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Abstract

The inception of gravitational wave astronomy has revealed astonishing astro-
nomical insights and also underscored the importance of further improving the
sensitivity of detectors. High-frequency gravitational waves emitted from binary
neutron star post-merger remnants contain critical information about high-density
nuclear materials that cannot be accessed by terrestrial experiments. However,
high-frequency gravitational waves have yet to be observed and are unlikely to be
observed because of the lack of sensitivity of modern gravitational wave detectors.
Intracavity signal amplification using nonlinear optical effects is a promising tech-
nique for dramatically improving the sensitivity of gravitational wave detectors in
the high-frequency band. The signal amplification effect generates a stiff optical
spring that can amplify high-frequency gravitational wave signals at its resonant
frequency. In this thesis, we construct an intracavity signal amplification system
using two nonlinear optical effects, namely, optical parametric amplification and
the optical Kerr effect, and investigate the behavior of the optical spring generated
in the cavity. We found that the photothermal effect caused by thermal absorption
in a nonlinear optical crystal is an essential characteristic of a signal amplification
system. We developed a method to precisely estimate the photothermal parame-
ters by measuring the susceptibility of an optomechanical oscillator. Finally, we
successfully observed an optical spring enhanced by the intracavity signal am-
plification effect by appropriately eliminating the photothermal effect from the
measurement results. This study revealed the impact of intracavity signal amplifi-
cation on optomechanical systems and demonstrated a signal amplification system
that improved the sensitivity of gravitational wave detectors in the high-frequency
band.
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DC Direct Current
AC Alternate Current

PDH Pound-Drever-Hall
PLL Phase Locking Loop
EOM Electro-Optical Modulator
AOM Acousto-Optic Modulator
HWP Half-Wave Plate
QWP Quarter-Wave Plate
BS Beam Splitter
PD Photodetector
AOI Angle of Incidence
ROC Radius of Curvature
PZT lead zirconate titanate, Pb(Zrx,Ti1−x)O3

NLC Nonlinear Optical Crystal
PPLN Periodically Poled LiNbO3

PPKTP Periodically Poled KTiOPO4

RMSE Root Mean Square Error
TT Transverse-Traceless

OLTF Open Loop Transfer Function
OLG Open Loop Gain
CLTF Closed Loop Transfer Function
UGF Unity Gain Frequency
LO Local Oscillator
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Chapter 1

Introduction

Gravitational waves are ripples propagating in space-time at the speed of light,
which is derived from the framework of general relativity [1, 2]. Gravitational
wave detection was first achieved in 2015 [3]; since then, more than 90 gravita-
tional wave events have been observed [4]. Notably, the gravitational wave gen-
erated from a binary neutron star merger was observed in 2017 [5], and follow-up
observations using electromagnetic telescopes identified an electromagnetic coun-
terpart [6]. Multimessenger observations with gravitational and electromagnetic
waves provided several insights, such as the origin of short gamma-ray bursts [7],
the synthesis of very heavy elements via the r-process [8], and new independent
measurements of the Hubble constant [9].

Current gravitational wave detectors [10–12] are designed with the best sensi-
tivity in the bandwidth of ∼ 100Hz to observe the inspiral phase of binary neutron
star coalescence. However, high-frequency gravitational waves of a few kilohertz
(kHz) are predicted to be emitted from supernovae [13], certain rotating neutron
stars [14], and binary neutron star post-merger remnants [15, 16]. In particular,
the gravitational waves emitted after binary neutron star coalescence are expected
to provide essential information for determining the equation of state for the neu-
tron star [17]. However, the sensitivity of the current gravitational wave detectors
in the high-frequency band is limited by noise arising from the quantum nature
of laser light [18], and high-frequency gravitational waves are unlikely to be ob-
served. High-frequency gravitational waves are of considerable interest, and a new
gravitational wave detector designed specifically to observe such events has been
proposed [19]. Further research and development are essential for improving the
sensitivity of gravitational wave detectors.

Signal amplification using an optical spring is a technique that improves the
sensitivity of gravitational wave detectors within a specific bandwidth [20]. An
optical spring is generated when the radiation pressure force is proportional to the
displacement of the mirror, and the gravitational wave signal can be amplified at
its resonant frequency. However, it is difficult to generate an optical spring with
a high resonant frequency because its spring constant is proportional to the laser
light power. There are limits to the intensity of usable, stable laser sources, and
intense laser light causes thermal lensing and other harmful effects. In addition,
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increasing the finesse of the cavity reduces the bandwidth of the detector, and
high-frequency gravitational waves cannot be detected.

A signal amplification system using nonlinear optical effects is proposed to gen-
erate a stiff optical spring [21]. The response rate of the cavity to the signal can be
increased by inducing nonlinear optical effects inside the cavity. In other words,
the radiation pressure force responds more sensitively to the displacement of the
mirror, so that the resonant frequency of the optical spring can be increased with-
out changing the intracavity laser light power. If an optical spring with a resonant
frequency of a few kHz is generated using this technique, high-frequency gravita-
tional waves with a high signal-to-noise ratio can be observed.

A verification-of-principle experiment for the signal amplification method must
be conducted before its implementation in an actual gravitational wave detector.
The essence of a signal amplification system is the enhancement of the optical
spring by the nonlinear optical effect. Observing the change in the resonant fre-
quency of the optical spring due to intracavity signal amplification is essential for
demonstrating the practicality of this method. Furthermore, intracavity nonlin-
ear interactions may allow macroscopic oscillators to cool down to the quantum
ground state [22–24]. By investigating the impact of nonlinear optical effects on
optomechanical coupling, we can demonstrate the potential of developing optome-
chanical systems that cannot be achieved using conventional techniques.

This thesis attempts to configure a signal amplification system using two non-
linear optical effects, optical parametric amplification and the optical Kerr effect,
and observe an optical spring enhanced by the intracavity signal amplification ef-
fect. Because we conducted the experiment using the Fabry-Perot cavity, which
is a more straightforward optical system than the basic configuration of the grav-
itational wave detector, the correspondence between the configured optical sys-
tem and the actual gravitational wave detector is carefully discussed. In addition,
the intense laser light incident on the nonlinear optical crystal may generate pho-
tothermal effects that can influence the radiation pressure force and optical spring
constant. To distinguish between the impacts of the photothermal and nonlinear
optical effects on the optical spring, methods for modeling and parameter estima-
tion of the photothermal effect are discussed in detail.

This thesis is organized as follows. Chapter 2 briefly reviews the sources of
gravitational waves and their detection methods. Chapter 3 discusses quantum
noise in laser interferometric gravitational wave detectors and outlines a method
to improve the sensitivity by intracavity signal amplification. Chapter 4 introduces
signal amplification experiments using optical parametric amplification and dis-
cusses problems with experiments that use the Fabry-Perot cavity. Chapter 5 dis-
cusses the photothermal effect, a problem that affects experiments with strong in-
tracavity powers, and describes a method for estimating photothermal parameters
in the signal amplification system. Chapter 6 introduces the signal amplification
experiment using the Kerr effect and presents the experimental results obtained.
Chapter 7 provides a summary and future perspectives.



3

Chapter 2

Gravitational waves and their
detection

Gravitational waves are ripples that propagate at the speed of light through
space-time and are generated from the asymmetric acceleration motion of a mas-
sive object. This chapter briefly reviews the characteristics and sources of gravita-
tional waves and gravitational wave detectors.

2.1 Detectability of gravitational waves
This section provides a rough estimate of the parameters of gravitational waves

and briefly discusses the techniques to detect them.

2.1.1 Gravitational waves generated by the compact binary
system

Einstein predicted the existence of gravitational waves in 1916 [1, 2]. How-
ever, the existence of gravitational waves or astronomical phenomena that emit
detectable gravitational waves has been discussed for a long time. In 1974, Hulse
and Taylor discovered the neutron star binary system PSR B1913+16, and reported
that its orbital period was decreasing [25]. As discussed in App. A.3.2, this phe-
nomenon is considered because of the energy being extracted from the binary sys-
tem owing to gravitational waves. The observed values agree with the theoretical
predictions based on general relativity with high accuracy [26]. This discovery
is crucial for indirectly confirming the existence of gravitational waves and indi-
cating the possibility of an astronomical phenomenon of binary compact object
mergers.

Let us consider a binary system comprising compact objects as a gravitational
wave source, as shown in Fig. 2.1. This system is expected to emit gravitational
waves as its semi-major axis decreases and eventually merges. Let the mass of
the compact objects be the solar mass ∼ 2 × 1030 kg, and the semi-major axis be
the solar radius ∼ 7 × 108 m. Using Eq. (A.31), the power of the gravitational



4 Chapter 2 Gravitational waves and their detection

Fig. 2.1: Schematic of a compact binary star system.

wave emitted from the binary system is approximately ∼ 2 × 1024 W, which is
comparable to the solar radiation flux of ∼ 3× 1026 W. Using Eq. (A.32), the time
variation of the semi-major axis can be estimated as ∼ 3 × 10−9 m/s, where the
semi-major axis decreases and the angular velocity increases very slowly. Using
Eq. (A.33), binary star coalescence occurs in ∼ 2 × 1017 s, which is comparable
to the age of the universe ∼ 4 × 1017 s. If binary star systems similar to these
parameters have been potentially configured in the universe, it is not surprising for
a coalescence event to occur.

Let us roughly estimate the frequency and amplitude of the gravitational waves
that can be observed. Assuming a binary merger is imminent, let the semi-major
axis be 100 km, which is ten times the radius of a typical neutron star. The fre-
quency of the emitted gravitational wave is twice the Keplar frequency and is
obtained as ∼ 200Hz from Eq. (A.30). The velocity of the compact object be-
comes ∼ 5 × 107 m/s, approximately 0.2 times the speed of light. As binary
neutron star mergers rarely occur unless, from a location with many galaxies, we
assume that gravitational waves are emitted from the Virgo cluster, which is about
∼ 20Mpc away. From Eq. (A.27), the strain of the gravitational wave, in this
case, is ∼ 6× 10−23, which is equivalent to a ratio of about 1/10 of the radius of
a hydrogen atom and the distance between the earth to the sun.

2.1.2 Impact of gravitational waves on the optical interferom-
eter

Gravitational waves are transverse waves propagating at the speed of light and
possess two polarizations, + and × modes. The effect of gravitational waves ap-
pears in the distance between two or more free masses, as expressed in Eqs. (A.19)
and (A.20). The effect of gravitational waves on free masses is shown in Fig. 2.2.
The differential displacement of space must be measured with high precision to
detect gravitational waves.

Currently, laser interferometric gravitational wave detectors based on the
Michelson interferometer (Fig. 2.3(a)) are widely used. The interference condi-
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Fig. 2.2: Displacement of the free masses when gravitational waves are incident. Suppose
that gravitational waves of + and × modes are incident from the direction perpen-
dicular to the paper, respectively.
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Fig. 2.3: Impact of gravitational waves on the Michelson interferometer. (a) Condition
without gravitational waves. (b) + mode gravitational waves are incident from
the direction perpendicular to the paper.
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tion should be such that no light comes to the output port where the photodetector
is placed. When a gravitational wave arrives, the arm length between the
beamsplitter and end mirror varies (Fig. 2.3(b)). The gravitational wave produces
a differential displacement with regard to the mirrors, which changes the interfer-
ence condition. In other words, the gravitational wave signal is converted into a
light signal, and the waveform of the gravitational wave can be observed.

2.2 Detection of gravitational waves
Gravitational waves were first detected in 2015 [3] by Advanced LIGO [10].

Since then, approximately 90 binary compact object mergers have been ob-
served [4]. This section briefly introduces the gravitational wave events that have
been observed.

2.2.1 Binary black hole merger

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44
-1.5

-1

-0.5

0

0.5

1

1.5

Hanford
Livingston (6.9 msec shifted, inverted)

Fig. 2.4: Waveform of GW150914 [3]. Two detectors observed them in Hanford and Liv-
ingston in the USA.

GW150914 [3] was the first-ever gravitational wave detected. Fig. 2.4 shows the
waveform of GW150914. This gravitational wave is analyzed to be emitted from
the merger of two black holes with a mass of approximately 30 solar masses. Al-
most all the gravitational waves detected to date have been associated with binary
black hole mergers, and black holes with similar masses have also been observed.
However, stellar black holes formed from a typical core-collapse supernova are
known to have a mass of approximately 15 solar masses or less [27]. The ori-
gin of these black holes has been theorized as the formation of a binary system
from massive stars of population III [28] or the observation of primordial black
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holes [29].

2.2.2 Binary neutron star merger
GW170817 [5] is the gravitational wave from the binary neutron star merger,

detected by the two LIGO detectors and Advanced VIRGO [11]. The observa-
tions have imposed new limits on the parameters for the tidal deformation of neu-
tron stars, and three gravitational wave detectors have provided precise estimates
of sky localization. Based on this information, follow-up observations were per-
formed using electromagnetic wave telescopes, and an electromagnetic counter-
part was discovered with NGC4993 as the host galaxy [6]. A short gamma-ray
burst GRB170817A was observed approximately 1.7 seconds after the merger [7],
confirming that the binary neutron star merger is associated with a short gamma-
ray burst. The difference in the arrival time between the gravitational wave and
gamma-ray burst indicates that there is almost no difference between the speed of
gravity and light. In addition, the transient optical and near-infrared sources of
kilonova have been observed for long durations [8], indicating that the synthesis
of very heavy elements via the r-process is associated with binary neutron star
mergers. Furthermore, the multi-messenger observations provided a new method
of measuring the Hubble constant without using the cosmic distance ladder [9] be-
cause gravitational wave observations can directly determine the absolute distance
to the source.

2.2.3 Neutron star-black hole coalescence and mass gap
GW200105 and GW200115 [30] are the gravitational waves from the neutron

star and black hole coalescence. A pulsar in a neutron star-black hole binary is
yet to be discovered, and this event confirms the direct evidence of the existence
of this type of binary system, which is a key objective for radio observations [31].
In addition, GW190814 [32] is a gravitational wave event in which one of the
compact objects constituting the binary system is not identified. This gravitational
wave is analyzed as being associated with the merger of a black hole and a 2.6
solar mass compact object, which is either the lightest black hole or the heaviest
neutron star ever discovered in a binary compact object system. It is also worth
noting that the mass ratio of compact objects is approximately 9. Considering the
inferred merger rate, there is no reasonable explanation for this event in all the
current models of the formation and mass distribution of compact-object binaries.

No electromagnetic counterparts have been identified in these events.

2.3 Potential candidates
As current gravitational wave detectors are sensitive to the ∼ 100Hz band,

gravitational wave events detected so far are associated with the binary mergers of
stellar mass compact objects. This section briefly describes candidates and their



8 Chapter 2 Gravitational waves and their detection

theoretically predicted frequencies that are yet to be detected [33–35].

2.3.1 Supermassive black hole binaries
Nearby galaxies possess a supermassive black hole with 106 ∼ 109 solar mass

at their center, and its merging is related to the merging of the host galaxy [36].
Several scenarios exist for the formation process of supermassive black hole bina-
ries, and the chirp mass distribution is currently uncertain. They emit gravitational
waves in the mHz band or lower.

2.3.2 Supernovae
Core-collapse supernovae may involve aspherical motions at core bounce,

which can produce gravitational waves [13]. The gravitational core collapse
should dynamically proceed for the emission of the gravitational waves, and the
inverse of the dynamical timescale corresponds to the typical frequency of the
gravitational waves. This process is a promising candidate for a gravitational
wave source and is predicted to emit gravitational waves at approximately 1 kHz.
The gravitational waves have information deep inside the supernova core, and the
simultaneous observation of it and neutrinos will help significantly progress in the
understanding of the explosion mechanism.

2.3.3 Rotating neutron stars
Pulsars are interpreted as highly magnetized rotating neutron stars whose axial

asymmetry is a source of gravitational wave emission [14]. The amplitude of the
gravitational waves depends on the deformation of the neutron star; however, it is
currently undetermined because of the lack of information on the equation of state
for neutron stars. The frequency of the emitted gravitational waves is twice the
rotation frequency of the neutron star, and known pulsars usually have precisely
determined frequency evolutions. There are more than 200 known pulsars in the
10 ∼ 1000Hz range, many of which have been imposed upper limits on ellipticity
based on gravitational wave observations [37].

2.3.4 Binary neutron star post-merger remnants
GW170817 and GW190425 [5, 38] have detected the inspiral phase of binary

neutron star mergers. Theoretically, gravitational waves are expected to be emit-
ted from the remnants that form after the merger. The fate of remnants depends
on the mass of the binary star. It may immediately collapse as a black hole, form
a rapidly rotating and oscillating hypermassive or supramassive neutron star that
eventually collapses, or form an infinitely stable neutron star [15,16]. The emitted
gravitational waves have been simulated [39–55] using various candidate equa-
tions of state for neutron stars [17], and the predicted frequency is approximately
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2 ∼ 4 kHz. The gravitational waves emitted from the remnant provide informa-
tion about the radius and maximum mass of the neutron star. The observation of
such gravitational wave signals would play an essential role in determining the
equation of state for neutron stars and contribute to high-density matter physics in
a manner that cannot be possible with terrestrial experiments. Moreover, under-
standing post-merger evolution provides new insights into short gamma-ray bursts
and kilonovae.

2.3.5 Stochastic background
Stochastic gravitational wave background can be generated from the superposi-

tion of many independent sources [56]. Stochastic gravitational waves have been
potentially generated in all frequency bands, and various candidates have been dis-
cussed. In addition to well-known astronomical phenomena such as binary black
holes, binary neutron stars, supernovae, or pulsars, several models suggest that
they are generated from cosmic strings or first-order phase transitions in the early
universe. There was also a possibility that the background gravitational waves
were generated during inflation [57]. Although the amplitude of the predicted
gravitational waves is small, the energy density per logarithmic frequency is con-
stant in the band above 10−17 Hz.

2.4 History and future plans of the gravitational
wave detector

Since the existence of gravitational waves was predicted in 1915, they had not
been directly detected for 100 years. The amplitude of gravitational waves is min-
imal, and developing a probe with low noise enough to detect them is challenging.
This section briefly describes the history and future plans of gravitational wave
detectors.

2.4.1 Resonant bar detectors
In 1969, Weber reported that gravitational waves were detected using a resonant

bar detector made of aluminum [58]. These gravitational waves were analyzed
as coming from the center of the Milky Way galaxy. However, the energy of
the astronomical event estimated from its amplitude was far too significant, and
today this event is considered a false positive. Follow-up experiments have been
conducted worldwide using resonant bar detectors; however, the results have been
negative about detection [59].

A resonant bar detector is sensitive in a very narrow band around the resonant
frequency of a block of metal; thus, it cannot observe the waveform of a gravita-
tional wave. In addition, the performance of the detector is limited by the size of
the block of metal that can be produced. In the 1970s, the laser interferometric
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gravitational wave detector was proposed that did not suffer from the aforemen-
tioned drawbacks [60].

2.4.2 Laser interferometer and optomechanics
While thermal noise limits the sensitivity of resonant bar detectors, the princi-

ple sensitivity of laser interferometric gravitational wave detectors is limited by
the quantum nature of the light. Quantum noise includes not only the effect of
quantum fluctuations in detected photon numbers but also the effect of the mirrors
that constitute the detector being fluctuated by force caused by changes in the mo-
mentum of the light. The field of physics that deals with the interaction between
the mechanical motion of a massive object and radiation pressure force generated
by light is known as optomechanics [61], which has been the focus of various
studies. In the 1980s, ponderomotive quantum noise generated by optomechan-
ical coupling was recognized as a factor determining the principle sensitivity of
laser interferometric gravitational wave detectors [18], indicating the possibility
of gravitational wave detection using large-scale laser interferometers.

2.4.3 First-generation gravitational wave detectors
In the 1980s-1990s, prototypes with arm lengths of several m ∼ 10m were con-

structed in several countries [62]. Moreover, a large-scale laser interferometer was
designed based on the insights obtained from the prototype because the response
to gravitational waves is better with a longer arm length, as discussed in App. A.4.
In the 2000s, gravitational wave detectors with arm-lengths of several hundred to a
few thousand meters were operational such as LIGO at Hanford in Washington and
Livingston in Louisiana in the USA [63], VIRGO at Pisa in Italy [64], TAMA300
at Tokyo in Japan [65], and GEO600 at Hanover in Germany [66]. These were
known as first-generation gravitational wave detectors, whose primary aim was to
verify the principle of large-scale gravitational wave detectors. GEO600 is still op-
erating with upgrades [67] and plays an essential role as a demonstration detector
for advanced technologies [68].

2.4.4 Second-generation gravitational wave detectors
Based on the success of first-generation detectors, second-generation gravita-

tional wave detectors were constructed in the 2010s to directly detect gravitational
waves. They are designed to detect a few events per year of binary neutron star
mergers, whose detection rate can be theoretically predicted [69]; thus, they pos-
sess the best sensitivity of ∼ 3× 10−24 Hz−1/2 in the band of ∼ 100Hz.

Advanced LIGO [10] was constructed on the infrastructure of the initial version
of the LIGO detector. The arm length was 4 km. The first gravitational wave event,
GW150914 [3], was observed by two detectors during the first observing run in
2015. The sky-averaged sensitivities to binary neutron star coalescences during
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the third observing run in 2019 were 111Mpc for LIGO Hanford and 134Mpc
for LIGO Livingston [70]. Moreover, there are plans to construct the third LIGO
detector in India [71].

Advanced VIRGO [11] was constructed on the infrastructure of the initial ver-
sion of the VIRGO detector. The arm length was 3 km. VIRGO was part of the
second observing run in 2017, detecting GW170817 [5] and others. As the VIRGO
detector is located far from the LIGO detectors, their simultaneous observations
can significantly improve the estimation accuracy of sky localization. For exam-
ple, the sky localization of GW170817 is 190 deg2 for Hanford-Livingston; how-
ever, it is 31 deg2 for Hanford-Livingston-VIRGO. VIRGO detector contributed
to the identification of the electromagnetic counterpart.

