracy when

we apply a roughness to that mirror as we expected. When we tried to generate

random mirror maps and put them into one data set, the model fails to learn from

the messy information. But the model works well when we added a mis-center factor

to one rough mirror. Although we cannot apply our model to any random mirror,

with the success of training on mis-centered data set, it is enough for us to apply

the model to reality. Because in reality, the roughness of mirrors in a certain optical

system usually does not change.

Furthermore, we tried some extra training rounds with a higher resolution of

the signals. Although the resolution was restricted to 4×4 at the beginning, we still

want to see if we could have a better model with more information. So, we choose

to increase the resolution to 8×8. The information these data sets contains was four

89

CHAPTER 6. SUMMARY 90

times larger than the previous ones. Unfortunately, with such resolution, the model

still cannot achieve a precision of 10−7 radian. Even for a precision in the middle

of two training round, 5 ∗ 10−7 radian, the model fails at the mis-centered stage.

Therefore, a precision of 10−6 radian was the best one we can have.

Comparing our model to the traditional control systems with linear calculation,

the current precision is not enough. There are some future improvements that may

help increasing the precision of our model. We can optimize the model by increasing

the complexity of the model. The current complexity of our model is based on

input resolution of 4×4. When we applied a much precise resolution, a much more

complex model may do a better job. We can also optimize the model by increasing

the labels of the models. It is hard for the model to jump from 10−6 to 10−7 radian,

but it is possible to let the model achieve a valuable accuracy among 100 labels.

Instead of changing the data sets, it is still possible to change the model itself to

achieve the same goal. These are just two simple improvement that can be easily

done under the current experiment. We think this is just a start of applying deep

learning model in gravitational wave detector. For an optical system that is much

more complex than a single Fabry-Perot cavity, deep learning technology may show

its advantage on solving complex problems.

Appendix A

Structure of Finesse

base = f"""

======== Constants ========================

const fsb1 15M

const mfsb1 -15M

======== Input optics =====================

l i1 1 0 n0

s s_eo0 0 n0 n1

mod eom1 $fsb1 0.15 2 pm n1 n2

s s_eo1 0 n2 n3

bs pickoff 0.0001 0.9999 0 45 n3 dump n4 n5

s s_eo2 0 n4 n1ar

m ARx 0 1 0 n1ar n1ar2

s sAR 0 n1ar2 n6

m ITM 0.996 4000e-6 0 n6 n7

s cl 1 n7 n8

m ETM 0.999945 5e-6 0 n8 n9

s gouy_phase_tuner 0 n5 REFL

attr ITM Rc 0

attr ETM Rc 2

cav cav1 ITM n7 ETM n8

maxtem 5

gauss* input i1 n0 0 2

yaxis abs:deg

91

APPENDIX A. STRUCTURE OF FINESSE 92

map ITM './mirror_map/mirror_map_{data_count}.txt'

knm ITM sub_map

conf ITM save_knm_binary 1

conf ITM interpolation_method 2

conf ITM integration_method 1

======== Output optics ====================

attr {variable_mirror} xbeta {tilt}

attr gouy_phase_tuner g 90 #optimized

beam ccd REFL

xaxis ccd x lin -2 2 {ccd_size-1}

x2axis ccd y lin -2 2 {ccd_size-1}

"""

Appendix B

Structure of Deep Learning

B.1 1D-Classification

class NeuralNetwork(nn.Module):

def __init__(self):

super(NeuralNetwork, self).__init__()

self.flatten = nn.Flatten()

self.linear_relu_stack = nn.Sequential(

nn.Linear(ccd_size**2, 1024),

nn.SELU(),

nn.Dropout(p=0.1, inplace=False),

nn.Linear(1024, 512),

nn.SELU(),

nn.Dropout(p=0.1, inplace=False),

nn.Linear(512, 256),

nn.SELU(),

nn.Dropout(p=0.1, inplace=False),

nn.Linear(256, 128),

nn.SELU(),

nn.Dropout(p=0.1, inplace=False),

nn.Linear(128, 10),

)

def forward(self, x):

logits = self.linear_relu_stack(x)

return logits

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

93

APPENDIX B. STRUCTURE OF DEEP LEARNING 94

B.2 1D-Regression

class NeuralNetwork(nn.Module):

def __init__(self):

super(NeuralNetwork, self).__init__()

self.flatten = nn.Flatten()

self.linear_relu_stack = nn.Sequential(

nn.Linear(ccd_size**2, 1024),

nn.SELU(),

nn.Dropout(p=0.1, inplace=False),

nn.Linear(1024, 512),

nn.SELU(),

nn.Dropout(p=0.1, inplace=False),

nn.Linear(512, 256),

nn.SELU(),

nn.Dropout(p=0.1, inplace=False),

nn.Linear(256, 128),

nn.SELU(),

nn.Dropout(p=0.1, inplace=False),

nn.Linear(128, 1),

)

def forward(self, x):

logits = self.linear_relu_stack(x)

return logits

criterion = nn.MSELoss()

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

95 B.3. 2D-CLASSIFICATION

B.3 2D-Classification

class NeuralNetwork(nn.Module):

def __init__(self):

super(NeuralNetwork, self).__init__()

self.linear_conv_stack = nn.Sequential(

nn.Conv2d(1,128,2),

nn.SELU(),

nn.Conv2d(128,256,2),

nn.SELU(),

nn.Dropout2d(p=0.3),

)

self.linear_selu_stack = nn.Sequential(

nn.Linear(256*(ccd_size**2)*(ccd_size**2), 512),

nn.SELU(),

nn.Dropout(p=0.1, inplace=False),

nn.Linear(512, 128),

nn.SELU(),

nn.Dropout(p=0.1, inplace=False),

nn.Linear(128, 10),

)

def forward(self, x):

x = self.linear_conv_stack(x)

x = x.view(-1,256*(ccd_size**2)*(ccd_size**2))

x = self.linear_selu_stack(x)

return x

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

APPENDIX B. STRUCTURE OF DEEP LEARNING 96

B.4 2D-Regression

class NeuralNetwork(nn.Module):

def __init__(self):

super(NeuralNetwork, self).__init__()

self.linear_conv_stack = nn.Sequential(

nn.Conv2d(1,128,2),

nn.SELU(),

nn.Conv2d(128,256,2),

nn.SELU(),

nn.Dropout2d(p=0.3),

)

self.linear_selu_stack = nn.Sequential(

nn.Linear(256*(ccd_size**2)*(ccd_size**2), 512),

nn.SELU(),

nn.Dropout(p=0.1, inplace=False),

nn.Linear(512, 128),

nn.SELU(),

nn.Dropout(p=0.1, inplace=False),

nn.Linear(128, 1),

)

def forward(self, x):

x = self.linear_conv_stack(x)

x = x.view(-1,256*(ccd_size**2)*(ccd_size**2))

x = self.linear_selu_stack(x)

return x

criterion = nn.MSELoss()

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

Acknowledgement

This study is written for my master degree and is based on my last year’s study

in Tokyo Institute of Technology. During these years, I received many helps and

supports from my supervisor, my team mates of the deep learning study group and

my colleagues in Somiya laboratory and my family.

First of all, I would like to express my deepest appreciation to my supervisor,

Kentaro Somiya. He offered me the chance to join this outstanding laboratory and

lead me through the gate of the fantastic astrophysics. He not only helped me built

a steady foundation of basic theories in my area of study, but also invited me to join

the deep learning study group so that I can get in touch with many other friends

who shares the same interest. During my study, it is he who pointed out a clear

path to me on how to choose a title, what need to be added into the experiment and

where can I find related learning materials. Without his instruction, I could never

undertaken this journey.

Many thanks to Hirotaka Takahashi from Tokyo City University. In our deep

learning study group, he kindly shared many topics in the area of data analysis,

machine learning and gravitational waves detection. We had several detailed discuss

on how to build the models in deep learning. He explained the details of many data

analyzing methods to me in my previous study, those knowledge helped me choose

the method to use in this very study.