KAGRA [12] was constructed at Gifu in Japan. The arm length was 3 km.
KAGRA was part of the last stage of the third observing run in 2020 [72]. Sky
localization was expected to be significantly improved by the continuous partic-
ipation of KAGRA [73]. KAGRA incorporates several advanced technologies,
e.g., underground construction, cooling of the mirror to cryogenic temperatures,
and signal amplification via optomechanical coupling [74]. These are the criti-
cal technologies for the third-generation gravitational wave detectors that will be
constructed in the future. KAGRA would also play a key role as a technological
demonstrator.

2.4.5 Future plans
Following the direct detection of gravitational waves in 2015, plans for

third-generation gravitational wave detectors are taking shape. The Einstein
Telescope [75] possesses an arm length of 10 km and constitutes interferometers
specialized for low-frequency and high-frequency bands, respectively. Cos-
mic Explorer [76] possesses an arm length of 40 km and will be upgraded to
low-temperature operation from room-temperature operation [77]. The third-
generation gravitational wave detectors can observe high-redshift astronomical
phenomena in the early universe and are expected to be able to explore the dark
ages of the universe.

While it would take decades to construct a third-generation gravitational wave
detector, a detector specialized for a particular frequency can be built at a lower
cost in a short period. NEMO [19] is a gravitational wave detector specialized
to detect neutron star post-merger remnants. Its sensitivity in the kHz band is
comparable to that of third-generation gravitational wave detectors, although it
possesses an arm length of 4 km. Several advanced technologies will be used to
achieve this sensitivity*1.

The aforementioned detectors are ground-based; however, there are plans to
configure laser interferometers in outer space. In outer space, it is possible to de-

*1 One of the techniques is the reduction of quantum noise based on the long-signal recycling
cavity (refer to App.C.1.3).
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tect low-frequency gravitational waves below 1Hz because they are not affected
by seismic noise, which is discussed later. In addition, arm lengths that are difficult
to achieve with ground-based detectors can be considered. Plans for space detec-
tors are LISA [78], which targets 0.1 ∼ 100mHz with an arm length of ∼ 109 m,
and DECIGO [79], which targets 0.1 ∼ 10Hz with an arm length of ∼ 106 m, and
others.

2.5 Fundamental noise sources of the
gravitational wave detector

The performance of a gravitational wave detector at a given frequency is deter-
mined by the ratio of the signal response to the amplitude spectral density*2 of the
noise at that frequency, which is known as the sensitivity of the gravitational wave
detector. Fig. 2.5 shows the sensitivity curve of KAGRA. The following subsec-
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Fig. 2.5: Sensitivity of KAGRA [12].

tions describe noise sources that determine the design sensitivity of a gravitational
wave detector, from a low-frequency band to a high-frequency band.

*2 See App. A.5.
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2.5.1 Seismic noise
Mirrors that constitute the gravitational wave detector must be free mass in the

observation band because they are subject to the force of gravitational waves.
Thus, a suspension with a sufficiently low resonant frequency should be used.
Seismic noise is caused by ground vibrations transmitted from the suspension
system and vibrating the mirrors. The amplitude spectral density of the ground
vibration is experientially known to inversely decrease as the frequency square,
limiting sensitivity in the low-frequency band below ∼ 10Hz. Seismic noise can
be reduced by isolating vibrations using the suspension system. However, the size
of the pendulum is limited with regard to its construction, and it is not easy to
reduce the resonance frequency below ∼ 0.1 Hz. In actual gravitational wave de-
tectors, multi-stage pendulums are used to improve the vibration isolation effect.
In addition, seismic noise can be further reduced by two orders of magnitude by
constructing underground, as KAGRA [80].

2.5.2 Newtonian noise
Newtonian noise is caused by fluctuations in the gravitational field of materials

around the mirror, such as the earth’s crust and atmosphere [81]. This effect is min-
imal and is considered negligible for second-generation gravitational wave detec-
tors. However, in third-generation gravitational wave detectors with dramatically
improved sensitivity, the Newtonian noise limits the sensitivity around ∼ 10Hz.
In addition, fluctuations in the gravity gradient caused by groundwater might limit
the design sensitivity of KAGRA [82].

2.5.3 Thermal noise
Thermal noise is caused by the random exchange of energy with the heat bath,

which excites vibrations in the suspension and mirror. Based on the fluctuation-
dissipation theorem [83], the power spectral density of thermal noise is propor-
tional to temperature and mechanical loss. Mechanical loss is the reciprocal of the
general Q factor of the material, and materials and conditions with low energy loss
must be considered to reduce thermal noise.

Herein, we briefly outline the thermal noise of the mirror. Various factors con-
tribute to the thermal noise of the mirror. The primary mirror thermal noises
can be classified into thermoelastic and Brownian noises. Thermoelastic noise
is caused by the temperature dependence of the value of the thermal expansion
coefficient [84]. When a temperature gradient exists on the mirror, the mirror
is distorted non-uniformly, resulting in thermoelastic noise. The source of this
mechanical loss is defined as thermoelastic damping. Brownian noise is caused
by Brownian motion [85] and is an empirically known thermal noise apart from
thermoelastic noise. The source of this mechanical loss has been identified as
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non-viscous damping and is known as structural damping.
The mirror is coated with dielectric multilayers to achieve high reflectivity.

Thermoelastic noise can be categorized into substrate thermoelastic noise, which
is caused by the temperature dependence of the thermal expansion coefficient of
the substrate, and thermo-optic noise, which is caused by the difference in the
thermal expansion coefficient and refractive index between the substrate and coat-
ing [86]. Moreover, Brownian noise can be categorized into substrate Brownian
noise, which is caused by the structural damping of the substrate, and coating
Brownian noise, which is caused by the structural damping of the coating. In
addition to these types of noises, other types of mirror thermal noise have been
considered, e.g., thermal noise caused by the temperature dependence of the re-
fractive index of the substrate, which can fluctuate the phase of the light transmit-
ted through the mirror, referred to as thermo-refractive noise [87].

Thermal noise limits sensitivity in the bandwidth of approximately
10 ∼ 100Hz.

2.5.4 Radiation pressure noise
When a mirror reflects light, the mirror receives a force from the light because

the photons undergo a momentum change in the mirror. This force is known as
the radiation pressure force. If the number of photons is constant, the radiation
pressure force becomes constant. However, when the photon number fluctuates
according to the quantum nature of light, the radiation pressure force fluctuates,
and radiation pressure noise is induced. Radiation pressure noise is the princi-
pal noise in the band below ∼ 100Hz; however, it has never been observed in
gravitational wave detectors because the reduction of thermal noise in this band is
difficult. In one experiment with a macroscopic test mass, radiation pressure noise
was observed at ∼ 10 kHz with a mirror of ∼ 50 ng [88].

2.5.5 Shot noise
Quantum fluctuations in the number of photons at the detection cause shot

noise and the fluctuations are statistical; therefore, the shot noise is frequency-
independent and considered white noise. The sensitivity is limited by shot noise
in the high-frequency band above ∼ 100Hz.

2.6 Summary of this chapter
As gravitational waves cause differential strain in interferometers, they can be

detected using optical interferometers. Gravitational waves generated from the
binary black hole merger and the inspiral phase of the binary neutron star merger
have been observed and significantly contributed to astronomy and cosmology.
However, gravitational waves emitted from supernovae or binary neutron star post-
merger remnants are yet to be detected and can be detected with a ground-based
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gravitational wave detector. Such sources are expected to emit high-frequency
gravitational waves of a few kHz, and the predicted frequency range is relatively
narrow. In other words, there is a possibility to detect these gravitational waves by
constructing a gravitational wave detector with a narrow but sensitive bandwidth
in the high-frequency band.

The principle sensitivity of the gravitational wave detector is determined by
radiation pressure noise and shot noise resulting from the quantum nature of light,
which are referred to as quantum noise. The sensitivity of current gravitational
wave detectors in the kHz band becomes limited owing to quantum noise. It is
essential to understand quantum noise for designing detectors that can detect high-
frequency gravitational waves. Intuitively, the higher the light power, the less
fluctuation in the number of photons at the detection and the greater the fluctuation
in the radiation pressure force. Radiation pressure noise and shot noise possess a
trade-off relationship for light power, and the limit of sensitivity determined from
them is known as the standard quantum limit [89]. The next chapter discusses
quantum noise in detail.
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Chapter 3

Quantum noise in
gravitational wave detectors

Current gravitational wave detectors are based on laser interferometry, whose
principle sensitivity is determined by the quantum fluctuations of the vacuum state.
This chapter discusses quantum noise in gravitational wave detectors and a method
for improving sensitivity within the high-frequency band using intracavity squeez-
ing.

3.1 Two-photon formalism
Let us consider interfering laser light with a single angular frequency of ω0. This

light is known as carrier light because it carries the gravitational wave signal. The
change in the arm length caused by the gravitational wave of angular frequency Ω
corresponds to the frequency modulation of the carrier light. When the plane wave
E(t) = E0 cosω0t is modulated with the modulation index β0 ≪ 1, the light field
can be written as

Emod(t) = E0 cos(ω0t− β0 sinΩt)

≃ E0 cosω0t+ E0β0 sinω0t sinΩt

= E0 cosω0t−
1

2
E0β0 cos(ω0 +Ω)t+

1

2
E0β0 cos(ω0 − Ω)t.

(3.1)

The first term denotes the carrier light itself, and the second and third terms imply
that the gravitational wave produces light with frequency Ω higher and lower than
the carrier light; these light fields are known as upper and lower sidebands, respec-
tively. The gravitational wave detector identifies sidebands generated by gravita-
tional waves while significantly reducing the noise of the angular frequency Ω.
However, when the classical noise at Ω is negligible, the sensitivity of the gravi-
tational wave detector is limited by the quantum fluctuations of the light field at
frequencies ω0 +Ω and ω0 − Ω. The two-photon formalism [90, 91] is a notation
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for calculating the electric field and its fluctuations by focusing on photons of the
aforementioned frequencies. In this section, we derive the notation necessary to
calculate the quantum noise in the gravitational wave detector.

3.1.1 Quadrature decomposition of quantized electromag-
netic fields

Electromagnetic waves are derived from Maxwell’s equations. Considering the
real and imaginary components of the vector potential as the generalized coor-
dinate and momentum, the energy of the electromagnetic field in a cube with a
volume of V = l3 can be formulated similarly to the Hamiltonian of the harmonic
oscillator. In other words, the electromagnetic field can be quantized by impos-
ing the appropriate commutation relation. The quantized electric field Ê can be
defined as

Ê(r, t) =
∑
µ,k

i

√
ℏωk

2ε0V

(
âµke−i(ωkt−k·r) − (âµk)

†ei(ωkt−k·r)
)
eµ(k), (3.2)

where r denotes the displacement vector, k denotes the wavenumber vector, ωk

denotes the angular frequency, and eµ(k) (µ = 1, 2) denotes the unit vector of
polarization of the electromagnetic field, both of which are orthogonal to the trav-
eling direction of the electromagnetic field. The commutation relation between the
creation operator (âνk′)† and annihilation operator âµk is[

âµk, (â
ν
k′)†

]
= δkk′δµν . (3.3)

To denote the electric field using the frequency domain creation and annihila-
tion operators, the addition of the quantized electric field for the wavenumber is
redefined as an integral over the frequency. The magnitude of the electric field in
free space (l → ∞) propagating along the z-axis can be written as

Ê(t) =

∫ ∞

0

√
ℏω

4πε0cA
(
âωe−iωt + â†ωeiωt

)
dω, (3.4)

where V/l → A denotes the effective beam cross-section. Here, we converted∑
k → 1/(2πc/l)

∫
dω and i

√
2πc/lâk exp(iωz/c) → âω . The commutation

relation
[âω, â

†
ω′ ] = 2πδ(ω − ω′) (3.5)

is nonzero, and the others are 0 from the conversion of δkk′ → 2πc/l × 2πδ(ω −
ω′).

Only the electric field fluctuations, comprising the creation and annihilation op-
erators of frequencies corresponding to the upper and lower sidebands, contribute
to the signal-to-noise ratio. Therefore, the quantized electric field for the vacuum
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state can be defined as an integral over the angular frequency Ω:

Ê(t) =

√
ℏω0

4πε0cA

∫ ∞

0

[
e−iω0t(â+e−iΩt + â−eiΩt)

+eiω0t(â†+eiΩt + â†−e−iΩt)
]
dΩ, (3.6)

where â+ = âω0+Ω and â− = âω0−Ω denote the annihilation operators for the
upper and lower sidebands, respectively. Here, we assume Ω ≪ ω0. The commu-
tation relations[

â+, â
†
+′

]
= 2πδ(Ω− Ω′),

[
â−, â

†
−′

]
= 2πδ(Ω− Ω′) (3.7)

are nonzero, and the others are 0. Furthermore, we define

â1(Ω) =
â+ + â†−√

2
, (3.8)

â2(Ω) =
â+ − â†−√

2i
. (3.9)

The electric field can be denoted by these two quadratures:

Ê(t) =

√
4πℏω0

ε0cA
[â1(t) cos(ω0t) + â2(t) sin(ω0t)] , (3.10)

where

âj(t) =

∫ ∞

0

(
âj(Ω)e−iΩt + âj(Ω)

†eiΩt
) dΩ
2π

(j = 1, 2) (3.11)

is the amplitude and phase quadratures, respectively. They are so-called because
of their correspondence to the classical electric field, as discussed later. From
âj(−Ω) = â†j(Ω), the Fourier transform of each quadrature can be defined as

aj(Ω) =

∫ +∞

−∞
aj(t)e−iΩtdt (j = 1, 2). (3.12)

The commutation relations[
â1(Ω), â

†
2(Ω

′)
]
= −

[
â2(Ω), â

†
1(Ω

′)
]
= i2πδ(Ω− Ω′) (3.13)

are nonzero, and the others are 0.
If we consider a signal with frequency Ω, we need to calculate two quadratures,

i.e., a1(Ω) and a2(Ω). Then, the transformation of the light field via interference,
propagation, and other factors is calculated using an operator denoted by a ma-
trix. Unless otherwise noted, we denote quadratures in the frequency domain as a
vector:

a =

(
a1
a2

)
. (3.14)
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3.1.2 Spectral density
Suppose that the state |in⟩ is incident on the interferometer, and the sum of

the gravitational wave signal and noise resulting from the incident fluctuations is
obtained. The operator of the signal-to-noise ratio is obtained as ĥn(Ω). The one-
sided spectral density of sensitivity Sh(f) is defined by the ensemble average:

1

2
⟨in| (ĥn(Ω)ĥ

†
n(Ω

′) + ĥ†
n(Ω

′)ĥn(Ω)) |in⟩ =
1

2
2πδ(Ω− Ω′)Sh(f). (3.15)

We consider the situation where a coherent state, which becomes 0 by acting with
annihilation operators for an arbitrary frequency, is incident to the interferometer.
We denote the vacuum state as |0⟩. From the commutation relations (3.7) and
(3.13), we obtain

1

2
⟨0| (âj â†k′ + â†k′ âj) |0⟩ =

1

2
2πδ(Ω− Ω′)δjk. (3.16)

Therefore, if the sensitivity operator can be defined as ĥn(Ω) = η1â1 + η2â2, the
sensitivity determined by the quantum noise can be calculated as

Sh(f) = |η1|2 + |η2|2. (3.17)

3.1.3 Correspondence to classical electromagnetic field
Herein, we have considered quantum fluctuations at sideband frequencies.

Moreover, we can consider quantum states corresponding to carrier light. The
carrier light corresponds to an electromagnetic field of angular frequency ω0

with specific linear polarization taking n(̸= 0) photon states |n⟩. The quantized
electromagnetic field can be written as

Ê(r, t) = i

√
ℏω0

2ϵ0V

(
âe−i(ω0t−k0·r) − â†ei(ω0t−k·r)

)
, (3.18)

and we can calculate the expectation of light power PE :

PE = 2

∫
ϵ0
2
⟨n| Ê†Ê |n⟩dr = nℏω0. (3.19)

The intensity of the classical plane wave E(t) = E0 cosω0t can be calculated
as PE = E2

0ℏω0/2 considering the time average of cos2 ω0t. The square of the
dimensionless electric field amplitude E2

0 corresponds to twice the photon number.
To calculate the transformation caused by the interferometer for the carrier light,

let us denote the carrier light in a vector similar to light field fluctuation. In other
words, when the sum of the light field fluctuations and carrier light is defined as

E(t) = (E1 + e1(t)) cosω0t+ (E2 + e2(t)) sinω0t, (3.20)
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the vector corresponding to the carrier light is as follows:

E =

(
E1

E2

)
, (3.21)

where E1 and E2 denote the dimensionless amplitudes of the carrier light for
each quadrature, and the light field fluctuations are denoted by the corresponding
lowercase e1 and e2. The light power, including the fluctuation, can be observed
by measuring the sum of the carrier light and light field fluctuation:

P tot
E ≃ ℏω0

2
(E2

1 + E2
2 + 2(E1e1 + E2e2)) = PE + δPE . (3.22)

Note that this equation is different from the standard definition of the inner product
because the time average of the product between different quadratures is 0. The
light field fluctuations can be measured via carrier light as δPE = ℏω0(E1e1 +
E2e2). The carrier light used for measurement is known as the local oscillator,
and the relative angle to the incident light field ξE = arctan(E2/E1) is known as
the homodyne angle.

Let us consider the physical meaning of each quadrature. The incident light
field A(t) is generally defined with an initial phase of 0. In other words, as A1 =
A0, A2 = 0, we can define A(t) = A0 cosω0t. When the amplitude and phase of
the carrier light fluctuate by δA0(t) and δϕ0(t), respectively, the sum of the carrier
light and light field fluctuations A′(t) can be written as

A′(t) = (A0 + δA0) cos(ω0t− δϕ0)

≃ (A0 + δA0) cosω0t+A0δϕ0 sinω0t. (3.23)

This equation indicates that a1 and a2 correspond to the amplitude and phase fluc-
tuations. For this reason, a1 is referred to as amplitude quadrature and a2 as phase
quadrature. In addition to quantum light field fluctuations, classical intensity and
frequency noise can be calculated as amplitude and phase quadratures. As ex-
pressed in Eq. (3.1), the gravitational wave signal appears in the phase quadrature.

3.2 Definition of operators
In the previous section, we discussed the notations for the carrier light and light

field fluctuation in a 2 × 1 vector. The two-photon formalism calculates the rela-
tionship between the input and output light fields by denoting the transformations
that the light field undergoes in the interferometer as a 2× 2 matrix. This section
derives the transformation caused by each factor configuring the interferometer, as
shown in Fig. 3.1.

3.2.1 Transmission, reflection, and superposition
Let us consider the interference of the light field with a symmetric mirror, as

shown in Fig. 3.1(1), which possesses no optical loss and whose power reflectivity
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Test mass

OPA

Kerr

Fig. 3.1: Schematic diagram of each factor configuring an optical interferometer. (1): su-
perposition, (2): propagation, (3): optical parametric amplification, (4): pondero-
motive squeezing, and (5): optical Kerr effect.

and transmissivity are r2 and t2, respectively. The phase difference between the
transmitted light and reflected light is π/2, and r2 + t2 = 1 because of the energy
conservation law. The absolute phase change that occurs during transmission and
reflection is not essential for an optical interferometer because it is indistinguish-
able from propagation. This mirror can be considered equivalent to an asymmetric
mirror with a phase change of 0 in transmission to both sides, reflection from one
side, and π in reflection from the other side. When the light fields interfere on this
mirror, the carrier light and light field fluctuations are written as the same formula:

C = rA+ tB, (3.24)
D = tA− rB, (3.25)

c(Ω) = ra(Ω) + tb(Ω), (3.26)
d(Ω) = ta(Ω)− rb(Ω). (3.27)

3.2.2 Propagation
Let us consider the case where the light field propagates in free space with

distance L, as shown in Fig. 3.1(2). It is equivalent to time being delayed by
τ = L/c; thus, the light field after propagation can be written as

B(t) = (A1+a1(t− τ)) cosω0(t− τ)+ (A2+a2(t− τ)) sinω0(t− τ). (3.28)

Therefore, we obtain

B = R(ϕ)A, (3.29)
b(t) = R(ϕ)a(t− τ), (3.30)
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where ϕ ≡ ω0τ (mod 2π) denotes the phase change caused by propagation and
R(ϕ) denotes the rotation matrix:

R(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
. (3.31)

Based on the Fourier transform of light field fluctuations, we obtain

b(Ω) = eiαR(ϕ)a(Ω), (3.32)

where α = −Ωτ denotes the phase delay of the light field.

3.2.3 Optical parametric amplification
Optical parametric amplification (OPA), one of the nonlinear optical effects,

is a phenomenon in which the second harmonic of the carrier light (pump light)
is down-converted into two lights, i.e., the signal light and idler light. The de-
generated OPA, in which the signal and idler frequencies are equal to the carrier
frequency, provides a correlation between quantum fluctuations corresponding to
the upper and lower sidebands. The factor that provides such effects is known as a
squeezer, which converts the quantum fluctuations of the coherent state into those
of the squeezed state. OPA is a valuable way to generate a squeezed state over a
wide frequency bandwidth [92–94].

Let us consider the degenerated OPA for the carrier light, as shown in
Fig. 3.1(3). From Eq. (B.39), we obtain

B(t) = [A1 cosω0t+A2 sinω0t] coshu

+ [A1 cos(ω0t− 2θ)−A2 sin(ω0t− 2θ)] sinhu, (3.33)

where s = eu and θ denote the squeezing factor and squeezing angle, respectively.
Thus, we obtain

B = S(u, θ)A, (3.34)

where S(u, θ) denotes the squeezing matrix defined as

S(u, θ) =

(
coshu+ sinhu cos 2θ sinhu sin 2θ

sinhu sin 2θ coshu− sinhu cos 2θ

)
= R(θ)

(
s 0
0 1/s

)
R(−θ). (3.35)

Now let us consider the correlation between the upper and lower sidebands.
Based on Eqs. (B.39) and (B.40), the relationship between the upper and lower
sidebands of the output light field b+ and b− can be written as

b+ = a+ coshu+ e2iθa†− sinhu, (3.36)

b†− = e−2iθa+ sinhu+ a†− coshu. (3.37)
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The amplitude quadrature of the output light field fluctuation can be calculated
using Eq. (3.8):

b1 =
1√
2

(
a+ coshu+ e2iθa†− sinhu+ e−2iθa+ sinhu+ a†− coshu

)
=

1

2

[
(a1 + ia2)

(
coshu+ e−2iθ sinhu

)
+ (a1 − ia2)

(
coshu+ e2iθ sinhu

)]
= (coshu+ cos 2θ sinhu) a1 + (sin 2θ sinhu) a2. (3.38)

The phase quadrature of the output light field fluctuation can be calculated using
Eq. (3.9):

b2 = (sin 2θ sinhu) a1 + (coshu− cos 2θ sinhu)a2. (3.39)

Therefore, the input-output relation of light field fluctuations can be denoted using
a squeezing matrix:

b(Ω) = S(u, θ)a(Ω). (3.40)

3.2.4 Gravitational wave signal and ponderomotive squeez-
ing

Interferometric gravitational wave detectors consist of mirrors that are free
masses for gravitational waves to detect the displacement of the gravitational
wave. When the test mass reflects the light field, a signal proportional to the slight
displacement of the mirror is added to the light field fluctuation. Furthermore,
the quadratures of the light field fluctuations are transformed into each other via
the radiation pressure force. This transformation is known as ponderomotive
squeezing [95] because the mirror acts as a squeezer for quantum fluctuations.

Let us consider the situation where the carrier light is reflected by the test mass
and the mirror moves by a small displacement δx(t), as shown in Fig. 3.1(4). Con-
sidering the phase change on reflection, the reflected light field can be calculated
as

B(t) ≃ (A1+a1(t)−2A2k0δx(t)) cosω0t+(A2+a2(t)+2A1k0δx(t)) sinω0t.
(3.41)

Thus, we obtain

B = A, (3.42)

b(t) = a(t) + 2k0

(
−A2

A1

)
δx(t). (3.43)

To investigate the frequency response to the light field fluctuations, we formulate
the equation of motion with regard to the displacement of the mirror. The mir-
ror is affected by force caused by the gravitational wave, mechanical restoring
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force of the suspension, and radiation pressure force Frpf. Based on the impulse-
momentum relationship, we consider the first-order approximation of the fluctuat-
ing part of the radiation pressure force:

F tot
rpf(t) = 2ℏk0 ×

1

2
((A1 + a1(t))

2 + (A2 + a2(t))
2) ≃ Frpf + δFrpf(t). (3.44)

The constant radiation pressure force Frpf = ℏk0(A2
1 + A2

2) is balanced with the
mechanical restoring force. The equation of motion for the displacement fluctua-
tion of the mirror can be written as

m
d2(δx(t))

dt2
= δFrpf +

1

2
mL

d2h(t)

dt2
, (3.45)

where L denotes the arm length of the interferometer, δFrpf(t) = 2ℏk0(A1a1(t)+
A2a2(t)) denotes the radiation pressure fluctuation, and the second term on the
right side denotes the force caused by the gravitational wave. As the gravitational
wave impacts the distance between the two free masses, the displacement resulting
from the gravitational wave is nondimensionalized by L and denoted as h(t). The
Fourier transform of Eq. (3.45) obtains

δx(Ω) = −2ℏk0
mΩ2

(A1a1(Ω) +A2a2(Ω)) +
1

2
Lh(Ω). (3.46)

Thus, we can calculate the Fourier transform of Eq. (3.43) as follows:

b(Ω) = P (κ, ξA)a(Ω) +

√
2κ

hSQL
nA⊥h(Ω), (3.47)

where

P (κ, ξA) = R(ξA)

(
1 0
−κ 1

)
R(−ξA) (3.48)

denotes the ponderomotive squeezing matrix, and

nA⊥ =

(
− sin ξA
cos ξA

)
(3.49)

denotes the unit vector perpendicular to the carrier A. Here, ξA = arctan(A2/A1)
denotes the relative angle of the carrier light,

κ =
8PAω0

mc2Ω2
(3.50)

denotes the optomechanical coupling constant in the free space, and

hSQL =

√
8ℏ

mL2Ω2
(3.51)
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denotes the standard quantum limit (SQL) [89] of a laser interferometric gravita-
tional wave detector comprising free masses.

The first term of Eq. (3.47) represents the transformation of light field fluctua-
tions caused by reflection on the mirror. P (κ, ξA) can be resolved as follows:

P (κ, ξA) = R(ξA)S(−uP, θP)R(−ϕP)R(−ξA), (3.52)

where uP = arcsinh(κ/2), 2θP = arccot(κ/2), and ϕP = arctan(κ/2) are defined,
indicating that the mirror acts as a frequency-dependent squeezer.

The second term of Eq. (3.47) indicates that fluctuations with the same fre-
quency as the gravitational wave are generated as a signal in the direction per-
pendicular to the carrier. Assuming for simplicity that the incident carrier A is in
the amplitude quadrature (A1 = A0, A2 = 0), the time domain signal b′(t) with
frequency Ω can be written as

b′(t) = b′0

(
0

sinΩt

)
, (3.53)

where b′0 denotes the amplitude of the signal. As expressed in Eq. (3.1), in the
formula before applying the quadrature decomposition, it can be denoted as the
sum of the upper sideband b′↑(t) and lower sideband b′↓(t):

b′↑(t) = −b′0
2
cos((ω0 +Ω)t), (3.54)

b′↓(t) =
b′0
2
cos((ω0 − Ω)t). (3.55)

3.2.5 Optical Kerr effect
The optical Kerr effect is a method of generating the squeezing state from in-

tense carrier light. The ordinary light Kerr effect is one of the third-order nonlinear
optical effects, a phenomenon in which the refractive index changes in proportion
to the light power. Although third-order nonlinear optical effects require extremely
high intensity, the chain of second-order nonlinear optical effects can induce a re-
fractive index change proportional to the light power. This phenomenon is known
as the cascaded nonlinear optical effect and can be used as a Kerr squeezer [96,97].
Note that the Kerr effect in this study is produced by second-order cascaded non-
linear optical effects instead of third-order nonlinear optical effects.

Let us consider Kerr squeezing caused by cascaded nonlinear optical effects, as
shown in Fig. 3.1(5). The carrier light is proportionally phase shifted to the input
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power, as in Eq. (B.33). The output light field can be denoted as follows*1 [98]:

B(t) = (A0 + a1(t)) cos(ω0t− ΦA − δΦA(t)) + a2(t) sin(ω0t− ΦA − δΦA(t))

≃ [(A0 + a1(t)) (cosΦA − δΦA(t) sinΦA)− a2(t) sinΦA] cosω0t

+ [(A0 + a1(t)) (sinΦA + δΦA(t) cosΦA) + a2(t) cosΦA] sinω0t,

(3.56)

where ΦA = dKPA = ℏω0dKA
2
0/2 denotes the phase change caused by the Kerr

effect, δΦA(t) = ℏω0dKA0a1(t) denotes the phase change fluctuations caused by
intensity fluctuations, and dK denotes the constant value representing the gain of
the Kerr effect. The light power and its fluctuations were obtained from Eq. (3.22).
The phase of the carrier light changes owing to the Kerr effect:

B = R(ΦA)A. (3.57)

Moreover, light field fluctuations are squeezed by the phase change fluctuation
caused by the Kerr effect:

b = R(ΦA)P (−2ΦA, 0)a. (3.58)

Kerr squeezing can be denoted by the same matrix as ponderomotive squeezing.
However, the Kerr effect provides frequency-independent squeezing and can gen-
erate a squeezed state over a wide frequency band. In addition, the squeezing
factor and squeezing angle are uniquely determined based on the input light power
and cannot be separately adjusted.

3.3 Fundamental theory of quantum noise in
gravitational wave detectors

The current gravitational wave detectors are compound optical interferometers
based on the Michelson interferometer. This section describes the characteristics
of the Michelson interferometer and its problems and discusses the fundamental
properties of the optical cavity and sensitivity of the dual recycling Michelson
interferometer. The parameters used in the plots in this section are L = 3 km for
the arm length and m = 23 kg for the mass of the mirror unless otherwise noted.

3.3.1 Michelson interferometer
First, we derive the quantum noise of the Michelson interferometer, which is the

most straightforward configuration for a laser interferometric gravitational wave
detector. The light field and its fluctuations are defined as shown in Fig. 3.2. The
carrier light G (G1 = G0, G2 = 0) and its fluctuation g are injected from the

*1 The derivation in this section is also based on personal communication with Wataru Usukura.
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ETMX

ETMY

BS

PD

Fig. 3.2: Schematic of the Michelson interferometer. After the laser light is separated using
a beam splitter and reflected by the test masses, the interference light is measured
using a photodetector. The end mirrors are supposed to work as a test mass.

input port, and the light field fluctuation a is injected from the output port. We can
measure H + h and B + b at the input and output ports, respectively. The beam
splitter (BS) is isotropic and has an identical power reflectivity and transmissivity
of 0.5. The end mirrors of the x and y arms are known as the end test mass X
(ETMX) and end test mass Y (ETMY), respectively. Let Lx be the x arm length
corresponding to the distance between BS and ETMX and Ly be the y arm length
corresponding to the distance between BS and ETMY. The phase change during
arm propagation is ϕx ≡ Lxω0/c (mod 2π) and ϕy ≡ Lyω0/c (mod 2π), respec-
tively. The lengths of both arms are approximately equal (Lx ≃ Ly ≃ L); thus,
the phase delay of the light field fluctuation is α = −LΩ/c for both arms.

The input-output relation of the carrier light can be calculated as

B′ = R(−2ϕx)B =
1

2
[−I +R(2ϕ−)]G, (3.59)

H ′ = R(−2ϕx)H =
1

2
[I +R(2ϕ−)]G, (3.60)

where we defined the relative phase as ϕ− = ϕy −ϕx. Note that the measurement
position does not affect the intensity measurement; therefore, P tot

B′ = P tot
B and

P tot
L′ = P tot

L . The output carrier light depends only on the relative phase between
the x and y arms. When we set ϕ− = 0, the carrier light does not transmit to the
output port of the Michelson interferometer, and this condition is known as the
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dark fringe. Conversely, when we set ϕ− = π/2, all carrier light incident on the
interferometer comes to the output port, and this condition is known as the bright
fringe. Other conditions (such as ϕ− = π/4) are known as mid-fringes because
the carrier light transmits to the input and output ports.

Now let us calculate the input-output relation of the light field fluctuations. Note
that gravitational waves cause differential displacement of the interferometer arms.
Calculating b′ = R(−2ϕx)b and h′ = R(−2ϕx)h similarly to the carrier light,
we obtain

b′ =
1

2
e2iα [−I +R(2ϕ−)]P (κ, 0)g +

1

2
e2iα [I +R(2ϕ−)]P (κ, 0)a

+eiα
√
2κ

hSQL

1

2

(
− sin(2ϕ−)
1 + cos(2ϕ−)

)
h(Ω), (3.61)

h′ =
1

2
e2iα [I +R(2ϕ−)]P (κ, 0)g +

1

2
e2iα [−I +R(2ϕ−)]P (κ, 0)a

+eiα
√
2κ

hSQL

1

2

(
− sin(2ϕ−)

−1 + cos(2ϕ−)

)
h(Ω), (3.62)

where SQL is denoted as hSQL =
√

4ℏ/(mL2Ω2) and the coupling constant can
be denoted as κ = 4PGω0/(mc2Ω2) because the carrier light power at test masses
is PG/2. All the signals transmit to the output port when the interferometer oper-
ates in the dark fringe, as seen from the gravitational wave signal term. Therefore,
the Michelson interferometer should be operated at the dark fringe when used as a
gravitational wave detector.

Considering ϕ− = 0 in Eq. (3.62), we obtain

b′ = e2iα
(

1 0
−κ 1

)
a+ eiα

√
2κ

hSQL

(
0
1

)
h(Ω). (3.63)

The first term corresponds to noise resulting from light field fluctuations, and the
second term corresponds to the gravitational wave signal. Although a is 0 in
the classical theory, it can no longer be assumed to be 0 owing to the quantum
fluctuations of the vacuum state while considering quantum noise. By operating
at the dark fringe, the light field fluctuations of the incident field are canceled;
however, the vacuum field a works as noise. As all the signals are observed in the
phase quadrature, we measure with the homodyne angle of π/2*2. The operator of

*2 For perfect dark fringe, the output carrier light is B′ = 0; thus, the intensity measurement
cannot be performed. The carrier light in the phase quadrature can be obtained by slightly
shifting the operating point, as can be derived from Eq. (3.59). Moreover, the carrier light in the
amplitude quadrature is obtained from the reflectance and curvature errors of ETMs and other
components. The former carrier light is known as the DC offset, and the latter carrier light is
known as the contrast defect. The ratio of the DC offset and contrast defect determines the
homodyne angle.
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the signal-to-noise ratio hn(Ω) can be defined as

hn(Ω) =
hSQL√
2κ

(−κk1 + k2)eiα, (3.64)

and the one-sided power spectral density of the signal-to-noise ratio Sh(ω) is ob-
tained from Eq. (3.17):

Sh(Ω) =
h2

SQL

2

(
κ+

1

κ

)
. (3.65)
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Fig. 3.3: Sensitivity of the Michelson interferometer as determined by quantum noise.

The amplitude spectral density
√
Sh(Ω) corresponds to the sensitivity of the

Michelson interferometer. Fig. 3.3 shows the sensitivity curve of the Michelson
interferometer determined by quantum noise. A lower strain indicates lower noise
and better performance as a gravitational wave detector. The low-frequency band
of Fig. 3.3 is proportional to f−2 and corresponds to the first term of Eq. (3.65).
This term represents the radiation pressure noise, in which the amplitude quadra-
ture of the vacuum field acts as radiation pressure fluctuations and is converted
into the noise of the phase quadrature via mirror fluctuations. In contrast, the
high-frequency band shown in Fig. 3.3 is proportional to f0 and corresponds to
the second term of Eq. (3.65). This term represents the shot noise, in which the
phase quadrature of the vacuum field directly acts as the noise. The radiation pres-
sure and shot noise have a trade-off relationship for laser power, and when they
are comparable (κ = 1), the amplitude spectral density equals hSQL.
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The sensitivity of the Michelson interferometer is limited by shot noise at f ∼
100Hz. Shot noise refers to sensing noise, which can be reduced by increasing the
laser light power or enhancing the signal response. However, stable laser sources
are available up to approximately 100W, and the Michelson interferometer does
not improve the signal response. Optical cavities are used within the main inter-
ferometer in actual gravitational wave detectors to solve this problem.

3.3.2 Fabry-Perot cavity
Optical cavity is a system in which the light travels between the mirrors multi-

ple times and constructively interferes. Here we discuss the characteristics of the
simple cavity, which is a Fabry-Perot cavity.

Fig. 3.4: Schematic of the Fabry-Perot cavity. The end mirror is supposed to work as a test
mass.

The Fabry-Perot cavity consists of two mirrors, as shown in Fig. 3.4. Let r2I
and r2I be the power reflectivities of the input and end mirrors, t2I = 1 − r2I and
t2E = 1 − r2E be the intensity transmissivities of the input and end mirrors, L be
the distance between the input and end mirrors, and ϕ ≡ Lω0/c (mod 2π) be the
phase change per half cycle. The input-output relation of the carrier light can be
written as

B = −rIA+ tID, C = tIA+ rID,

D = R(ϕ)F , E = R(ϕ)C, F = rEE, G = tEE. (3.66)

By solving for reflected light B and transmitted light G, we obtain

B =
[
−rII + t2I rE[I − rIrER(2ϕ)]−1R(2ϕ)

]
A

= −rIA0

(
1
0

)
+

t2I rEA0

1 + r2I r
2
E − 2rIrE cos 2ϕ

(
cos 2ϕ− rIrE

sin 2ϕ

)
, (3.67)

G = tItE[I − rIrER(2ϕ)]−1R(ϕ)A

=
tItEA0

1 + r2I r
2
E − 2rIrE cos 2ϕ

(
(1− rIrE) cos 2ϕ
(1 + rIrE) sin 2ϕ

)
. (3.68)

Therefore, the reflected light power PB and transmitted power PG can be written
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as

PB =
r2I + r2E − 2rIrE cos 2ϕ

1 + r2I r
2
E − 2rIrE cos 2ϕ

PA, (3.69)

PG =
t2I t

2
E

1 + r2I r
2
E − 2rIrE cos 2ϕ

PA. (3.70)

We obtain PB + PG = PA according to the energy conservation law.
The intracavity power PE can be written as

PE =
t2I

1 + r2I r
2
E − 2rIrE cos 2ϕ

PA, (3.71)

which is a periodic function for ϕ. Fig. 3.5 shows the intracavity power as a func-
tion of ϕ. The intracavity power reaches its maximum with 2ϕ ≡ 0 (mod 2π),
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Fig. 3.5: Intracavity power of the Fabry-Perot cavity. The parameters are set to rI =
√
0.7

and rE = 1. Here, we define ϕ so that the intracavity power becomes a periodic
function.

which corresponds to the resonance state. The free spectrum range (FSR) refers
to the interval at which the resonance state is observed. The interval of the cavity
length and frequency of the laser corresponding to the FSR are

LFSR =
λ0

2
, (3.72)

fFSR =
c

2L
, (3.73)

respectively. We often refer to fFSR as FSR. If the reflectivity of the mirror is suf-
ficiently high and the resonance is sufficiently sharp, the frequency corresponding
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to the full width at half maximum (FWHM) of the resonance spectrum can be
calculated as

fFWHM =
1− rIrE

π
√
rIrE

fFSR, (3.74)

and the ratio of FSR to FWHM is referred to as the cavity finesse F :

F =
fFSR

fFWHM
=

π
√
rIrE

1− rIrE
. (3.75)

Assume that TI, TE, and ϕ are much smaller than unity. By approximating
Eqs. (3.75) and (3.71), we obtain

F ≃ 2π

TI + TE
= π

fFSR

γI + γE
, (3.76)

PE ≃ TI
1
4 (TI + TE)2 + 4ϕ2

PA =
2F

π

γI(γI + γE)

(γI + γE)2 +∆2
PA, (3.77)

where we defined TI = t2I and TE = t2E, and γI = TIc/(4L) is the decay rate
for the input mirror, γE = TEc/(4L) is the decay rate for the end mirror, and
∆ = ϕc/L is the cavity detuning. The following relationships between reflectivity
and transmissivity were used:

r ≃ 1− 1

2
T − 1

8
T 2, (3.78)

1

r
≃ 1 +

1

2
T +

3

8
T 2. (3.79)

The intracavity power is denoted by the Lorentzian curve. The Fabry-Perot cavity
can be divided into three states according to the relationship between the optical
losses of the input coupler (input mirror) and others (in this case, the end mirror).
In the case where TI > TE refers to over-coupling, TI = TE refers to critical
coupling, and TI < TE refers to under-coupling. The intracavity power at the
resonance state (ϕ = 0) for each case can be written as

PE ≃2F

π
PA (TI ≫ TE), (3.80)

PE ≃ F

π
PA (TI = TE), (3.81)

PE ≃ 0 (TI ≪ TE). (3.82)

In the case of perfect over-coupling, robust light intensity is stored in the cavity,
and all the incident light field is reflected (PB ≃ PA). In the case of critical
coupling, all the incident light field is transmitted (PG ≃ PA). In the case of under-
coupling, light cannot be stored in the cavity; thus, the cavity must be configured
to avoid under-coupling.
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Now let us calculate the input-output relation of the light field fluctuations in the
case of perfect over-coupling (rI = r, tI = t, r2E = 1). Here, only the end mirror is
supposed to work as a test mass; thus, we obtain

b = −ra+ td, c = ta+ rd, d = eiαR(ϕ)f ,

e = eiαR(ϕ)c, f = P (κ, ξE)e+

√
2κ

hSQL
nE⊥h(Ω), (3.83)

where α = −LΩ/c denotes the phase delay per half cycle. If we consider
the case of a resonance state (ϕ = 0), we obtain κ = 8PEω0/(mc2Ω2) ≃
16F PAω0/(πmc2Ω2) and hSQL =

√
8ℏ/(mL2Ω2). The reflected light field

fluctuation b can be written as

b =

[
−rI +

t2e2iα

(1− re2iα)2

(
1− re2iα 0

−κ 1− re2iα

)]
a

+
teiα

(1− re2iα)2

√
2κ

hSQL

(
0

1− re2iα

)
h(Ω). (3.84)

By approximating that T = t2 and α are much smaller than unity, we obtain

b ≃ γ − iΩ

γ + iΩ

(
1 0

− γι
Ω2(γ2+Ω2) 1

)
a+

γ − iΩ√
γ2 +Ω2

√
2γι

Ω2(γ2+Ω2)

hSQL

(
0
1

)
h(Ω),

(3.85)
where we defined

γ =
Tc

4L
, (3.86)

ι =
8PEω0

mLc
. (3.87)

Furthermore, to correspond with the response of the Michelson interferome-
ter (3.63), we define

K =
γι

Ω2(γ2 +Ω2)
, (3.88)

β = arctan(−Ω/γ), (3.89)

and finally, we obtain

b = e2iβ
(

1 0
−K 1

)
a+ eiβ

√
2K

hSQL

(
0
1

)
h(Ω). (3.90)

The signal response of Eq. (3.85) shows that the Fabry-Perot cavity behaves as
a first-order low-pass filter with the cavity decay rate γ as a pole:

b2(Ω)

h(Ω)
∼ 1

1 + iΩ/γ
. (3.91)
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Here input light field fluctuation a is ignored. Therefore, γ is also referred to
as the cavity pole. The frequency corresponding to the cavity pole is equal to
the frequency corresponding to half width at half maximum (HWHM) fHWHM =
fFWHM/2:

γ

2π
= fHWHM. (3.92)

In a frequency band sufficiently lower than the cavity decay rate (Ω ≪ γ),
optomechanical coupling constant by the cavity K can be written as

K ≃ 8PAω0

mc2Ω2

(
2F

π

)2

, (3.93)

which is (2F /π)2 times the coupling constant in the free mass. In addition to
the enhancement of the laser light power by a factor of 2F /π, as in Eq. (3.77),
the response of the signal is also enhanced by a factor of 2F /π. In other words,
the Fabry-Perot cavity is a cavity that amplifies the light power and the response
to the signal simultaneously. However, the standard quantum limit hSQL remains
unchanged because the same factor amplifies the incident vacuum field. In the
frequency band Ω ≪ γ, the phase delay resulting from the reflection by the Fabry-
Perot cavity β can be written as

β ≃ 2F

π
α. (3.94)

The time delay in the cavity is enhanced by a factor of 2F /π compared to free
space, indicating the effective propagation length increases.