I have my special thanks to Kenichi Harada, the research lecturer of our lab-

oratory. His lecture on development of laser detection gave me a better view to

look through the history of laser physics. I also received many help from him in the

laboratory during these years.

I would like to extend my sincere thanks to Seiya Sasaoka of our laboratory.

We co-operated many times in many deep learning projects and other events. In

this study, he helped me fixed many problems in those deep learning models and

checked the typos and mistakes of the thesis for me. In the laboratory, his tutorial

of python coding was really impressive and those skills I learned indeed helped me

a lot in my study. In real life, he also supported me a lot when I first arrived Japan.

His passion in deep learning and gravitational waves motivated me though out these

years of study.

97

APPENDIX B. STRUCTURE OF DEEP LEARNING 98

I am also thankful to Yuting Liu, who is a former student of our laboratory.

From his study, I learned the basic ideas of deep learning and how deep learning

technology can be apply in gravitational wave detection.

I’m also grateful to Koki Tachihara, who is also a former student of our labora-

tory. His previous study of using WFS signals to built a control systems for mirror

tilting proved that the deep learning is workable in an optical system.

I send my appreciate to Naoki Koyama from the deep learning study group.

His codes for generating mis-centered data sets was the simplest and fastest among

several proposals. Without his help, I could not optimize my codes to the current

stage.

Thanks should also go to Hayato Tanaka from our laboratory. Although we

worked on different approaches of the new control system for mirror tilting, together

we identify the same group of parameters in our data sets for comparison.

I’d like to acknowledge all other members of Somiya laboratory. I thank So-

tatsu Otabe for announcing every seminar of the laboratory. I thank Homare Abe

for sharing his view from the observatory. I thank Kaido Suzuki for his patients

and guidance through the physics experiment. I thank Takanori Suzuki for his ex-

planation on how to apply for various services of the university. I thank Wataru

Usukura, Kotaro Takeguchi, Sakino Takeda and Daiki Haba for holding the weekly

study event, we studied together and enjoyed ourselves during the event. I thank

Ryo Iden and Kento Takeshita for giving their precious feedback on my deep learning

presentation. I thank Diego Dominguez and Sapna Hassanaly, their joining to the

laboratory promotes the exchange of different cultures, which is indeed lightening

my university life.

Finally, I want to thank my parents. They offered me the financial supports I

need through out these years. They also gave me many advises beyond university

life. It does help me adapt to my life in Japan.

Once again I sincerely appreciate the above people and all other people that

provided me their help. It is their kindly supports that helps me made it today.

Bibliography

[1] LIGO, https://www.ligo.caltech.edu/page/about, accessed: 2023-07-10.

[2] Virgo interferometer, http://public.virgo-gw.eu/virgo-in-a-nutshell/,

accessed: 2023-07-10.

[3] KAGRA Observatory, https://gwcenter.icrr.u-tokyo.ac.jp/en/plan, ac-

cessed: 2023-07-10.

[4] L. Barsotti, M. Evans, and P. Fritschel, Alignment sensing and control in ad-

vanced LIGO, Classical and Quantum Gravity 27, 084026 (2010).

[5] K. Tachihara, Posture control of mirrors using deep learning, Master’s thesis,

Tokyo Institute of Technology (2022).

[6] H. Tanaka, Development of mirror posture control method under the influence

of non-uniform birefringence, Bachelor’s thesis, Tokyo Institute of Technology

(2023).

[7] D. D. Brown and A. Freise, Finesse, The software and source code is available

at http://www.gwoptics.org/finesse.

[8] D. D. Brown, P. Jones, S. Rowlinson, S. Leavey, A. C. Green, D. Töyrä, and

A. Freise, Pykat: Python package for modelling precision optical interferome-

ters, SoftwareX 12, 100613 (2020).

[9] A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library, in Advances in Neural Information Processing Systems 32 (Curran

Associates, Inc., 2019) pp. 8024–8035.