3.3.3 Dual Recycling Michelson interferometer
The cavity significantly reduces shot noise, a problem with the Michelson in-

terferometer. The actual gravitational wave detector improves the sensitivity by
implementing optical cavities within the Michelson interferometer. In particular,
the current gravitational wave detectors have two recycling cavities. Cavities con-
sisting of a mirror at the input and output ports of the Michelson interferometer
are known as the power recycling cavity (PRC) and signal recycling cavity (SRC),
respectively. The dual recycling Michelson interferometer (DRMI) includes these
two recycling cavities.

Let us consider the DRMI as shown in Fig. 3.6. Let r2P and t2P be the power
reflectivity and transmissivity of the input port mirror (power recycling mirror:
PRM) and r2S and t2S be those of the output port mirror (signal recycling mirror:
SRM), L be the arm length of the Michelson interferometer, and l be the distance
from BS to SRM. When the Michelson interferometer part operates at the dark
fringe, all the carrier light transmits to the input port, and all the signal transmits
to the output port. Thus the functions of the PRC and SRC can be separated. When
the PRC is in resonance, the input-output relation of the carrier light can be written
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Fig. 3.6: Schematic of the dual recycling Michelson interferometer. The end mirrors are
supposed to work as a test mass, and the two recycling mirrors do not receive
force from gravitational waves.

as
H = −rPG+ tPJ , I = tPG+ rPJ , J = I, (3.95)

and solving for I , we obtain

I =
tP

1− rP
G ≃ 2

tP
G, (3.96)

indicating that the effective incident laser light power into the BS is amplified by
a factor of 4/t2P = 2FP/π, where FP = 2π/t2P is the finesse of the PRC. The
power recycling increases the input laser power because the fluctuations of the
input carrier light incident from the input port are reflected to the input port and
do not affect the measurement at the output port.

Let αarm = −LΩ/c be the phase delay in the arm and ϕ ≡ lω0/c (mod 2π)
and αS = −lΩ/c be the phase change and delay between the BS and SRM, re-
spectively. The input-output relation of the light field fluctuation can be written
as

b = −rSa+ tSd, c = tSa+ rSd, d = eiαSR(ϕ)f ,

e = eiαSR(ϕ)c, f = e2iαarmP (κ, 0)e+ eiαarm

√
2κ

hSQL

(
0
1

)
h(Ω), (3.97)

where we defined κ = 4PIω0/(mc2Ω2) ≃ 8PGFPω0/(πmc2Ω2) and hSQL =
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4ℏ/mL2Ω2. When the SRC is in resonance (ϕ = 0), Eq. (3.97) can be solved

similarly to the Fabry-Perot cavity with the phase delay α = αarm + αS:

b = e2iβ
(

1 0
−K 1

)
a+ eiβ

√
2K

hSQL

(
0
1

)
h(Ω), (3.98)

where we defined TS = t2S, γ = TSc/(4(L + l)), ι = 4PIω0/(m(L + l)c),
K = γι/(Ω2(γ2 + Ω2)), and β = arctan(−Ω/γ). Whereas the Fabry-Perot
cavity enhances the laser light power and signal response by a factor of 2F /π, the
power recycling cavity enhances the laser light power by 2FP/π, and the signal
recycling cavity enhances the signal response by 2FS/π (FS = 2π/TS). Dual
recycling identically impacts the interferometer as a Fabry-Perot cavity.
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Fig. 3.7: Sensitivity of the dual recycling Michelson interferometer as determined by quan-
tum noise. The light power on the beam splitter is set to PI = 100 kW, and the
SRC length is neglected (l ≪ L).

The sensitivity of the DRMI can be calculated as in the Michelson interferome-
ter:

Sh(Ω) =
h2

SQL

2

(
K +

1

K

)
. (3.99)

Fig. 3.7 shows the sensitivity of the DRMI. Peak sensitivity improves with the
higher finesse of the SRC, indicating that the SRC enhances signal response and
reduces shot noise. In contrast, the sensitivity worsens in proportion to f1 at the
high-frequency band because the low-pass characteristics of the cavity attenuate
signals with a frequency higher than the cavity decay rate. For example, we can
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calculate γ ∼ 2π × 2× 102 Hz for T = 0.05, indicating that the cavity decay rate
corresponds to the frequency at which the sensitivity begins to deteriorate.
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Fig. 3.8: Sensitivity of the dual recycling Michelson interferometer as determined by shot
noise. The parameters are set to the same as in Fig. 3.7.

To examine the relationship between the peak sensitivity and bandwidth, only
the shot noise, which is the second term of Eq. (3.99), is shown in Fig. 3.8. The
sensitivity deteriorates in the high-frequency band because of signal attenuation.
In contrast, the shot noise is a constant independent of frequency and inversely
proportional to the laser light power in the arm. By decreasing TS , the finesse
of the SRC can be improved, and shot noise can be reduced; however, the cavity
decay rate also decreases, and the bandwidth of the interferometer is narrowed.
This trade-off relationship is known as the Mizuno limit [99] and is a consequence
of the quantum Cramer-Rao bound [100]. For the DRMI, the product of peak
sensitivity and bandwidth is a constant value independent of finesse:

lim
Ω→0

2K
h2

SQL
× γ =

mL2ι

2ℏ
. (3.100)

Another possible configuration in which the cavity is implemented in a Michel-
son interferometer is the Fabry-Perot Michelson interferometer (FPMI), which im-
plements Fabry-Perot cavities in both arms*3. As the Fabry-Perot cavity simulta-
neously amplifies the intracavity power and signals, the sensitivity of the FPMI
matches that of the DRMI except for a factor.

*3 See App. C.1.1.
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One advantage of the DRMI is that it can reduce the frequency noise of the
laser light. Owing to slight contrast errors in actual Michelson interferometers,
the frequency fluctuations of the laser light can leak out to the output port and
cause frequency noise. Using power recycling, the frequency noise of the laser
light can be reduced owing to the low-pass feature of the PRC. In contrast, the
FPMI cannot reduce frequency noise because common-mode noises, such as laser
frequency noise, and differential signals, such as gravitational wave signals, are
simultaneously amplified in the arm. Note that the frequency noise also depends
on the readout method; thus, the aforementioned explanation may not apply in
some cases. One disadvantage of the DRMI is that the light power in the BS
increases as the light power in the arms increases, and thermal lensing effects in
the BS can prevent the proper operation of the DRMI [101].

The second-generation gravitational wave detectors are based on an interfer-
ometer configuration with both the arm cavities and two recycling cavities. This
interferometer configuration is known as a resonant sideband extraction (RSE) in-
terferometer [102] because the SRC is used to reduce the arm cavity decay rate*4.

3.4 Advanced techniques for sensitivity
improvement

The quantum noise of the gravitational wave detector discussed in the last sec-
tion has a limit for the spectral density, known as SQL. We can beat the SQL by
correlating the amplitude and phase quadratures of the vacuum field at incidence,
within the interferometer, or at the measurement. Measurements using such tech-
niques are sometimes referred to as quantum non-demolition measurements [103].
This section briefly discusses homodyne detection, input squeezing, and optical
spring as techniques that may allow us to beat the SQL.

We discuss the DRMI considered in Sec. 3.3.3 as the basic configuration to com-
pare each technique. The sensitivity of the DRMI deteriorates above the cavity de-
cay rate of the SRC γ. We can calculate the angular frequency at which the spectral
density matches SQL (where the coupling constant takes K = 1) as follows:

ΩSQL = γ

√
1

2

(
−1 +

√
1 +

4ι

γ3

)
. (3.101)

An actual gravitational wave detector should be set to around ΩSQL ≃ γ to main-
tain bandwidth while improving peak sensitivity. In the plots presented in this
section, unless otherwise noted, the parameters are set to γ = 2π × 100Hz and
ι = 2γ3, and we denote rS = r and tS = t.

*4 See App. C.1.2.
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3.4.1 Back action evasion by the homodyne detection
We have been assuming that the homodyne angle is set to π/2 to maximize the

magnitude of the signal. Here, we examine the sensitivity when the amplitude
quadrature of the local oscillator is not 0. This situation corresponds to the case
where the DC offset, the local oscillator of the phase quadrature, is reduced, and
the influence of the contrast defect, the local oscillator of the amplitude quadrature,
cannot be neglected.

Suppose that a vacuum field a is incident on the interferometer and the output
light field fluctuation b can be written as follows:

b = Aa+Hh(Ω) =

(
A11 A12

A21 A22

)
a+

(
H1

H2

)
h(Ω). (3.102)

By measuring this with the carrier B, the power fluctuation δPB can be written as

δPB = ℏω0(b1B1 + b2B2)

= ℏω0 [(A11B1 +A21B2)a1 + (A21B1 +A22B2)a2 + (H1B1 +H2B2)] .

(3.103)

Thus, the sensitivity can be formulated as

Sh(Ω) =
|A11 cos ξB +A21 sin ξB |2 + |A12 cos ξB +A22 sin ξB |2

|H1 cos ξB +H2 sin ξB |2

=
wBAA†wT

B

wBHH†wT
B

, (3.104)

where ξB = arctan(B2/B1) denotes the homodyne angle and wB =
(cos ξB sin ξB) denotes the unit vector perpendicular to the carrier light.
As shown in Eq. (3.103), the term A11 cos ξB + A21 sin ξB is the noise
derived from the amplitude quadrature of the vacuum field, and the term
A21 cos ξB + A22 sin ξB is derived from the phase quadrature. From Eq. (3.98),
the sensitivity of DRMI can be calculated as follows:

Sh(Ω) =
h2

SQL

2K
[
(cot ξB −K)2 + 1

]
. (3.105)

We note that the first term becomes 0 at frequencies where ξB = arccotK, which
can be explained as follows. The output power fluctuations have two terms derived
from the amplitude quadrature of the vacuum field a1. cos ξBa1 denotes the term
that appears in the amplitude quadrature of the output light via direct reflection,
and −K sin ξBa1 denotes the term that appears in the phase quadrature of the out-
put light via fluctuations of the mirror. They are quantum correlated, and radiation
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Fig. 3.9: Sensitivity of the DRMI to several homodyne angles.

pressure noise can be evaded at the frequency where they are canceled. A tech-
nique that avoids radiation pressure noise, e.g., homodyne detection, is known as
back action evasion.

The sensitivity of DRMI with homodyne detection is shown in Fig. 3.9. As
the homodyne angle approaches 0, it becomes possible to significantly beat SQL.
However, the shot noise in the high-frequency band degrades as the magnitude of
the readable signal reduces. The variational readout corresponds to the measure-
ment with a frequency-dependent homodyne angle that optimizes sensitivity [104].
Current gravitational wave detectors measure the output light at a fixed homodyne
angle, providing the best observation rate of gravitational wave events.

3.4.2 Input squeezing
We have assumed that a coherent vacuum field is injected into the interferome-

ter. By performing OPA for the incident vacuum field, it is possible to inject the
squeezed vacuum field into the interferometer [105]. This technique is known as
input squeezing or external squeezing.

Let us consider injecting a squeezed vacuum field into the interferometer, as
shown in Fig. 3.10. The Faraday isolator is a group of optical elements that trans-
mits light incident from the front direction and reflects light incident from the
opposite direction. In this figure, the light propagating downward is transmit-
ted. Let s = eu be the squeezing factor of the squeezer and θ be the squeezing
angle. The light field fluctuation incident on the interferometer is modified as
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Fig. 3.10: Schematic of input squeezing for the DRMI. The vacuum field is squeezed,
passes through the Faraday isolator, and is incident on the main interferometer.

a → a′ = S(u, θ)a. Therefore, Eq. (3.98) can be rewritten as

b = e2iβ
(

1 0
−K 1

)
S(u, θ)a+ eiβ

√
2K

hSQL

(
0
1

)
h(Ω), (3.106)

and the sensitivity can be written as

Sh(Ω) =
h2

SQL

2K
[
(sinhu sin 2θ −K(coshu+ sinhu cos 2θ))2

+((coshu− sinhu cos 2θ)−K sinhu sin 2θ)2
]
. (3.107)

Sensitivity curves are shown in Fig. 3.11. Compared to the case without input
squeezing (s = 0), the shot noise is reduced when θ = 0, and the radiation pressure
noise is reduced when θ = π/2, i.e., θ = 0 and θ = π/2 exhibit the same effect
when the incident light power increases and decreases, respectively, as can be
obtained from the following:

Sh(Ω)|θ=0 =
h2

SQL

2

(
s2K +

1

s2K

)
. (3.108)

When θ = π/4, a correlated vacuum field between amplitude and phase quadra-
tures is injected, which can beat the SQL, as can be obtained from the following:

Sh(Ω)|θ=π/4 =
h2

SQL

2

[(
K +

1

K

)
cosh 2u− 2 sinh 2u

]
. (3.109)
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Fig. 3.11: Sensitivity of the DRMI with input squeezing. The parameter is set to s = 2.
Optimal sensitivity can be achieved when θ = arctanK.

In addition, considering a frequency-dependent squeezing angle that minimizes
Eq. (3.107), when θ = arctanK, we obtain

Sh(Ω)|θ=arctanK =
h2

SQL

2s2

(
K +

1

K

)
. (3.110)

Thus, if we achieve the ideal frequency-dependent squeezing angle, sensitivity
can be improved in all frequency bands. Frequency-dependent squeezing can be
achieved using a detuned high-finesse cavity, known as a filter cavity*5 [95]. The
principle of frequency-dependent squeezing using a filter cavity was verified in the
MHz band [106], audio band [107], and detection band of an actual gravitational
wave detector [108, 109]. Based on the results of proof-of-principle experiments,
it has been adopted to upgrade advanced detectors [110]. For example, the filter
cavity for advanced LIGO was constructed in 2022 [111].

3.4.3 Detuning of the signal recycling cavity
We have been assuming that the cavities are in resonance. When the cavity is

detuned from the resonance state, an optical spring is generated, and the gravita-
tional wave signal can be amplified at its resonance frequency [20]. The optical
spring is generated by detuning the SRC in gravitational wave detectors because

*5 See also App. C.2.1.
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the detuning of the arm cavity reduces the intracavity power. Signal amplification
based on an optical spring is adequate for detectors where the influence of thermal
noise is negligible and quantum noise is dominant in the observation bandwidth.
For example, the SRC of KAGRA will be detuned, thereby improving the obser-
vation range of the inspiral phase of the binary neutron star merger [12, 74, 112].

Let us consider the detuning of the SRC in the DRMI*6. Solving Eq. (3.97) with
ϕ ̸= 0, we obtain

b =
[
−rI + t2e2iα

[
I − re2iαR(ϕ)P (κ, 0)R(ϕ)

]−1
R(ϕ)P (κ, 0)R(ϕ)

]
a

+teiα
√
2κ

hSQL

[
I − re2iαR(ϕ)P (κ, 0)R(ϕ)

]−1
R(ϕ)

(
0
1

)
h(Ω)

=
1

C
[Aa+Hh(Ω)] , (3.111)

with

C = re2iα +
1

r
e−2iα − 2(cos 2ϕ+

κ

2
sin 2ϕ), (3.112)

A11 = A22 =

(
r +

1

r

)(
cos 2ϕ+

1

2
κ sin 2ϕ

)
− 2 cos 2α, (3.113)

A12 = −
(
1

r
− r

)(
sin 2ϕ+

1

2
κ(1− cos 2ϕ)

)
, (3.114)

A21 =

(
1

r
− r

)(
sin 2ϕ− 1

2
κ(1 + cos 2ϕ)

)
, (3.115)

H = t

√
2κ

hSQL

(
−( 1r e−iα + eiα) sinϕ
( 1r e−iα − eiα) cosϕ

)
. (3.116)

By approximating that T , α, ϕ, and κ are much smaller than unity*7, we obtain

b =
1

C
[Ma+Dh(Ω)] , (3.117)

with

C = Ω2[(γ + iΩ)2 +∆2]−∆ι/2, (3.118)

M =

(
Ω2(Ω2 + γ2 −∆2) + ∆ι/2 −2γ∆Ω2

2γ∆Ω2 − γι Ω2(Ω2 + γ2 −∆2) + ∆ι/2

)
,

(3.119)

D =

√
2γι

hSQL

(
−∆Ω

(γ + iΩ)Ω

)
, (3.120)

*6 The calculations for the RSE interferometer are detailed in [113].
*7 The magnitude of κ depends on the frequency; however, in the frequency band under consider-

ation (Ω ∼ γ), it has a similar magnitude as T .
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where ∆ = ϕc/L denotes the cavity detuning of the SRC. The sensitivity can be
calculated as

Sh(Ω) =
|M11 cos ξB +M21 sin ξB |2 + |M12 cos ξB +M22 sin ξB |2

|D1 cos ξB +D2 sin ξB |2
. (3.121)

At a frequency that results in C = 0, apparently, the signal and noise are si-
multaneously amplified regardless of the homodyne angle. The optical system is
sensitive to mirror fluctuations at the aforementioned frequency, implying that an
optical spring is generated. By approximating Ω ≪ γ, the resonant frequency of
the optical spring ωOS can be obtained*8:

ωOS =

√
∆ι

2(γ2 +∆2)
. (3.122)

Let us discuss a measurement using the DC offset of the Michelson inter-
ferometer. The homodyne angle corresponds to the angle of the DC signal:
ξB = arctan(D2/D1)|Ω→0 = arctan(−γ/∆). The sensitivity curve is shown in
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Fig. 3.12: Sensitivity of the DRMI with the detuning of the SRC. Output light field fluctu-
ation is measured using the DC offset.

Fig. 3.12. Two dips are formed in the sensitivity curve when the cavity detuning
is sufficiently larger than the cavity decay rate. The frequencies of the dips

*8 For the parameters considered, this approximate formula is valid for ∆ ≫ γ.
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are obtained from the frequency at which a term derived from the amplitude
quadrature is 0, i.e.,

ωDC-OS =

√
(∆2 + 2γ2)ι

2∆(γ2 +∆2)
, (3.123)

ωDC-OR =
√

γ2 +∆2. (3.124)

ωDC-OS corresponds to the dip frequency on the lower frequency side. When cav-
ity detuning is sufficiently large (∆ ≫ γ), ωDC-OS coincides with ωOS, and it is
possible to beat the SQL in a narrow band around this frequency. The sensitivity
in this band corresponds to the ratio of the signal amplified by the optical spring
to the noise whose amplification based on the optical spring is suppressed by the
back action evasion [114]. In contrast, ωDC-OR corresponds to the dip frequency
on the higher frequency side. When ∆ ≫ γ, we obtain ωDC-OR ≃ ∆ := ωOR,
corresponding to the resonance condition for one sideband. The resonance of the
signal forms a dip on the higher frequency side, and this phenomenon is known as
optical resonance.

Moreover, we can regard the SQL itself as being modified by the optical
spring [103]. We have assumed that the test mass behaves as a free mass, as in
Eq. (3.45). However, when the test mass is bounded by the optical spring, the
equations of motion are modified and the SQL is changed as follows:

hOS
SQL =

√
|Ω2 − ω2

opt|
Ω2

hSQL. (3.125)

Fig. 3.13 shows the sensitivity for ∆ = 5γ by dividing the terms derived from
amplitude and phase quadrature of Eq. (3.121), which are

Samp
h (Ω) =

|M11 cos ξB +M21 sin ξB |2

|D1 cos ξB +D2 sin ξB |2
, (3.126)

Sphase
h (Ω) =

|M12 cos ξB +M22 sin ξB |2

|D1 cos ξB +D2 sin ξB |2
, (3.127)

respectively, as discussed in Sec. 3.4.1. The sum of the two terms does not beat the
SQL modified by the optical spring. The sensitivity near the resonant frequency
of the optical spring has improved because the optical spring reduces SQL itself.
The depth of the dips is determined based on the terms derived from the phase
quadrature. If ∆ ≫ γ, 3

√
ι, the depths of the two dips become equal and can be

calculated as follows:

Sh(ωDC-OS)|ξB=arctan(−γ/∆) ≈ Sh(ωDC-OR)|ξB=arctan(−γ/∆) ≈
8ℏγ
mL2ι

.

(3.128)
Next, let us discuss a measurement using the contrast defect of the Michelson

interferometer. The homodyne angle corresponds to the orthogonal angle of the
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Fig. 3.13: Sensitivity of the DRMI with the detuning of the SRC. Output light field fluctu-
ation is measured with the DC offset, and we set ∆ = 5γ.
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Fig. 3.14: Sensitivity of the DRMI with the detuning of the SRC. Output light field fluc-
tuation is measured using the contrast defect. The signal does not appear in
amplitude quadrature for ∆ = 0; thus, the homodyne angle is set to π/2.
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DC signal: ξB = arctan(∆/γ). The sensitivity curve is shown in Fig. 3.14. When
the cavity detuning is sufficiently large, a dip on the lower frequency side appears
at frequencies where the terms derived from the amplitude and phase quadratures
are 0. This frequency can be calculated as

ωCD-OS =

√
∆ι

2(γ2 +∆2)
, (3.129)

which coincides with the resonance frequency of the optical spring ωOS. A dip on
the higher frequency side appears at the frequency where the term derived from
the phase quadrature is 0. This frequency can be calculated as

ωCD-OR =
√

γ2 +∆2, (3.130)

which coincides with the frequency of optical resonance ωOR when ∆ ≫ γ.
Let us consider the significance of the measurement using the contrast defect in

terms of its correspondence with the Fabry-Perot cavity. In the DRMI, the PRC
amplifies the intra-arm power, the SRC amplifies the signal, and the PRC is reso-
nant, generating signals in the phase quadrature. In contrast, the Fabry-Perot cavity
simultaneously amplifies the intracavity power and signal. Its characteristics can
be considered equivalent to the DRMI except for the factor, as denoted in Eqs.
(3.90) and (3.98). However, when the incident carrier is in the amplitude quadra-
ture (Fig. 3.4), the detuned cavity does not generate the signal in the phase quadra-
ture; therefore, there is no direct correspondence with the DRMI. Then, as shown
in Fig. 3.15, we consider that the incident carrier is rotated by φ = − arctan(∆/γ)
so that the intracavity carrier becomes in the amplitude quadrature. Here,

Fig. 3.15: Schematic of the Fabry-Perot cavity as intracavity carrier criteria. The initial
phase of the incident carrier is φ = − arctan(∆/γ).

a′ = R(φ)a. (3.131)

In this case, the intracavity carrier E′ is in the amplitude quadrature, and the signal
appears in the phase quadrature of the reflected light field fluctuation f ′. Although
the intracavity power varies with cavity detuning, we can consider this Fabry-Perot
cavity to be equivalent to the DRMI by normalizing the parameters affected by the
intracavity power.
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The contrast defect vector of the Michelson interferometer is in the same direc-
tion as the carrier vector reflected by the end mirror. In other words, the measure-
ment using the contrast defect corresponds to the measurement of a detuned Fabry-
Perot cavity with reflected light. When considering light field fluctuations within a
Fabry-Perot cavity, we need to transform the noise matrix as M′ = MR(φ). In this
case, the term M ′

11 cos ξB +M ′
21 sin ξB is the noise derived from the fluctuation

in the amplitude quadrature, and the term M ′
21 cos ξB + M ′

22 sin ξB is the noise
derived from the phase quadrature.
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Fig. 3.16: Sensitivity of the DRMI with the detuning of the SRC or the sensitivity of the
detuned Fabry-Perot cavity. Output light field fluctuation is measured with the
contrast defect, and the parameter is set to ∆ = 5γ.

Fig. 3.16 shows the sensitivity for ∆ = 5γ by dividing the terms derived from
the amplitude and phase quadratures. We calculated the DRMI with the detuned
SRC and detuned Fabry-Perot cavity, respectively. The transformation M → M′

does not affect sensitivity, and the sum spectral density of the term derived from
the amplitude and phase quadratures is identical for each case. For the Fabry-
Perot cavity, both dips are formed at frequencies where the term derived from the
amplitude quadrature is 0. In addition, phase fluctuations, such as the frequency
noise of the incident laser on the Fabry-Perot cavity, become the noise proportional
to f1 [115].

Although it is challenging to demonstrate the case of beating the (free-mass)
SQL based on an optical spring, we can observe the reduction in the classical
noise when the classical light field fluctuations entering the interferometer can be
regarded as white noise [116]. This study demonstrated classical back-action eva-
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sion via optical spring by injecting classical amplitude noise into a Fabry-Perot
cavity. As discussed, the DRMI can be considered to be equivalent to the Fabry-
Perot cavity by formulating the appropriate analogy, implying that noise reduction
using an optical spring can be implemented in the interferometer configuration of
an actual gravitational wave detector. Moreover, we demonstrate that the intra-
cavity loss causes a difference in the resonant frequency of the optical spring and
frequency of the lower side dip in the spectrum.

3.5 Application of intracavity squeezing for the
gravitational wave detector

Intracavity squeezing, or internal squeezing, is a technique of squeezing inside a
cavity where signals are generated, amplified, or extracted. Intracavity squeezing
causes vacuum field squeezing or anti-squeezing and signal amplification or atten-
uation simultaneously; thus, sensitivity improves when vacuum field squeezing is
greater than signal attenuation. Intracavity squeezing without cavity detuning can
increase the effective bandwidth over a wide bandwidth. Considering detuning,
the optical spring generated in the interferometer can be enhanced by the signal
amplification effect of intracavity squeezing. In this section, we derive the sensi-
tivity of the DRMI with intracavity squeezing and discuss its advantages compared
to other techniques, e.g., input squeezing.

3.5.1 Broadband bandwidth enhancement based on intra-
cavity squeezing

When OPA occurs in a cavity where carriers are inside, in addition to the squeez-
ing effect on light field fluctuations, intracavity power increases or decreases. Fur-
thermore, when the cavity is detuned, the quadratures of the intracavity carriers
are converted to each other. The basic configuration of gravitational wave de-
tectors with intracavity squeezing is a system in which the squeezer is inserted
into the SRC with no carriers, as shown in Fig. 3.17. When the squeezing an-
gle is set to θ = 0, d in Eq. (3.97) is modified to d = eiαSR(ϕ)S(s)f with
S(s) = diag(s, 1/s), the output light field fluctuation can be written as

b =
[
−rI + t2e2iα

[
I − re2iαR(ϕ)S(s)P (κ, 0)R(ϕ)

]−1
R(ϕ)S(s)P (κ, 0)R(ϕ)

]
a

+teiα
√
2κ

hSQL

[
I − re2iαR(ϕ)S(s)P (κ, 0)R(ϕ)

]−1
R(ϕ)S(s)

(
0
1

)
h(Ω). (3.132)
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Fig. 3.17: Schematic of intracavity squeezing for the DRMI. The pump light is injected
from the BS to the SRM, and the light field is not squeezed in the path from the
SRM to the BS.

By assuming that the SRC is in resonance (ϕ = 0), we obtain

b =

[
−rI +

t2e2iα

(1− rse2iα)(1− rs−1e2iα)

(
s− re2iα 0
−s−1κ s−1 − re2iα

)]
a

+
teiα

(1− rse2iα)(1− rs−1e2iα)

√
2κ

hSQL

(
0

s−1 − re2iα

)
h(Ω). (3.133)

By approximating that T = t2, α and u = log s are much smaller than unity, we
obtain

b ≃ e2iβIS

(
γ+Σ+iΩ
γ−Σ+iΩ 0

−γ+Σ+iΩ
γ−Σ+iΩKIS

γ−Σ−iΩ
γ+Σ−iΩ

)
a+ eiβIS

√
2KIS

hSQL

(
0
1

)
h(Ω), (3.134)

where γ = Tc/(4(L + l)) denotes the cavity decay rate and Σ = uc/(2(L +
l)) denotes the squeezing decay rate. We defined effective phase delay βIS =
arctan(−Ω/(γ +Σ)) and effective coupling constant KIS = γι/(Ω2((γ +Σ)2 +
Ω2)). Intracavity squeezing changes the effective cavity decay rate to γ + Σ and
increases the DC signal by a factor of γ/(γ+Σ). Moreover, frequency-dependent
squeezing is performed for the vacuum field. The sensitivity can be calculated as

Sh =
h2

SQL

2

(
s2ISKIS +

1

s2ISKIS

)
, (3.135)
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where s2IS = ((γ + Σ)2 + Ω2)/((γ − Σ)2 + Ω2) denotes the effective squeezing
factor.
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Fig. 3.18: Sensitivity of the intracavity-squeezed DRMI. The parameter is set to ι = 2 ×
(2π × 102)3 Hz3 for all the cases.

Intracavity squeezing without cavity detuning can enhance the effective band-
width of the interferometer by combining with low-finesse SRC. Sensitivity curves
are shown in Fig. 3.18. The green, blue, and orange lines present the cases of
high-finesse SRC, low-finesse SRC, and low-finesse SRC with intracavity squeez-
ing. We set the squeezing decay rate as Σ = a(1−

√
1/a)γ, where a denotes the

multiplying factor for the cavity decay rate, to ensure that the sensitivity of the low-
frequency band with intracavity squeezing is consistent with the high finesse case.
As observed from the comparison of radiation pressure noise, intracavity squeez-
ing increases the effective finesse. However, the sensitivity of the high-frequency
band does not deteriorate, indicating that the effective bandwidth increases.

A comparison of the shot noise is shown in Fig. 3.19. As denoted in Eq. (3.100),
there is a trade-off relationship between the shot noise level and bandwidth with
respect to the finesse of the SRC. Intracavity squeezing can modify this relation-
ship. The peak sensitivity and bandwidth product can be written as

lim
Ω→0

2s2ISKIS

h2
SQL

× γ =
mL2ι

2ℏ
× 1

(1− σ)2
, (3.136)

where σ = Σ/γ denotes the normalized squeezing decay rate. If we set σ =

1−
√

1/a, the sensitivity-bandwidth limit is improved by the factor of a.



52 Chapter 3 Quantum noise in gravitational wave detectors

100 101 102 103 104
10-25

10-24

10-23

10-22

10-21

10-20

Fig. 3.19: Sensitivity of the intracavity-squeezed DRMI determined by the shot noise. The
parameters are set to the same values as in Fig. 3.18.

Intracavity squeezing can increase the effective bandwidth but cannot beat the
SQL. Practically, it is necessary to consider the optical losses caused by the in-
stallation of the nonlinear optical crystal in the cavity, which may limit the optical
design of the main interferometer. It has been experimentally confirmed that the
product of peak sensitivity and bandwidth can be improved by intracavity squeez-
ing [117].

3.5.2 Signal amplification system with a stiff optical spring
In the last subsection, we discussed the intracavity-squeezed DRMI without

cavity detuning. Intracavity squeezing produces not only frequency-dependent
squeezing but also changes the properties of the cavity, including the optome-
chanical coupling constant. Thus, we consider detuning the SRC to generate an
optical spring. The intracavity squeezing enhances the optical spring generated in
this system, which makes it possible to generate a stiff optical spring with a high
resonance frequency without increasing the intra-arm power [21].

By solving Eq. (3.132) as S(s) → S(u, θ) and ϕ ̸= 0, the input-output relation
can be calculated as

b =
1

C ′ [A
′a+H′h(Ω)], (3.137)
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with

C ′ = re2iα + 1
r e−2iα

−1

2

[
(s+ 1

s )(2 cos 2ϕ+ κ sin 2ϕ)− (s− 1
s )κ sin 2(ϕ+ θ)

]
, (3.138)

A′
11 = −2 cos 2α− 1

4
(s− 1

s )κ(
1
r − r + (r + 1

r ) cos 2ϕ) sin 2θ

+
1

4
(r + 1

r )(s+
1
s )(2 cos 2ϕ+ κ sin 2ϕ)

−1

4
(s− 1

s )(2(r −
1
r ) + (r + 1

r )κ sin 2ϕ) cos 2θ, (3.139)

A′
12 =

1

4
(r − 1

r )
[
2(s+ 1

s ) sin 2ϕ+ κ(s+ 1
s − (s− 1

s ) cos 2θ)(1− cos 2ϕ)

−(s− 1
s ) sin 2θ(2 + κ sin 2ϕ)

]
, (3.140)

A′
21 =

1

4
( 1r − r)

[
(s− 1

s )κ cos 2θ − (s+ 1
s )κ(1 + cos 2ϕ)

+(s− 1
s )(κ cos 2(θ + ϕ) + 2 sin 2θ) + 2(s+ 1

s ) sin 2ϕ
]
, (3.141)

A′
22 = −2 cos 2α− 1

4
(s− 1

s )κ(r −
1
r + (r + 1

r ) cos 2ϕ) sin 2θ

+
1

4
(r + 1

r )(s+
1
s )(2 cos 2ϕ+ κ sin 2ϕ)

−1

4
(s− 1

s )(2(
1
r − r) + (r + 1

r )κ sin 2ϕ) cos 2θ, (3.142)

H′ = t

√
2κ

hSQL

(
−eiα sinϕ+ 1

2r e−iα[−(s+ 1
s ) sinϕ+ (s− 1

s ) sin(2θ + ϕ)]
−eiα cosϕ+ 1

2r e−iα[(s+ 1
s ) cosϕ− (s− 1

s ) cos(2θ + ϕ)]

)
.

(3.143)

Furthermore, a similar approximation in Eq. (3.134) yields

b =
1

C′ [M
′a+D′h(Ω)], (3.144)

with

C′ = Ω2[(γ + iΩ)2 +∆2 − Σ2] + (−∆+Σsin 2θ)ι/2, (3.145)

M ′
11 = Ω2[γ2 +Ω2 −∆2 +Σ2 + 2Σγ cos 2θ]

+(∆− Σsin 2θ)ι/2, (3.146)

M ′
12 = 2γ[−∆+Σsin 2θ]Ω2, (3.147)

M ′
21 = 2γ[∆ + Σ sin 2θ]Ω2 − γι, (3.148)

M ′
22 = Ω2[γ2 +Ω2 −∆2 +Σ2 − 2Σγ cos 2θ]

+(∆− Σsin 2θ)ι/2, (3.149)

D′ =

√
2ιγ

hSQL

(
(−∆+Σsin 2θ)Ω

(γ + iΩ− Σcos 2θ)Ω

)
. (3.150)



54 Chapter 3 Quantum noise in gravitational wave detectors

100 101 102 103 104

10-26

10-24

10-22

10-20

Fig. 3.20: Sensitivity of the intracavity-squeezed DRMI with detuned SRC. The parameters
are set to θ = 0, r =

√
1− 4Lγ/c and ξB = π/4. The lower limit of the

vertical axis is changed to 10−27.

The sensitivity curve with θ = 0 is shown in Fig. 3.20. Strong squeezing shifts
the dip to the high-frequency band. ϕ is adjusted to match the frequencies of
the optical spring and optical resonance, which is π/4 in the limit of s → 0.
Eq. (3.138) is used for the plots as it requires significant detuning. The homodyne
angle is set to π/4 because the relative angle of the signal becomes π/4 with
s → 0.

The resonance frequency of the optical spring is shifted to a higher frequency
band without changing the input power, resulting from intracavity squeezing that
modifies the optomechanical properties of the cavity. In other words, the dip is
formed by an optical spring enhanced by the intracavity signal amplification. The
enhanced optical spring can achieve narrow but extremely good sensitivity at a
certain frequency compared to input squeezing and other techniques. The dip fre-
quency can be shifted by changing the cavity detuning and squeezing factor; thus,
if the frequency of the dip matches the theoretically predicted high-frequency grav-
itational wave signals, such as those emitted from supernovae or binary neutron
star post-merger remnants, we can detect these events with good sensitivity.

The depth and linewidth of the dip can be adjusted by tuning the squeezing
angle θ. We calculate the case where the transfer matrices from BS to SRM and
from SRM to BS are equivalent with U = R(ϕ/2)S(u, θ)R(ϕ/2). In other words,
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the input-output relation is modified as

b =
[
−rI + t2e2iα

[
I − re2iαUPU

]−1
UPU

]
a

+teiα
√
2K

hSQL

[
I − re2iαUPU

]−1
U

(
0
1

)
h(Ω). (3.151)

The sensitivity curves are shown in Fig. 3.21. By appropriately selecting θ, a
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Fig. 3.21: Sensitivity of the intracavity-squeezed DRMI with detuned SRC. The parameters
are set to r =

√
1− 4Lγ/c and ξB = π/4. The lower limit of the vertical axis

is changed to 10−26.

broadband dip can be formed in the high-frequency band while minimizing sensi-
tivity deterioration in the low-frequency band.

Although performing frequency-dependent cavity detuning is challenging, it is
possible to provide the frequency-dependent squeezing angle using a filter cavity.
In particular, the resonant frequency of the optical spring changes as the squeezing
angle varies. Further sensitivity improvement may be possible with intracavity
squeezing by achieving an ideal frequency-dependent squeezing angle [118].

In this section, we discussed the enhancement of the optical spring based on
intracavity squeezing, and this technique can also be applied to various optome-
chanical systems. As intracavity squeezing changes the properties of the cavity,
it is possible to realize optomechanical systems that cannot be achieved with con-
ventional techniques. In particular, intracavity squeezing can cool optomechanical



56 Chapter 3 Quantum noise in gravitational wave detectors

oscillators in the unresolved sideband regime to the ground state*9 [22–24]. There
are many theoretical studies related to the impact of intracavity squeezing on op-
tomechanical systems [119–132], and experimental verification is expected to be
realized.

3.6 Summary of this chapter
In this chapter, we calculated the sensitivity of the gravitational wave detectors,

which is determined by the quantum noise. The Michelson interferometer is the
most elementary configuration of an interferometric gravitational wave detector.
However, it is essential to enhance the laser light power and signal response with
cavities because shot noise limits the sensitivity of the Michelson interferometer.
In addition, the optical spring, which can be generated by detuning the signal
recycling cavity, can beat the free-mass SQL. This phenomenon is produced by
the reduction in the SQL owing to the optical spring generated in the arm. In
addition, the optical spring can be enhanced by intracavity squeezing to amplify
high-frequency gravitational waves.

Theoretical results indicate that intracavity squeezing can significantly improve
sensitivity. Nevertheless, it is essential to conduct a verification-of-principle ex-
periment before implementing intracavity squeezing in an actual large-scale grav-
itational wave detector. Then, is it reasonable to conduct a verification experiment
with the DRMI? To operate the DRMI, it is necessary to control the three degrees
of freedom of the Michelson interferometer, PRC, and SRC. Moreover, as dis-
cussed in the next chapter, the OPA requires the control of at least three degrees
of freedom. In other words, the system shown in Fig. 3.17 is a complex system
that requires at least six degrees of freedom of control. Although the PRC can be
removed in principle because it only increases the input light power, it becomes
challenging to generate an observable optical spring with a weak radiation pres-
sure force acting on the test mass. In addition, actual Michelson interferometers
have non-negligible contrast errors, making it difficult to construct an SRC with
high finesse.

Therefore, we focus on the equivalence of the DRMI and Fabry-Perot cavity.
As shown in Fig. 3.16, the two interferometers are equivalent in terms of quan-
tum noise. We can predict that the enhancement of the optical spring based on
intracavity squeezing can be demonstrated in a Fabry-Perot cavity. However, we
must consider the requirements to assume that it is equivalent to the optical spring
generated in the DRMI.

*9 See App.D.
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Chapter 4

Signal amplification
experiment based on the
OPA scheme

The signal amplification system discussed in Sec. 3.5.2 is a promising scheme to
improve the sensitivity of gravitational wave detectors in the high-frequency band.
The essence of this system is the enhancement of the optical spring based on in-
tracavity squeezing. The experimental goal of this thesis is to observe an optical
spring enhanced by the signal amplification effect. We should measure the impact
of nonlinear optical effects on the optical spring. Hence, we considered experi-
menting with the Fabry-Perot cavity, which is an experimentally tractable interfer-
ometer compared with the actual interferometer configuration of the gravitational
wave detector, e.g., dual recycling Michelson interferometer (DRMI). This chapter
discusses an experimental method for performing proof-of-principle experiments
on the signal amplification system using a Fabry-Perot cavity and the results of
experiments with the optical parametric amplification (OPA) scheme.

4.1 Equivalency of the optical spring in the DRMI
and Fabry-Perot cavity

As light possesses momentum, the test mass receives a radiation pressure force
Frad when it reflects the laser light. If the radiation pressure force is proportional to
the displacement of the test mass, a spring comprising light is generated. Suppose
that the displacement of a test mass fluctuates by δx(Ω) when a mirror reflects the
light field and its fluctuation A + a(Ω). From Eq. (3.44), the radiation pressure
fluctuation can be divided into terms proportional to δx(Ω) and other terms as

δFrpf(Ω) = 2ℏk0(A1a1(Ω) +A2a2(Ω)) = −Kopt(Ω)δx(Ω) + δFqrp(Ω), (4.1)
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where Kopt(Ω) denotes the complex optical spring constant and δFqrp(Ω) denotes
the quantum radiation pressure fluctuation*1. Here, we need to consider the radi-
ation pressure fluctuation response to the slight displacement of the mirror rather
than the ponderomotive squeezing resulting from the mirror reflection. When the
light field fluctuation a(Ω) is reflected by the test mass, the reflected electric field
fluctuation b(Ω) is obtained as

b(Ω) = a(Ω) + 2k0A0nA⊥δx(Ω) (4.2)

from the Fourier transform of Eq. (3.43). Here, nA⊥ denotes the unit vector per-
pendicular to the carrier light.

4.1.1 Optical spring in the DRMI with intracavity squeezing

BS

ETMX

ETMY

Squeezer

SRM

PRM

PD

Fig. 4.1: Schematic of intracavity squeezing for the DRMI. Only the end mirror of the y-
arm is supposed to work as a test mass. The pump light is injected from the beam
splitter to the signal recycling mirror, and the light field is not squeezed in the path
from the SRM to the BS.