[10] W. G. Anderson and J. D. Creighton, Gravitational-wave physics and astron-

omy: An introduction to theory, experiment and data analysis (John Wiley &

Sons, 2012).

[11] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration),

Observation of Gravitational Waves from a Binary Black Hole Merger, Phys.

Rev. Lett. 116, 061102 (2016).

[12] N. Andersson and K. Kokkotas, 8 Gravitational Wave Astronomy:The High

Frequency Window (2005) pp. 255–276.

99

https://www.ligo.caltech.edu/page/about
http://public.virgo-gw.eu/virgo-in-a-nutshell/
https://gwcenter.icrr.u-tokyo.ac.jp/en/plan
https://doi.org/10.1088/0264-9381/27/8/084026
https://www.gravity.phys.titech.ac.jp/doc/thesis/syuron_tachihara.pdf
https://www.gravity.phys.titech.ac.jp/doc/thesis/sotsuron_tanaka.pdf
https://www.gravity.phys.titech.ac.jp/doc/thesis/sotsuron_tanaka.pdf
https://doi.org/10.5281/zenodo.821363
http://www.gwoptics.org/finesse
https://doi.org/https://doi.org/10.1016/j.softx.2020.100613
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102

Bibliography 100

[13] O. D. Aguiar, Past, present and future of the Resonant-Mass gravitational wave

detectors, Research in Astronomy and Astrophysics 11, 1 (2011).

[14] K. Somiya, Detector configuration of KAGRA–the Japanese cryogenic

gravitational-wave detector, Classical and Quantum Gravity 29, 124007 (2012).

[15] Y. Zhao et al., Frequency-Dependent Squeezed Vacuum Source for Broadband

Quantum Noise Reduction in Advanced Gravitational-Wave Detectors, Phys.

Rev. Lett. 124, 171101 (2020).

[16] L. McCuller et al., Frequency-Dependent Squeezing for Advanced LIGO, Phys.

Rev. Lett. 124, 171102 (2020).

[17] A. E. Siegman, Lasers (University science books, 1986).

[18] A. Perot and C. Fabry, On the application of interference phenomena to the so-

lution of various problems of spectroscopy and metrology, Astrophysical Journal

9, 87 (1899).

[19] R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward,

Laser Phase and Frequency Stabilization Using an Optical Resonator, Appl.

Phys. B 31, 97 (1983).

[20] E. D. Black, An introduction to Pound–Drever–Hall laser frequency stabiliza-

tion, American Journal of Physics 69, 79 (2001).

[21] H. Kogelnik and T. Li, Laser beams and resonators, Proceedings of the IEEE

54, 1312 (1966).

[22] E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, Experimental demon-

stration of an automatic alignment system for optical interferometers, Appl.

Opt. 33, 5037 (1994).

[23] B. Swathi, ARTIFICIAL INTELLIGENCE : CHARACTERISTICS, SUB-

FIELDS, TECHNIQUESAND FUTURE PREDICTIONS, JOURNAL OFME-

CHANICS OF CONTINUA AND MATHEMATICAL SCIENCES 14 (2019).

[24] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in

nervous activity, The Bulletin of Mathematical Biophysics 5, 115 (1943).

[25] D. George and E. A. Huerta, Deep neural networks to enable real-time multi-

messenger astrophysics, Phys. Rev. D 97, 044039 (2018).