Let us consider an optical spring generated in the DRMI with intracavity squeez-
ing as considered in Sec. 3.5.2. The schematic of DRMI is shown in Fig. 4.1. We
calculate the radiation pressure fluctuation that is acting on the end mirror of the
y arm. The light field is squeezed in the path from the beam splitter (BS) to the
signal recycling mirror (SRM) in the signal recycling cavity (SRC). We set the

*1 See App. D.
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squeezing angle θ as 0 when the light field is squeezed. In other words, the phase
of the light field does not change in the path from the SRM to the BS and from
the BS to the nonlinear optical crystal (NLC); however, the phase changes by 2ϕ
in the path from the NLC to the SRM. Suppose that the SRC length is sufficiently
shorter than the arm length and the phase delay in the SRC is negligible. Let L be
the arm length, α = −LΩ/c be the phase delay during propagation in the arm, r2

and t2 = T be the power reflectivity and transmissivity of the SRM, and s = eu

be the squeezing factor. The input-output relation can be written as

b = −ra+ td, c = ta+ rd, d = R(2ϕ)S(u, θ)f , e = c,

f = e2iαe + eiαk0I0

(
0
1

)
δx(Ω), k =

1√
2

eiα(e+ i). (4.3)

Assume that the fluctuation of input power and radiation pressure fluctuation
caused by the vacuum field can be neglected (a = 0, g = 0). From Eq. (4.1), the
complex optical spring constant Kopt(Ω) can be written as

Kopt(Ω)δx(Ω) = −2ℏk0K1k1 = −eiαℏk0I0e1, (4.4)

and e can be calculated as

e = k0I0reiα[I − re2iαR(2ϕ)S(u, θ)]−1R(2ϕ)S(u, θ)

(
0
1

)
δx(Ω)

=
k0I0

re2iα + r−1e−2iα − 2 cos 2ϕ coshu

×
(

− sin 2ϕ coshu+ sin(2ϕ+ 2θ) sinhu
−re2iα + cos 2ϕ coshu+ cos(2ϕ+ 2θ) sinhu

)
δx(Ω). (4.5)

Therefore, by approximating that α, ϕ, and u are much smaller than unity, we
obtain

Kopt(Ω) ≃
k0PI

L

∆− Σsin 2θ

(γ + iΩ)2 +∆2 − Σ2

=
k0PI

Lγ

δ − σ sin 2θ

(1 + iΩ/γ)2 + δ2 − σ2
, (4.6)

where PI = ℏω0I
2
0/2 denotes the light power at the BS, γ = Tc/(4L) denotes

the decay rate of the SRC, ∆ = ϕc/L denotes the detuning of the SRC, δ =
∆/γ denotes the normalized cavity detuning, Σ = uc/(2L) denotes the squeezing
decay rate, and σ = Σ/γ denotes the normalized squeezing decay rate. If the
frequency band under consideration is sufficiently lower than the cavity decay rate
(Ω ≪ γ), we obtain the approximation formula:

Kopt(Ω) ≃ k0PI

Lγ

δ − σ sin 2θ

1 + δ2 − σ2

[
1− i

2

γ(1 + δ2 − σ2)
Ω

]
:= kopt + iΓoptΩ, (4.7)
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where kopt denotes the optical spring constant, and Γopt denotes the optical damp-
ing constant.

Radiation
pressure force

Cavity length

Fig. 4.2: Qualitative illustration of an optical spring. The orange dots represent the oper-
ating point, red and blue dotted curves represent the response of the cavity at the
operating point, and the value of normalized cavity detuning δ determines whether
the vibration, represented by the orange arrow, is amplified or damped. The blue
and red arrows represent the upper and lower sidebands, respectively.

The qualitative behavior of the optical spring without intracavity squeezing
(σ = 0) is illustrated in Fig. 4.2. The optical spring constant corresponds to the
slope of the radiation pressure force for the cavity length. When δ = 0, the radi-
ation pressure force does not change for slight changes in the cavity length; thus,
kopt = 0. When δ > 0, the radiation pressure force decreases for slight positive
changes in cavity length, and light produces a restoring force, resulting in a pos-
itive optical spring (kopt > 0). When δ < 0, an optical anti-spring (kopt < 0) is
produced. In contrast, the optical damping constant corresponds to the amount of
energy flow caused by the radiation pressure force. When the mirror fluctuates at
an angular frequency of Ω, upper and lower sidebands of angular frequency ω0+Ω
and ω0 −Ω, respectively, are generated. When δ = 0, the cavity equally amplifies
the sidebands; thus, Γopt = 0. When δ > 0, the lower sideband is more amplified
than the upper sideband, and the oscillation of the mirror deprives the energy of
light. In this case, the mirror receives positive work from the light, and the oscilla-
tion of the mirror is amplified, resulting in optical anti-damping (Γopt < 0). When
δ < 0, the mirror receives negative work from the light, resulting in optical damp-
ing (Γopt > 0). The real and imaginary components of the complex optical spring
constant have opposite signs for any cavity detuning, implying that the optical
spring generated with a single carrier is always unstable. In particular, when a me-



4.1 Equivalency of the optical spring in the DRMI and Fabry-Perot cavity 61

chanical oscillator with a high mechanical Q factor is bound by an optical spring,
the entire system can become unstable owing to optical anti-damping [133–135].

There are several ways to avoid this instability. A stable optical spring can be
generated using multiple carrier lights [136] as the optical spring and damping
constant exhibit different functional dependencies on cavity detuning. Moreover,
an optical spring can be generated without using an optical cavity as long as the
radiation pressure force is proportional to the displacement of the mirror [137]. In
this case, the optical system does not produce optical damping because the ampli-
fication factors of the upper and lower sidebands are not different. Another method
is to use the photothermal effect [138, 139]. The real and imaginary components
of the optical spring can be converted to each other using the photothermal effect,
which is detailed in the next chapter.

Fig. 4.3: Optical spring constant kopt and optical damping constant Γopt with intracavity
squeezing. We set the squeezing angle as θ = 0. Each vertical axis is normalized
to be 1 and −1 when δ = 1 and σ = 0, respectively.

Figures 4.3 and 4.4 show the optical spring and damping constant for σ > 0.
Fig. 4.3 shows the case where the squeezing angle is θ = 0. The optical spring
constant increases with an increase in σ, reflecting signal amplification based on
intracavity squeezing. Moreover, kopt and Γopt are odd functions for δ. Fig. 4.4
shows the case where the squeezing angle is θ = −π/4. kopt and Γopt are not
symmetric for δ; therefore, an optical spring is generated even when δ = 0. We
also note that kopt and Γopt always exhibit opposite signs for any parameter.
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Fig. 4.4: Optical spring constant kopt and optical damping constant Γopt with intracavity
squeezing. We set the squeezing angle as θ = −π/4. The vertical axis is normal-
ized in the same manner as in Fig. 4.3.

Squeezer

Fig. 4.5: Schematic of intracavity squeezing for the Fabry-Perot cavity. Only the end mirror
is supposed to work as a test mass.

4.1.2 Optical spring in the Fabry-Perot cavity with intracavity
squeezing

Let us consider the optical spring generated in the Fabry-Perot cavity with in-
tracavity squeezing, as shown in Fig. 4.5. The carrier light with phase quadrature
of 0 (A1 = A0, A2 = 0) is incident on the cavity. The squeezing angle is set
by supposing that the phase of the light field changes by 2ϕ on the path from the
NLC to the input mirror, as for DRMI. However, as described below, the squeez-
ing angle does not correspond to it in the DRMI. The squeezing angle, in this case,
is denoted as θinc. Let L be the one-way length of the cavity, α = −LΩ/c be
the phase delay, r2 and t2 = T be the power reflectivity and transmissivity of the
input mirror, respectively, and s = eu be the squeezing factor. The input-output



4.1 Equivalency of the optical spring in the DRMI and Fabry-Perot cavity 63

relation of the carrier light can be written as

B = −rA+ tD, C = ta+ rd,

D = R(2ϕ)S(u, θinc)F , E = C, F = E. (4.8)

The intracavity amplitude E can be calculated as

E = t[I − rR(2ϕ)S(u, θinc)]
−1A

=
2

t

1

1 + δ2 − σ2

(
1 + σ cos 2θinc −δ + σ sin 2θinc
δ + σ sin 2θinc 1− σ cos 2θinc

)
A, (4.9)

where γ = Tc/(4L) denotes the cavity decay rate, ∆ = ϕc/L denotes cavity
detuning, δ = ∆/γ denotes the normalized cavity detuning, Σ = uc/(2L) denotes
the squeezing decay rate, and σ = Σ/γ denotes the normalized squeezing decay
rate. The intracavity power PE is

PE =
4

T

(1 + σ cos 2θinc)
2 + (δ + σ sin 2θinc)

2

(1 + δ2 − σ2)2
PA. (4.10)

However, the signal vector generated by the fluctuations of the test mass is not
directed in the phase quadrature because the intracavity carrier vector is not in the
amplitude quadrature. In other words, there is no correspondence with the DRMI
for the Fabry-Perot cavity defined so that the incident carrier is in the amplitude
quadrature.

Squeezer

Fig. 4.6: Schematic of intracavity squeezing for the Fabry-Perot cavity as an intracavity
carrier criterion. The initial phase of the incident carrier is φ = − arctan((δ +
σ sin 2θ)/(1− σ cos 2θ)).

Then, as shown in Fig. 4.6, we consider that the carrier with initial phase φ is in-
cident to the cavity so that the intracavity carrier vector is directed in the amplitude
quadrature (E′

1 = E′
0, E′

2 = 0). The squeezing angle, in this case, is denoted as θ.
The initial phase can be calculated as φ = − arctan((δ+σ sin 2θ)/(1−σ cos 2θ)).
The incident carrier is converted to A → A′ = R(φ)A, where the rotation matrix
can be written as

R(φ) =
1√

(1− σ cos 2θ)2 + (δ + σ sin 2θ)2

×
(

1− σ cos 2θ δ + σ sin 2θ
−δ − σ sin 2θ 1− σ cos 2θ

)
. (4.11)
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The intracavity carrier can be written as

E′ =
2

t

1√
(1− σ cos 2θ)2 + (δ + σ sin 2θ)2

(
1
0

)
A0 =

(
E′

0

0

)
, (4.12)

and we obtain intracavity power as

PE′ =
4

T

1

(1− σ cos 2θ)2 + (δ + σ sin 2θ)2
PA. (4.13)

The input-output relation of the light field fluctuation can be written as

a′ = R(φ)a, b′ = −ra′ + td′, c′ = ta′ + rd′,

d′ = eiαR(2ϕ)S(u, θ)f ′, e′ = eiαc′, f ′ = e′ + 2k0E
′
0

(
0
1

)
δx(Ω).

(4.14)

We neglect the input field a and solve these equations for e′, obtaining

e′ = 2k0E
′
0re2iα[I − re2iαR(2ϕ)S(u, θ)]−1R(2ϕ)S(u, θ)

(
0
1

)
δx(Ω). (4.15)

This equation is consistent with Eq. (4.5) except for the intracavity light amplitude.
The complex optical spring constant Kopt(Ω) can be calculated in the same manner
described in the previous subsection:

Kopt(Ω) ≃
4k0PE′

Lγ

δ − σ sin 2θ

(1 + iΩ/γ)2 + δ2 − σ2
. (4.16)

Therefore, the optical spring generated in the Fabry-Perot cavity is equivalent to
it in the DRMI by defining the intracavity carrier as the amplitude quadrature. In
other words, using the Fabry-Perot cavity, it is possible to conduct a proof-of-
principle experiment of the signal amplification system discussed in Sec. 3.5.2.

Let us discuss the meaning of defining the intracavity carrier in the amplitude
quadrature. In terms of sensitivity, intracavity carrier transformation associates
measurements by contrast defects in the DRMI with the reflected light in the
Fabry-Perot cavity, as discussed in Sec. 3.4.3. Without intracavity squeezing, the
optical spring generated in the DRMI is equivalent to it in the Fabry-Perot cav-
ity by normalizing the intracavity power, regardless of the definition of carrier
quadrature. With intracavity squeezing, the phase of the incident light is relevant
to the definition of the squeezing angle. When the incident carrier is defined as the
amplitude quadrature, the squeezing angle θinc is independent of the quadrature
of the generated signal. In contrast, when the intracavity carrier is defined as the
amplitude quadrature, the squeezing angle θ is zero for squeezing the generated
signal. In other words, the intracavity carrier transformation allows us to define
the squeezing angle similar to that of the DRMI.
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In the experiment, when we vary the cavity detuning and squeezing angle, the
intracavity power follows Eq. (4.10) instead of Eq. (4.13). The theoretical squeez-
ing angle is the phase difference between the pump light and incident light. How-
ever, experimentally, the phase of the pump light is considered to be the squeezing
angle. In other words, the phase change of the pump light does not correspond
linearly to the squeezing angle for the intracavity carrier criterion. The correspon-
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Fig. 4.7: Intracavity light power with intracavity squeezing. The parameters are set to δ = 1
and σ = 0.5. The vertical axis is normalized to be 1 when δ = 0 and σ = 0. The
horizontal axes in (a) and (b) have different definitions, as denoted in Eqs. (4.10)
and (4.13).

dence of squeezing angles is shown in Figs. 4.7(a) and (b), which show the plots
of Eqs. (4.10) and (4.13), respectively. The phase of the pump light corresponds
to θinc, and we can observe the sine wave by varying it, as shown in Fig. 4.7(a).
However, the squeezing angle calculated from Eq. (4.10) has no correspondence to
that in the DRMI. By calculating the squeezing angle from Eq. (4.13), it is possible
to define the squeezing angle to correspond with it in the DRMI. The intracavity
power, in this case, is obtained by nonlinearly varying the phase of the pump light,
as shown in Fig. 4.7(b).

In summary, to consider the optical spring generated in the Fabry-Perot cavity
equivalent to it generated in the DRMI, we need to normalize the optical spring
constant by the intracavity power and define the squeezing angle with intracav-
ity carrier transformation. The experimental procedure is as follows. First, the
squeezing factor is calculated based on the maximum value of the transmitted light
for varying the cavity detuning and squeezing angle. Next, we control the cavity
detuning to a constant value. Finally, the squeezing angle is controlled to maintain
the intracavity power. The correspondence between transmitted light power and
squeezing angle is calculated using Eq. (4.13). Thus, the obtained squeezing angle
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nonlinearly corresponds to the phase of the pump light.
Strong intracavity power and high signal amplification factor are required to

experimentally observe an optical spring. It should be noted that a squeezing
angle that yields a high signal amplification factor does not necessarily produce
strong intracavity power. For example, as shown in Fig. 4.4, when θ = −π/4 and
σ ∼ 0.8, a strong signal amplification factor can be obtained by setting δ ∼ 0.2.
However, the intracavity power with these parameters, calculated from Eq. (4.13),
is approximately 0.7 times that with δ = 0 and σ = 0. Strong intracavity power is
essential to observe the optical spring; however, a strong input power suppresses
the OPA process, resulting in a lower squeezing decay rate. Therefore, the primary
experimental strategy is to achieve strong intracavity power as θ ∼ 0 and measure
the signal amplification rate at approximately δ ∼ 1.

Fig. 4.8: Intracavity light power with intracavity squeezing with θinc = 0 in Eq. (4.10). The
vertical axis is normalized to be 1 when δ = 0 and σ = 0.

Figures 4.8 and 4.9 show the intracavity power that can be measured when the
phase of the pump light is kept constant. The intracavity power reaches its maxi-
mum when θinc = 0 and δ = 0, and it attenuates when θinc = π/2.

4.2 Linear signal acquisition methods
To generate an optical spring in the optical interferometer, parameters such as

cavity detuning and squeezing angle must be controlled to maintain values. To
pull into the operating point and achieve stable operation, our experiments use
feedback control*2. The feedback control of an optical system requires that the

*2 See App. E.1.
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Fig. 4.9: Intracavity light power with intracavity squeezing with θinc = π/2 in Eq. (4.10).
The vertical axis is normalized in the same manner as in Fig. 4.8.

optical system responds linearly around the operating point. However, when cav-
ity detuning is controlled to the resonance point of the Fabry-Perot cavity or when
the squeezing angle is controlled to maximize the intracavity light power, the trans-
mitted light power from the cavity does not respond linearly. In such cases, the
solution is to use radio frequency (RF) sidebands or a subcarrier, whose frequency
response to the optical system differs from that of the carrier, as a reference light.
This section considers methods for obtaining a linear control signal (error signal)
for an optical system.

4.2.1 Pound-Drever-Hall method
The Pound-Drever-Hall (PDH) technique [140] is a well-known linear signal

acquisition method for the resonance point of the cavity. This technique uses RF
sidebands as a reference light to obtain a linear signal around the resonance point.
Fig. 4.10 shows the PDH method for the Fabry-Perot cavity. First, we obtain a for-
mula for the RF sidebands. RF sidebands can be generated by transmitting carrier
light through the electro-optic modulator (EOM) and applying phase modulation.
With the incident electric field as A(t) = A0 cosω0t, the light field amplitude
transmitted from the EOM A′(t) can be written as

A′(t) = A0 cos(ω0t+ β sinωMt) ≃ A0(cosω0t− β sinω0t sinωMt). (4.17)
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EOM

Fig. 4.10: Schematic of the PDH method for the Fabry-Perot cavity. RF sidebands are
generated from phase modulation using an electro-optic modulator, and the de-
modulation of the reflected light obtains the error signal.

Herein, the fluctuations of the incident light field are neglected. The DC and AC
components of the light field can be written as

A′ = A, (4.18)

a′(t) = −A0β

(
0

sinωMt

)
, (4.19)

where β ≪ 1 denotes the modulation index, which is determined by the voltage
applied to the EOM crystal and the conversion efficiency, and ωM denotes the
angular frequency of the AC voltage applied to the crystal. a′(t) represents the RF
sideband and is the equivalent formula for the signal of angular frequency ωM.

If the modulation frequency is sufficiently high, optomechanical coupling can
be negligible. Let r2 and t2 be power reflectivity and transmissivity of the input
mirror, and ϕ and α be phase change and delay during a half cycle in the cavity.
The light field fluctuations reflected by the cavity can be calculated as

b(Ω) =
[
−rI + t2

[
I − re2iαR(2ϕ)

]−1
R(2ϕ)

]
a′

≃ 1

(γ + iΩ)2 +∆2

(
γ2 −∆2 +Ω2 −2γ∆

2γ∆ γ2 −∆2 +Ω2

)
a′

=
−A0βF [sinωMt]

(γ + iΩ)2 +∆2

(
−2γ∆

γ2 −∆2 +Ω2

)
, (4.20)

where γ denotes the cavity decay rate and ∆ denotes the cavity detuning. F [f(t)]
denotes the Fourier transform. Using Dirac’s delta function δ(Ω), the signal in the
frequency domain can be written as

F [sinωMt] = iπ(δ(Ω + ωM)− δ(Ω− ωM)). (4.21)

When the modulation frequency is sufficiently larger than the cavity decay rate
and cavity detuning, we can approximate b(Ω) as follows:

b(Ω) ≃ A0βF [sinωMt]

(
0
1

)
. (4.22)
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Moreover, the carrier light can be calculated as

B =
A0

γ2 +∆2

(
γ2 −∆2

2γ∆

)
. (4.23)

In the PDH method, we demodulate by multiplying the measured light power
PB by a signal whose phase is the same as the modulation signal (∼ sinωMt) or a
signal whose phase is shifted by π/2 (∼ cosωMt). We refer to each demodulation
phase as in-phase (I-phase) and quadrature-phase (Q-phase). The obtained PDH
signal is passed through a low-pass filter to remove high-frequency signals and
is used as the linear signal. Therefore, we need to consider the terms that are
multiplied by sinωMt and cosωMt:

PωM
B =

ℏω0

2
2B2F−1[b2(Ω)]

≃ 2
2γ∆

γ2 +∆2
βPA sinωMt, (4.24)

where F−1[f(Ω)] denotes the inverse Fourier transform. The PDH signal is ob-
tained by demodulating with I-phase and removing the AC component, which is a
linear signal around ∆ = 0:

P demod-I
B ≃ 2γ∆

γ2 +∆2
βPA. (4.25)

Without approximation, the error signals when demodulated in I-phase and Q-
phase are as follows:

P demod-I
B = − 2γ∆ω2

M(γ2 +∆2 − ω2
M)

(γ2 +∆2)3 + 2(γ4 −∆4)ω2
M + (γ2 +∆2)ω4

M
βPA, (4.26)

P demod-Q
B = − 4γ2∆ω3

M

(γ2 +∆2)3 + 2(γ4 −∆4)ω2
M + (γ2 +∆2)ω4

M
βPA. (4.27)

The theoretical curve of the error signal with ωM = 10γ is shown in Fig. 4.11.
The I-phase signal is linear around the resonance state. However, a linear signal
also appears around ∆ = ωM because the carrier light becomes the reference light
in cavity detuning where the sidebands resonate. The slope of the error signal
around the sideband resonance has the opposite sign to that of the error signal
around the carrier light resonance. The error signal must be fed back with the
correct polarity to control the cavity to the carrier light resonance. When Q-phase
signals are used, the slope of the error signal is tiny, making it difficult to pull the
cavity into a resonance state. It is essential to correctly set the demodulation phase
for modulation and demodulation methods, e.g., the PDH technique.
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Fig. 4.11: Error signals obtained using the PDH technique. The parameter is set to ωM =
10γ, and the horizontal axis indicates normalized cavity detuning δ = ∆/γ. The
vertical axis is appropriately normalized.

4.2.2 Phase-locking loop
The control method for squeezing angle uses a light whose frequency is shifted

from the carrier light. This light is called a subcarrier. Let ωM be the frequency
difference from the carrier and a0 be the amplitude; the formula of the subcarrier
is

a(t) = a0 cos(ω0 + ωM)t = a0(cosω0t cosωMt− sinω0t sinωMt), (4.28)

so a can be written as

a(t) = a0

(
cosωMt
− sinωMt

)
. (4.29)

The carrier B of phase ϕB interferes with the subcarrier a of phase ϕa, as
shown in Fig. 4.12. Let r2 and t2 be the power reflectivity and transmissivity of
the mirror. The component with frequency ωM of the light power measured by the
photodetector is

PωM
C = 2rt

√
PBPa [sin(ϕB − ϕa) sinωMt− cos(ϕB + ϕa) cosωMt] . (4.30)

By demodulating with sinωMt, we can obtain a linear signal around ϕB −ϕa = 0.
In our experiment, we synchronize the phases of two lasers by the feedback of the
error signal to the frequency tuning channel of the second laser. This control loop
is known as a phase-locking loop (PLL).
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Second
Laser

Fig. 4.12: Schematic of the phase-locking loop.

In the squeezing experiment, the OPA occurs in the optical parametric oscillator
(OPO) cavity. As carrier light incident on the OPO cavity is a noise source for the
squeezed vacuum field, the PLL in a typical squeezing experiment is conducted
separately from the incident path to the cavity. In our experiment, the carrier light
and subcarrier light must be injected into the cavity aligning the phases, so that
D + d becomes the incident light to the cavity.

4.2.3 Control of the squeezing angle with the coherent con-
trol field

The error signal of the squeezing angle has been studied to obtain it even
when squeezing a vacuum field where no carrier light. The coherent control
method [141, 142] obtains a series of error signals for OPA and homodyne detec-
tion using the subcarriers as reference light*3. When performing degenerate OPA
for the carrier light of frequency ω0, the subcarrier light of frequency ω0 + ωM
is converted to another subcarrier light of frequency ω0 − ωM according to the
energy conservation law. Both subcarrier lights are affected by OPA; however,
they differently depend on the squeezing angle. Therefore, the error signal of the
squeezing angle can be obtained by demodulating with a frequency difference of
subcarriers, i.e., 2ωM. In addition, this error signal is not affected by the carrier
light because the frequency differences between the two subcarriers and carrier
light are ωM. Using the coherent control method, we can control the squeezing
angle with or without the carrier light.

In our experimental system, the OPO cavity is detuned. It needs to be evident
whether the coherent control method can be applied to this case. Let us consider
the error signal obtained by injecting the subcarrier light into a detuned OPO cav-

*3 This method can be applied in various ways, e.g., the filter cavity can be controlled by coherent
control fields [143, 144].
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Fig. 4.13: Schematic of the coherent control method for the detuned OPO cavity.

ity and demodulating the transmitted light at frequency 2ωM, as shown in Fig. 4.13.
When the error signal is fed back to the phase of the pump light, it corresponds to
using the squeezing angle for the incident carrier light; thus, the squeezing angle
and phase change are defined as in Fig. 4.5. As the transmitted light power is pro-
portional to the intracavity power, we need to calculate the intracavity amplitude
e:

e = t[I − reiαR(2ϕ)S(u, θinc)]a

≃ 2

t

γ

(γ + iΩ)2 +∆2 − Σ2

(
γ + iΩ+ Σcos 2θinc −∆+Σsin 2θinc

∆+Σsin 2θinc γ + iΩ− Σcos 2θinc

)
a,

(4.31)

where the incident light field of subcarrier a(Ω) can be written as

a(Ω) = a0

(
F [cosωMt]
F [− sinωMt]

)
. (4.32)

The intracavity subcarrier power Pe = ℏω0/2(e1(t)
2+e2(t)

2) is complicated. By
demodulating it with the respective phase, the following error signal is obtained:

P demod-I
e = Λ0(Λ1 cos 2θinc − Λ2 sin 2θinc)

4

T
Pa, (4.33)

P demod-Q
e = Λ0(Λ2 cos 2θinc + Λ1 sin 2θinc)

4

T
Pa, (4.34)

with

Λ0 =
γ2Σ

[γ4 + 2γ2(∆2 − Σ2 + ω2
M) + (−∆2 +Σ2 + ω2

M)2]2
, (4.35)

Λ1 = γ4(∆− 3ωM) + (∆ + ω)(−∆2 +Σ2 + ω2
M)2

+2γ2[∆3 −∆2ωM + ωM(Σ2 − ω2
M)−∆(Σ2 + 3ω2

M)], (4.36)

Λ2 = γ[γ4 + 2γ2(∆2 − Σ2 + 2∆ωM − ω2
M)

+(∆2 − Σ2 − ω2
M)(−Σ2 + (∆+ ωM)(∆ + 3ωM))]. (4.37)

Fig. 4.14 shows the error signal obtained using the coherent control method.
The signals demodulated by I-phase and Q-phase are orthogonal, indicating that a
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Fig. 4.14: Error signal obtained using the coherent control method. The parameters are
set to ωM = γ, ∆ = γ, and Σ = 0.5γ. The horizontal axis corresponds to the
relative phase of the pump light, and the vertical axis is appropriately normalized.

linear signal for any squeezing angle can be obtained by choosing the appropriate
demodulation phase. The amplitude of the error signal can be calculated as

√
(Λ0Λ1)2 + (Λ0Λ2)2 =

γ2Σ
√

γ2 + (∆+ ωM)2

γ4 + 2γ2(∆2 − Σ2 + ω2
M) + (−∆2 +Σ2 + ω2

M)2
.

(4.38)
Fig. 4.15 shows the error signal amplitudes for several cases of cavity detuning.

When the cavity is not detuned, the error signal amplitude increases as ωM is
smaller because the two subcarriers are equally amplified. When the cavity is de-
tuned, the intracavity power of the subcarrier with a frequency of ω0+ωM reaches
its maximum when ωM = ∆, and the intracavity power of the subcarrier with a
frequency of ω0 − ωM becomes maximum when ωM → 0. The amplitude of the
error signal becomes maximum when ωM is set as the intermediate between these
values.

4.3 OPA experiment

4.3.1 Experimental setup
This experiment aims to observe an optical spring enhanced by intracavity OPA.

The experimental setup is shown in Fig. 4.16. The SHG cavity generated the sec-
ond harmonic, which is the pump light of OPA. The OPO cavity induced the intra-
cavity OPA. One of the mirrors that comprised the cavity is a lightweight mirror,
which allowed us to observe the optical spring. In addition to the control of the
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Fig. 4.15: Amplitude of the error signal obtained using the coherent control method. The
parameter is set to Σ = 0.5γ, and the vertical axis is appropriately normalized.
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Fig. 4.16: Setup of the OPA experiment. Abbreviations are defined as follows: photodetec-
tor (PD), half-waveplate (HWP), quarter-wave plate (QWP), polarization beam
splitter (PBS), electro-optic modulator (EOM), piezoelectric element (PZT), pe-
riodically poled LiNbO3 (PPLN), Faraday isolator (FI), Faraday rotator (FR),
second harmonic generation (SHG) and optical parametric oscillator (OPO).
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cavity length of the two cavities, we were required to control the frequency of
the coherent control field and squeezing angle. The PLL of the control laser was
controlled by measuring the interference light with the carrier laser and feeding it
to the frequency port of the control laser. The squeezing angle was controlled by
demodulating the transmitted light of the OPO cavity at twice the PLL frequency
and feeding it to the phase of the pump light. The relative phase of the pump
light was controlled using a coil magnet actuator that can increase the unity gain
frequency because fluctuations in the OPO cavity length are amplified by OPA,
causing large fluctuations in the squeezing angle. In the loop controlled by the
coil magnet actuator, a high-pass filter was used to provide a phase margin at unity
gain frequency. In the loop controlled by the PZT, a low-pass filter was used to
decrease the resonance peak of the PZT*4.

As the single-pass SHG possesses negligible conversion efficiency, it is neces-
sary to use a cavity to generate a high-intensity second harmonic field. We used a
PPLN crystal with a crystal length of 1.0 cm as an NLC. The radius of the beam
waist was designed to be approximately 40µm to set the Rayleigh length of the
beam to approximately 0.5 cm. The distance between the curved mirrors was de-
signed to be 0.16m, the round cavity length was 1.36m, and the angle of incidence
was 8 degrees. The cavity length was controlled to the resonance state using the
PDH method. Tab. 4.1 lists the mirrors that constitute the SHG cavity. The power

Table 4.1: Mirrors that constitute the SHG cavity.

Name Manufacturer Number Reflectance AOI ROC
Input coupler Layertec 104373 = 94%@1064&532 6 degrees flat
Curved mirror Layertec 102247 > 99.9%@1064, < 5%@532 0 degrees 150mm
Actuate mirror Layertec 104265 > 99.9% 0 degrees flat

reflectivity of the input coupler was set to 94% to achieve approximately critical
coupling owing to the intracavity loss caused by the SHG effect. We measured the
input power of the fundamental wave incident to the SHG cavity and the outgo-
ing light power of the second harmonic wave. An outgoing light with a power of
620mW was obtained for an input power of 610mW. The measurement error of
the power meter was 7%, and the actual conversion efficiency could be estimated
to be approximately 95%. An SHG cavity with excellent conversion efficiency
was constructed.

An optical spring was generated in the OPO cavity. We used a PPLN crystal
as an NLC; however, it is replaced with a periodically poled KTiOPO4 (PPKTP)
crystal for some measurements. Both crystals have a crystal length of 1.0 cm;
thus, the beam waist radius was designed to be approximately 40µm. The dis-
tance between the curved mirrors was designed to be 0.078m, the round cavity
length was 0.428m, and the angle of incidence was 17 degrees. The cavity length
was controlled to a detuned state based on the feedback of the transmitted power.

*4 See App. E.1.2.
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Tab. 4.2 lists the mirrors that constitute the OPO cavity. The finesse is designed to

Table 4.2: Mirrors that constitute the OPO cavity.
Name Manufacturer Number Reflectance AOI ROC

Input coupler Layertec 104373 = 94%@1064 6 degrees flat
Curved mirror Newport&LMA SPC025 = 99.95%@1064, < 0.25%@532 15 degrees 68.5mm
Small mirror Edmund #38-901 > 99.8%@1064 0 ∼ 45 degrees flat

be approximately 100 to generate an observable optical spring while minimizing
the influence of intracavity losses. The coating of the curved mirror was provided
by Laboratoire des Matériaux Avancés (LMA). It possesses a remarkably high
transmissivity for 532 nm light.

When OPA generates a carrier light more than the optical loss during one round
of the OPO cavity, the carrier light is emitted from the cavity even if the carrier
light is not incident. This oscillation state is a phenomenon referred to as the OPO.
The incident second harmonic power corresponding to the oscillation threshold
was approximately 150mW. We can incident approximately 530mW of the sec-
ond harmonic, which is approximately 3.5 times the threshold. In this case, the
fundamental wave emitted approximately 470mW, and the conversion efficiency
of the OPO was approximately 90%. The OPO cavity also possesses excellent
conversion efficiency, and a nearly ideal intracavity OPA should be achievable.

We incident carrier light and counterpropagating light to the OPO cavity. Carrier
light is amplified by the pump light; however, the counterpropagating light is not
amplified because it propagates in the opposite direction to the pump light. The
transmitted power of the carrier light is used to control the squeezing angle, and
the transmitted power of the counterpropagating light is used to control the cavity
length. By comparing the transmitted light power, we can estimate the impact of
OPA. The input power of the counterpropagating light must be weak to avoid SHG
effects but sufficiently strong to neglect coupling with the carrier light. Hence, in
this experiment, a counterpropagating light of 10 ∼ 20mW was incident to the
OPO cavity.

4.3.2 Estimation of OPA from the transmitted light measure-
ment

First, the impact of the OPA was estimated by measuring the transmitted light
power. The coil magnet actuator in the incident path of the pump light was re-
placed by a PZT, and the relative phase was slowly changed. In contrast, the OPO
cavity length was rapidly changed. The transmitted light power that can be mea-
sured corresponds to the spectrum when the squeezing angle θinc is kept constant.

Fig. 4.17 shows the spectrum without the pump light. In this case, the carrier
light is also not amplified; thus, the ordinary spectrum of the resonance is mea-
sured. The resonance spectra of the carrier light and counterpropagating light are
in excellent agreement, indicating that counterpropagating light can be used as an
indicator for cavity detuning.
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Fig. 4.17: Transmitted light power from the OPO cavity. The input power of the carrier
light is 50mW, and the pump light is not incident.
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Fig. 4.18: Transmitted light power from the OPO cavity. The input power of the carrier
light is 0.5mW, and the input pump light power is approximately equal to the
oscillation threshold. This spectrum corresponds to the state where the squeezing
angle is θinc = 0.
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The spectrum with an input carrier light of 0.5mW is shown in Fig. 4.18. The
amplification rate of the carrier light varies with the squeezing angle. Herein,
the spectrum is observed when power amplification is nearly maximum. The car-
rier light in the resonance state is amplified approximately 62 times, and from
Eq. (4.10), the normalized squeezing decay rate can be calculated as σ ∼ 1 −
1/

√
62 ∼ 0.87. When we set θ = 0 and δ = 1, from Eq. (4.16), the optical spring

constant is enhanced by approximately 1.62 times owing to the signal amplifica-
tion effect. The line width of the spectrum is narrower than that without OPA,
which is qualitatively consistent with the behavior shown in Fig. 4.8.
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Fig. 4.19: Transmitted light power from the OPO cavity. The input power of the carrier
light is 0.5mW, and the input pump light power is approximately equal to the
oscillation threshold. This spectrum corresponds to the state where the squeezing
angle is θinc = π/4.

Fig. 4.19 shows the spectrum with a squeezing angle that results in power at-
tenuation. A response is observed in which the center of the spectrum is concave,
which is qualitatively consistent with the behavior shown in Fig. 4.9. The offset
of the spectrum may be because the slight pump light incident on the PD is not
entirely separated.

The spectrum with an input carrier light of 50mW is shown in Fig. 4.20. Al-
though the spectrum is observed when power amplification is maximum, the power
amplification gain is reduced to roughly 2.7 times. We conclude that the intracav-
ity power of the carrier light is comparable to the pump light, and the OPA process
may be suppressed. The squeezing decay rate can be calculated as σ ∼ 0.39.
When θ = 0 and δ = 1, the optical spring would be enhanced by only 1.08 times.
However, when θ = −π/4 and δ = 1, the optical spring would be enhanced by a
factor of about 1.50, although the intracavity power is not amplified much. In other
words, an enhanced optical spring might be observed by choosing an appropriate
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Fig. 4.20: Transmitted light power from the OPO cavity. The input power of the carrier
light is 50mW, and the input pump light power is approximately equal to the
oscillation threshold. This spectrum corresponds to the state where the squeezing
angle is θinc = 0.

squeezing angle, even with a slight OPA gain.
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Fig. 4.21: Measurement of the input light power and maximum power amplification rate.

The maximum power amplification rate is measured for various input power
values, as shown in Fig. 4.21. There is a clear proportionality on the double log-
arithmic graph. Let PA (mW) be the input light power and A be the maximum
power amplification rate, and assuming that logA = a logPA + b; the parameters
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can be estimated as a = −0.63 ± 0.01 and b = 3.76 ± 0.02. This relationship
cannot be analytically obtained*5.

4.3.3 Controlling the squeezing angle in the detuned OPO
cavity

The most important technical issue in this experiment is controlling the squeez-
ing angle of the detuned OPO cavity using the coherent control method. As the
cavity decay rate is approximately γ/2π ∼ 3.3× 106 Hz, the subcarrier frequency
was set to 2MHz, and the transmitted power of the carrier light was demodulated
at 4MHz. The input power was approximately 4mW, and the subcarrier light
power was approximately 1/10 of the carrier light. With cavity detuning con-
trolled to δ ∼ 1/

√
3, the phase of the pump light was varied using the PZT, and

we measured the error signal generated using the coherent control method.
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Fig. 4.22: Error signal generated using the coherent control method. The demodulation
phase was set to 0 degrees. The vertical axis shows the measured voltage, which
is appropriately normalized. The transmission power of the carrier light and error
signal were passed through a second-order low-pass filter with cutoff frequencies
of 10 kHz and 30Hz, respectively.

Fig. 4.22 shows the error signal with the demodulation phase set to 0 degrees.
We obtained an error signal whose phase differs from that of the carrier light;
however, some of the difference is phase delay owing to the low-pass filter. The
frequency of the error signal in this measurement is approximately 5Hz, and
the phase delay caused by the low-pass filter is estimated to be approximately
20 degrees. In contrast, the measured error signal is delayed by approximately

*5 See App. B.4.1.
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45 ∼ 90 degrees compared to the transmitted power. Therefore, we can conclude
that a linear signal for the squeezing angle was obtained to maximize the amplifi-
cation of the carrier light.
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Fig. 4.23: Error signal generated using the coherent control method. The demodulation
phase was set to 90 degrees, and the other settings were the same as in Fig. 4.22.

Fig. 4.23 shows the error signal with the demodulation phase set to 90 degrees.
There is a difference in the phase of the error signal compared with the case with
a demodulation phase of 0 degrees. However, it is not so large as the theoretical
prediction of π/2. The harmonic noise is slightly generated related to the control
of the PLL, and the beat between the noise and carrier light may have modified
the error signal. The coherent control method cannot obtain the linear signal for
some squeezing angles. However, this is the range where the transmitted power
of the carrier light responds linearly. In other words, when the amplification or
attenuation of the carrier light needs to be maximized, the error signal generated
using the coherent control method should be used; otherwise, the transmission
power of the carrier light should be directly fed back.

Moreover, the transmitted power of the carrier light comprised a large amount
of noise. This amount of noise was severe in the high amplification range, indi-
cating that the slight fluctuation in cavity detuning was amplified. The frequency
corresponding to the higher order modes of mechanical suspension was dominant.
This noise was not suppressed using the PZT, which possesses a low unity gain
frequency. For this reason, while measuring the transfer function, we controlled
the relative phase of the pump light using the same type of mechanical suspen-
sion used in the OPO cavity. The characteristics of the mechanical suspension are
estimated in the next section.
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4.3.4 Measurement of susceptibility of the mechanical sus-
pension

Optical spring can be measured as a change in the resonant frequency. The
equation of motion for the test mass, without an optical spring, can be written as

d2xact

dt2
= −Ω2

mxact − γm
dxact

dt
+ Fext/m, (4.39)

where xact denotes the displacement of the test mass, Ωm denotes the resonance
angular frequency of the mechanical suspension, Γm = mγm denotes the damping
constant of the mechanical suspension, m denotes the mass of mirror, and Fext de-
notes the external force applied to the test mass. The susceptibility of mechanical
suspension χm(Ω) can be obtained from the Fourier transform of the equation of
motion:

χm(Ω) =
xact(Ω)

Fext(Ω)
=

1

m

1

−Ω2 + iγmΩ+ Ω2
m
. (4.40)

If an optical spring is generated in the cavity, the mechanical suspension and op-
tical spring are connected in parallel to the test mass. The effective resonance

angular frequency becomes
√

Ω2
m +Ω2

opt, where Ωopt denotes the resonance angu-
lar frequency of the optical spring. By measuring the resonance frequency change,
it is possible to estimate the effect of the optical spring [134, 135, 145].

Fig. 4.24: (a) Picture of a suspended mirror. (b)(c) Drawing of the double spiral spring.
The numbers of winding are 1.5 and 3.0, respectively.

We need to estimate the characteristics of the suspension before measuring
the optical spring. Experimentally, we use the double spiral spring, as shown in
Fig. 4.24(a). It was designed to exhibit a stiffened pitch and yaw by sandwiching
the mirror between two beryllium copper plates. Moreover, we glued neodymium
magnets, whose diameter and thickness are 1mm and 0.5mm, respectively, to the
back of the mirror. It can be used as a coil magnet actuator by placing a coil be-
hind the mirror. We further sandwiched the suspension between the brass rings
to suppress higher order mechanical resonances. Two types of BeCu plates were
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produced, as shown in Fig. 4.24(b)(c): one with the number of windings N of 1.5
and the other with N of 3.0. In addition, two thickness values of BeCu plate t
were used: 0.10 and 0.05mm.

To estimate the characteristics of the suspension, we configured a Michelson
interferometer with one of the end mirrors as a suspended mirror. We controlled
the arm length to a mid-fringe. The open-loop gain of this control system was
measured to determine the susceptibility of the suspension. The phase measure-
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Fig. 4.25: (a) Phase measurement results of the susceptibility of mechanical suspensions.
The circles indicate the measurement results, and the corresponding colored solid
lines indicate the fitting results. Note that the fitting program does not work for
the suspension with N = 3.0 and t = 0.05mm. (b) Coherence between the
input and measured signals. The average numbers are 200 for all the measure-
ments.

ment results are shown in Fig. 4.25(a). The resonance frequency was decreased by
increasing the number of windings and thickness. The parameters obtained from

Table 4.3: Estimated parameters of mechanical suspensions. Note that the fitting program
does not work for the suspension with N = 3.0 and t = 0.05mm.

N t (mm) Ωm/2π (Hz) γm/2π (Hz)
1.5 0.10 28.529± 0.002 0.1785± 0.004
1.5 0.05 16.34± 0.02 0.25± 0.03
3.0 0.10 13.5± 0.1 0.9± 0.2
3.0 0.05 5.3± 2× 104 2× 10−7 ± 0.04
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the fitting are listed in Tab. 4.3. The suspension with N = 1.5 and t = 0.10mm
provides precise measurements; however, other suspensions exhibit low coher-
ence near the resonance frequency and poor accuracy in estimating γm, as shown
in Fig. 4.25(b). In particular, the fitting program does not work well for suspen-
sions with N = 3.0 and t = 0.05mm because the frequencies at which the phase
reverses cannot be measured. The resonance frequency of this suspension can be
estimated and is roughly 1/5 of the suspension with N = 1.5 and t = 0.10mm.
A mechanical suspension with a low resonant frequency can measure the opti-
cal spring with a low resonant frequency. However, significant noise and poor
measurement accuracy prevent the accurate estimation of the resonant frequency.
Moreover, the suspension with N = 3.0 exhibited poor alignment persistence;
thus, in later experiments, we used a suspension with N = 1.5 and t = 0.05mm
whose resonance frequency of approximately 16Hz. The mechanical damping
constant was relatively large, and optical damping was negligible.