[26] E. Cengil, A. Çinar, and Z. Güler, A GPU-based convolutional neural network

approach for image classification, in 2017 International Artificial Intelligence

and Data Processing Symposium (IDAP) (2017) pp. 1–6.

https://doi.org/10.1088/1674-4527/11/1/001
https://doi.org/10.1088/0264-9381/29/12/124007
https://doi.org/10.1103/PhysRevLett.124.171101
https://doi.org/10.1103/PhysRevLett.124.171101
https://doi.org/10.1103/PhysRevLett.124.171102
https://doi.org/10.1103/PhysRevLett.124.171102
https://doi.org/10.1086/140557
https://doi.org/10.1086/140557
https://doi.org/10.1007/BF00702605
https://doi.org/10.1007/BF00702605
https://doi.org/10.1119/1.1286663
https://doi.org/10.1109/PROC.1966.5119
https://doi.org/10.1109/PROC.1966.5119
https://doi.org/10.1364/AO.33.005037
https://doi.org/10.1364/AO.33.005037
https://doi.org/10.26782/jmcms.2019.12.00010
https://doi.org/10.26782/jmcms.2019.12.00010
https://doi.org/10.1007/bf02478259
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1109/IDAP.2017.8090194
https://doi.org/10.1109/IDAP.2017.8090194

101 Bibliography

[27] Convolutional calculation in deep learning, https://axa.biopapyrus.jp/

deep-learning/cnn/convolution.html, accessed: 2023-06-20.

[28] Z. Zhang and M. R. Sabuncu, Generalized Cross Entropy Loss for Training

Deep Neural Networks with Noisy Labels, arXiv:1805.07836 [cs.LG] .

[29] S. Ruder, An overview of gradient descent optimization algorithms,

arXiv:1609.04747 [cs.LG] .

[30] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the importance of initial-

ization and momentum in deep learning, in Proceedings of the 30th International

Conference on Machine Learning , Proceedings of Machine Learning Research,

Vol. 28, edited by S. Dasgupta and D. McAllester (PMLR, Atlanta, Georgia,

USA, 2013) pp. 1139–1147.

[31] J. Duchi, E. Hazan, and Y. Singer, Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization, Journal of Machine Learning Research

12, 2121 (2011).

[32] M. D. Zeiler, ADADELTA: An Adaptive Learning Rate Method,

arXiv:1212.5701 [cs.LG] .

[33] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization,

arXiv:1412.6980 [cs.LG] .

[34] F. Pedregosa et al., Scikit-Learn: Machine Learning in Python, J. Mach. Learn.

Res. 12, 2825–2830 (2011).

[35] S. Stehman, Selecting and interpreting measures of thematic classification ac-

curacy, Remote Sensing of Environment 62, 77 (1997).

https://axa.biopapyrus.jp/deep-learning/cnn/convolution.html
https://axa.biopapyrus.jp/deep-learning/cnn/convolution.html
https://arxiv.org/abs/1805.07836
https://arxiv.org/abs/1609.04747
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1412.6980
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pd
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pd
https://doi.org/10.1016/S0034-4257(97)00083-7

	Introduction
	Gravitational wave
	General relativity
	Solution of Einstein Equation
	Gravitational wave detectors
	Noises of gravitational wave detectors

	Laser Physics
	Gaussian Beam
	Beam Parameters
	Spot Size w(z)
	Beam waist z0
	Rayleigh range zR
	Radius of Curvature R(z)
	Gouy phase (z)

	Hermite Gaussian mode
	Fabry-Perot Cavity
	PDH and WFS methods

	Deep Learning
	Machine Learning
	Principal Component Analysis
	Artificial Neural Network
	Convolutional Neural Network
	Loss Function
	L1Loss
	MSELoss
	CrossEntropyLoss

	Optimizer
	Gradient Descent Optimizer
	Momentum Optimizer
	Optimizer with Adaptive Learning Rate

	Activation Function
	Rectified Linear Unit (ReLU) function
	Parametric Rectified Linear Unit (PReLU) function
	Exponential Linear Unit (ELU) function
	Scaled Exponential Linear Unit (SELU) function
	Sigmoid function
	Tanh function

	Experiment
	Methods of study
	Environment of study
	Generating data
	Data Analysis
	Deep Learning
	1D-Classification
	1D-Regression
	2D-Classification
	2D-Regression

	Results

	Summary
	Structure of Finesse
	Structure of Deep Learning
	1D-Classification
	1D-Regression
	2D-Classification
	2D-Regression

	Acknowledgement
	Bibliography