4.3.5 Measurement of susceptibility of the optomechanical
oscillator

We measured the susceptibility of the optomechanical oscillator with OPA and
attempted to observe the optical spring enhanced by OPA. First, the input power
of the carrier light was set to approximately 4mW. The phase measurement re-
sults are shown in Fig. 4.26(a). The red circles correspond to the measurements in
which the incident carrier light was blocked, and cavity detuning was controlled
to δ ∼ 1/

√
3 by the counterpropagating light. The oscillator was almost un-

affected by the optical spring; thus, the resonant frequency was approximately
16Hz. However, the transfer function was not accurately measured because of
the noise near the mechanical resonance frequency, as shown in Fig. 4.26(b). The
green circles correspond to the measurements with the incident carrier light, and
the resonant frequency was approximately 16Hz because carrier light power was
also sufficiently weak. The blue circles corresponded to the measurement when
the squeezing angle was controlled to maximize the intracavity carrier power, and
the resonance frequency was at least 21Hz or lower.

Let us estimate the resonant frequency of an optical spring. When the car-
rier light was injected at approximately 600mW without OPA, we were able to
measure an optical spring with a resonance frequency of approximately 50Hz or
higher. Thus, when the input power of the carrier light is 4mW, the resonant fre-
quency of the optical spring should be approximately 4Hz. The estimation of the
impact of OPA is shown in Fig. 4.27. As the carrier light was amplified by a factor
of 16.7 at resonance, the squeezing decay rate can be estimated to be approxi-
mately σ = 0.76. Fig. 4.27(b) shows that when the squeezing angle is controlled
to maximize the intracavity power PE , the optical spring constant kopt would be
enhanced by approximately 2.5 times, owing to the signal amplification effect.
Therefore, the optical spring constant would be enhanced by a factor of approx-
imately 6 × 2.5 = 15, and the resonant frequency of the optical spring can be
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Fig. 4.26: (a) Phase measurement results of the susceptibility of the optomechanical os-
cillator. The input power of the carrier light was approximately 4mW, and the
carrier was amplified by a factor of up to 16.7. Normalized cavity detuning was
controlled to δ ∼ 1/

√
3. (b) Coherence between the input and measured signals.

The average numbers are 200 for all the measurements.

estimated to be approximately 4 ×
√
15 ∼ 15Hz. The resonant frequency of the

compound spring was approximately
√
162 + 152 ∼ 22Hz, and we had not been

able to measure the optical spring as theoretically predicted.
It is difficult to confirm the effect of signal amplification with weak input power

because strong light power amplification must be provided to observe an optical
spring. Therefore, we considered injecting relatively strong input power and per-
forming the OPA without changing the intracavity power. Only the signal ampli-
fication effect may be confirmed by comparing the optical spring constants. The
input light power was set to 50mW. In this case, the power amplification gain
was decreased, and the squeezing decay rate was estimated to be approximately
σ = 0.39. The estimation of the impact of OPA is shown in Fig. 4.28. The normal-
ized intracavity power PE′ without OPA is 0.5, and the same intracavity power is
obtained with the OPA of the squeezing angle, i.e., θ/π ∼ −0.35 or θ/π ∼ 0.10.
When θ/π ∼ −0.35, the optical spring constant would be enhanced by a factor
of 1.4 owing to the signal amplification effect, and when θ/π ∼ 0.10, the optical
spring constant would be attenuated by a factor of 0.8. Experimentally, the squeez-
ing angle should be controlled so that the intracavity power is not changed from
that without OPA. Signal amplification and signal attenuation can be switched by
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Fig. 4.27: Estimation of the impact of OPA. The parameters are set to σ = 0.76 and δ =
1/

√
3. PE and PE′ are the intracavity power defined by Eqs. (4.10) and (4.13),

respectively, and the optical spring constant kopt for squeezing angle θ is shown.
The left-hand vertical axes in (a) and (b) are normalized to be 1 when δ = 0 and
σ = 0. The right-hand vertical axis in (b) is normalized to be 1 when δ = 1 and
σ = 0.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

0.6

0.8

1

1.2

1.4

1.6

Fig. 4.28: Estimation of the impact of OPA. The parameters are set to σ = 0.39 and δ = 1.
The vertical axis is normalized in the same manner as in Fig. 4.27.
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changing the polarity of the error signal.
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Fig. 4.29: (a) Phase measurement results of the susceptibility of the optomechanical oscil-
lator. The input power of the carrier light was approximately 50mW, and the
carrier was amplified by a factor of up to 2.7. Normalized cavity detuning was
controlled to δ ∼ 1. (b) Coherence between the input and measured signals. The
average numbers are 200 for all the measurements.

The phase measurement results are shown in Fig. 4.29(a). The red circles corre-
spond to the measurements in which the incident carrier light is blocked, and cavity
detuning is controlled to δ ∼ 1 by the counterpropagating light. The oscillator was
almost unaffected by the optical spring. The green circles correspond to the mea-
surement with incident carrier light, and the impact of the optical spring appears
because the incident carrier light is sufficiently strong. Although the resonance
frequency is not accurately estimated in this measurement, we have generated a
50Hz optical spring with a 600-mW carrier light; thus, in this case, we can esti-
mate that the resonance frequency of the optical spring is approximately 14Hz or
higher. The blue and purple circles correspond to measurements with OPA, where
the polarities of the feedback control signals for the squeezing angle are positive
and negative, respectively. We have not identified which one corresponds to signal
amplification. However, both possess resonant frequencies below 21Hz. The res-
onant frequency of the optical spring enhanced by the signal amplification effect
can be estimated at approximately 14×

√
1.4 ∼ 17Hz. The resonance frequency

of the composite spring would become approximately
√
162 + 172 ∼ 23Hz or

higher. Even in this setting, we cannot measure the optical spring as theoretically
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predicted.

4.3.6 Suppression of the OPA process
Despite achieving a condition in which an optical spring enhanced by the sig-

nal amplification effect can be observed with theoretical predictions, we could not
confirm the enhancement of the optical spring in the transfer function measure-
ments. In other words, the OPA process may not work as theoretically predicted.
Fig. 4.30 shows the transmitted power of the carrier light with different OPA gains.
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Fig. 4.30: Measured transmitted power of the carrier light. The input carrier light power is
4mW, and normalized detuning is controlled to δ ∼ 1/

√
3. (a) corresponds to

the low gain OPA, (b) corresponds to the high gain OPA, and (c) corresponds to
the oscillation state.

Fig. 4.30(a) corresponds to the measurement with the OPA where the gain is suf-
ficiently lower than the OPO threshold. As shown in Fig. 4.7(a), the theoretical
transmitted power, in this case, depicts a sine wave; thus, the measurement results
are consistent with the theory. Fig. 4.30(b) corresponds to the measurement with
OPA close to the threshold. As the intracavity power increases, the sine wave gets
distorted, indicating that the theoretical OPA cannot be achieved. As the measure-
ment of the susceptibility of the optomechanical oscillator shown in the previous
section was conducted with OPA close to the threshold, there is a possibility that,
in this case, the OPA is not consistent with the theory. Fig. 4.30(c) corresponds to
the measurement with OPA, where the gain is significantly higher than the thresh-
old. In this case, a significant offset is added to the transmitted power because
of the oscillation state. Moreover, we have found that sharp shifts in transmitted
power are observed at certain squeezing angles.

OPA is an approximate solution when the attenuation of the pump light is negli-
gible, as discussed in App. B.4.1. The distortion in the transmitted power is caused
by amplification in the region where the attenuation of the pump light is non-
negligible. In other words, the OPA process may not have been maintained, and
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the signal amplification effect may have been suppressed. Furthermore, the signal
amplification effect is not confirmed for amplification processes that do not mod-
ify the intracavity power. In this case, based on the energy conservation law, the
light power of the pump light does not change. However, there is a significant
amount of optical loss owing to the SHG effect caused by the robust intracavity
power of the carrier light. The SHG loss would have been compensated by power
amplification. In this case, the OPA process may not be maintained.

4.4 Summary of this chapter
This chapter investigated the conditions for conducting a proof-of-principle ex-

periment of a signal amplification system in a Fabry-Perot cavity. The experiment
was conducted using the OPA scheme. When we use a Fabry-Perot cavity, the
optical spring constant should be normalized by the intracavity power because the
intracavity power varies with cavity detuning and intracavity OPA. In addition, the
squeezing angle in the Fabry-Perot cavity possesses a nonlinear relation with the
squeezing angle in the DRMI. We need to estimate the correct squeezing angle
with regard to the DRMI from the measurement of the intracavity power.

In the experiment, the optical spring enhanced by the signal amplification effect
of the OPA was not observed. The intracavity carrier light power required to ob-
serve the optical spring was considerably strong that the attenuation of the pump
light could not be neglected. Note that photothermal effects, which are discussed
in the next chapter, might also have negligible impact. The threshold of the OPO
limited the pump light power that can be incident to the cavity. To increase the
relative light power of the pump light, the efficiency of the nonlinear optical effect
must be reduced, and the threshold for oscillation must be increased. The intensity
of the carrier light can be decreased by replacing the mirrors comprising the OPO
cavity with a larger curvature and increasing the beam diameter. Moreover, the
conversion efficiency can be decreased by reducing the finesse. However, in this
case, the resonant frequency of the optical spring is significantly reduced with the
finesse.

The attenuation of the pump light may be negligible by constructing a cavity for
the pump light (green cavity). As discussed in App. B.4.2, OPO is a phenomenon
based on the intracavity saturation of the carrier light. Similarly, if the pump light
is saturated in the cavity, the attenuation in the OPO cavity may be neglected. The
curved mirror that constitutes the OPO cavity of our experiment has remarkably
high transmissivity for 532 nm; thus, the green cavity can be constructed to contain
curved mirrors and a nonlinear optical crystal. However, the efficiency of the
nonlinear optical effect must be significantly decreased because the pump light
amplifies in the green cavity.

This experiment generated a measurable optical spring by increasing the in-
tracavity power. In contrast, we can achieve a high signal amplification effect
using OPA by decreasing the intracavity power. In other words, the resonant fre-
quency of the optical spring may be increased by compensating for the weakened
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intracavity power with a signal amplification effect. The estimation of the impact
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Fig. 4.31: Estimation of the impact of OPA. The parameters are set to σ = 0.99 and δ = 0.
The vertical axis is normalized in the same manner as in Fig. 4.27.

of OPA with σ = 0.99 is shown in Fig. 4.31, as an example that is extremely
close to the oscillation state. The signal amplification factor is maximized when
δ ≃ 0. The normalized signal amplification factor possesses a maximum value of
2/(1− σ2), and the normalized power amplification factor possesses a maximum
value of 1/(1 − σ)2. In other words, the maximum signal amplification factor
is roughly the square root of the power amplification factor. In addition, strong
power amplification and signal amplification cannot be achieved simultaneously.

When the signal amplification factor is maximized, the normalized power am-
plification factor becomes approximately 0.5, and the product of the input power
and signal amplification factor is roughly proportional to the resonant frequency
of the optical spring. As shown in Fig. 4.21, the maximum value of the power
amplification factor is proportional to the −0.63 power of the input power; thus,
the maximum value of the signal amplification factor can be estimated to be pro-
portional to the −0.31 power of the input power. In other words, it is impossible
to compensate for the power amplification factor based on the signal amplification
effect, and the optical spring constant must decrease as the input power decreases.

Let the relationship between the input light power PA and power amplification
factor A be written as A ∼ (PA)

a. If there exists a regime where a < −2, the
enhancement of the optical spring owing to the signal amplification effect becomes
predominant. However, with strong signal amplification, the squeezing angle θinc
must be controlled in a narrow range. For example, in the case shown in Fig. 4.31,
the squeezing angle must be controlled in the range of θinc −π/2 = 0.005±0.002
to maintain the signal amplification factor above 90. As it becomes difficult to
control such a narrow range using the error signal obtained from the coherent
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control method, we need to develop a new technique to obtain error signals with a
very narrow linear range.

When the attenuation of the pump light is non-negligible, it is necessary to
consider the general solution of coupled-wave equations for three-wave mixing.
The analytical solution for a single pass was formulated by Jacobi’s elliptic func-
tion [146]. Although the situation is somewhat different from our experiment, OPA
caused by four-wave mixing in fiber has been simulated [147–149]. In the highly
incident light intensity regime, the power amplification factor is proportional to
the input power, similar to Fig. 4.21. Although additional complex simulations
are required for three-wave mixing that occurs in the cavity, it may be possible to
estimate the requirements to maintain the OPA process. If the OPA process is not
maintained, the significance of the simulation no longer exists because there is no
correspondence with intracavity squeezing in the gravitational wave detector.

We considered several ideas for improving the OPA experiment; however, a
trade-off relationship with the magnitude of the optical spring constant existed.
In other words, the OPA scheme cannot simultaneously achieve strong intracavity
power and strong signal amplification effect. Implementing intracavity squeezing
is related to not only OPA but also other nonlinear optical effects. We devised an
experiment using the Kerr effect. As the Kerr effect increases with an increase in
the intracavity power, a measurable optical spring can be generated and enhanced
with a signal amplification effect. The next chapter discusses the photothermal
effect, an essential characteristic of the signal amplification system based on the
Kerr scheme.
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Chapter 5

Photothermal effect on the
signal amplification system

In the previous chapter, we conducted experiments based on the optical para-
metric amplification scheme; however, we were not able to measure the optical
spring enhanced by the signal amplification effect. In addition, we found that it
is necessary to develop a scheme that can simultaneously increase the intracavity
power and signal amplification factor. Therefore, we planned to use the Kerr effect
induced by the cascaded nonlinear optical effect. However, we found a problem
associated with the photothermal effect because the Kerr scheme requires high
intracavity power [150].

The photothermal effect is generally recognized as a harmful phenomenon that
parasitizes the optical system. However, it is possible to design an optical inter-
ferometer with unusual properties by precisely modeling photothermal effects. In
other words, the photothermal effect is not just a technical problem but an in-
teresting phenomenon that can determine the fundamental concept of the optical
system. This chapter discusses the impact of photothermal effects on the sig-
nal amplification system. We mainly discuss methods to eliminate the influence
of photothermal effects; however, we investigate techniques to effectively utilize
them as well.

5.1 Overview of photothermal effects in an optical
interferometer

Let us consider an optical cavity that contains a medium that causes thermal
absorption. The photothermal effect occurs when the absorbed laser light changes
the crystal temperature, causing thermal expansion and thermo-optic effects.
The impact of photothermal effects on an optical interferometer can be divided
into two types: force and displacement. The photothermal force represents the
force exerted on a mirror by thermal expansion, also known as the bolometric
force [151–154]. The bolometric force acting on the test mass can modify the
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optomechanical coupling [155–158]. The photothermal displacement represents
the change in optical path length owing to thermal expansion and thermo-optic
effect. A feedback mechanism can cancel the stationary photothermal displace-
ment. However, as it takes a certain amount of time for the photothermal effect to
reach an equilibrium state, the frequency response of the cavity can change owing
to photothermal displacement [159].

Bolometric forces can be applied to optomechanical cooling. When the intra-
cavity power changes owing to fluctuations in the test mass, the bolometric force
fluctuates with a change in thermal absorption. This force involves a time delay
that corresponds to the thermal relaxation rate. The self-cooling of the optome-
chanical oscillator via the photothermal effect can be achieved by enabling the
bolometric force to counteract the fluctuation of the test mass. The cooling ef-
fect owing to the photothermal effect is significant in the unresolved sideband
regime. In the early experiment of optomechanical cooling, the bolometric force
contributed more to cooling than optical damping [156]. The heating process
owing to the photothermal effect determines the cooling limit of such systems,
which can be calculated based on the semiclassical theory of photon absorption
shot noise [152].

In contrast, it has recently been revealed that even a change in the cavity
length resulting from photothermal effects can cause remarkable phenomena.
Photothermally induced transparency [160, 161] is a phenomenon that is analo-
gous to electromagnetically induced transparency [162, 163] or optomechanically
induced transparency [164–166], in which photothermal displacement results
in an extremely narrow transmission window. In addition, when thermal ab-
sorption occurs faster than thermal relaxation, the photothermal effect modifies
the frequency response of the cavity [159]. This phenomenon is caused by the
displacement stored by the photothermal effect released during thermal relaxation,
and the absorptive crystal behaves similarly to a capacitor in an electric circuit.

Laser

Crystal

Suspended
mirrorInput

coupler

Fig. 5.1: Schematic of the optical cavity containing an absorptive crystal. The test mass
is suspended by a mechanical spring with a complex spring constant Km and re-
ceives radiation pressure force Frad from the intracavity field. ωth and γth are the
characteristic frequencies of photothermal absorption and relaxation, respectively,
which determine the impact of the photothermal effect.

The optical system under consideration is shown in Fig. 5.1. It is an optome-
chanical system that contains a crystal that causes thermal absorption. The pho-
tothermal displacement affects the optical cavity properties. Herein, the photother-
mal effect also modifies the optical spring constant because the effective cavity
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length does not match the displacement of the test mass. More specifically, the real
and imaginary components of the complex optical spring constant are converted
into each other via the photothermal effect, which changes the susceptibility of
the optomechanical oscillator. We found that the photothermal effect significantly
deformed the transfer function of our experimental system. To accurately estimate
the impact of intracavity squeezing on the optical spring, it is essential to estimate
the photothermal effect.

5.2 Theoretical principles of the photothermal
effect

5.2.1 Fundamental equations of the photothermal effect
Let us model the photothermal effect using the well-known fundamental equa-

tions for thermal absorption, thermal expansion, and thermal relaxation.
Let xact denote the displacement of the test mass and xth denote the photother-

mal displacement. The effective cavity length x in the optical system shown in
Fig. 5.1 can be written as the sum of them:

x = xact + xth. (5.1)

xth is attributed to thermal expansion and thermo-optic effect. The effective ther-
mal expansion coefficient for the sum of the two effects is defined as xth differen-
tiated by the temperature of the crystal T :

∂xth

∂T
= αL′, (5.2)

that is,
∂xth

∂t
= αL′ ∂T

∂t
, (5.3)

where L′ denotes the crystal length, and α denotes the coefficient of linear thermal
expansion. Therefore, xth is proportional to the difference between the temperature
T and surrounding temperature T0 of the crystal:

xth = αL′(T − T0). (5.4)

Herein, we refer to the region that contributes to the photothermal effect as a crys-
tal.

The crystal temperature depends on the heat inflow into and out of the crystal.
The absorption of laser light causes heat inflow. The time rate of the heat flowing
into the crystal w is proportional to the intracavity power P :

w = α′L′P, (5.5)
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where α′ denotes the thermal absorption coefficient. Heat outflow can be caused
by various factors, which can be divided into two categories, i.e., thermal radiation
and others. As thermal radiation can be negligible when the difference between T
and T0 is small, only heat outflow caused by heat conduction, heat transfer, and
other related phenomena should be considered. These are proportional to T − T0.
The time rate of heat flow out of the crystal q can be written as

q =
T − T0

k
, (5.6)

where k denotes thermal resistance. The time derivative of the temperature T is
proportional to the net heat obtained by the crystal:

∂T

∂t
=

1

C
(w − q), (5.7)

where C denotes the heat capacity.
Although the photothermal effect changes the effective cavity length, intracavity

power P can be formulated similarly described in previous chapters by defining
cavity detuning to include the photothermal displacement. In other words, with
the finesse F and input power P0, it can be written as

P =
2F

π

1

1 + δ2
P0, (5.8)

where δ denotes normalized cavity detuning:

δ =
2F ω0

πc
x. (5.9)

Note that δ is not proportional to xact, indicating that the photothermal effect mod-
ifies the time and frequency responses of the cavity.

5.2.2 Time response of the cavity with photothermal effect
When sufficiently large photothermal effects are induced, the time response of

the cavity, such as the spectrum that can be obtained by the cavity scan, is modi-
fied. Based on the equations with regard to the photothermal effect defined in the
previous subsection, the differential equation for the photothermal effect can be
derived. Herein, we formulate the differential equations for xact and δ to derive
the change in the effective cavity length for the mirror displacement. Based on the
time differentiation of Eq. (5.9), we obtain

∂δ

∂t
=

2F ω0

πc

(
∂xth

∂t
+

∂xact

∂t

)
=

2F ω0

πc

[
αL′

C
(w − q) +

∂xact

∂t

]
. (5.10)



96 Chapter 5 Photothermal effect on the signal amplification system

Here, q can be written as

q =
1

kαL′xth

=
1

kαL′

(
πc

2F ω0
δ − xact

)
, (5.11)

yielding the following equation:

∂δ

∂t
= − 1

kC
δ+

4F2ω0αα
′L′2P0

π2cC

1

1 + δ2
+

2Fω0

πc

(
1

kC
xact +

∂xact

∂t

)
. (5.12)

Further differentiating this equation with time, we obtain the second-order dif-
ferential equation for δ when the test mass is moved at a constant velocity of
v = ∂xact/∂t:

∂2δ

∂t2
=

(
8F2ω0αα

′L′2P0

π2cC

δ

(1 + δ2)2
− 1

kC

)
∂δ

∂t
+

2F ω0v

πckC
. (5.13)
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Fig. 5.2: Simulation results of the spectrum with the photothermal (PT) effect. The ver-
tical axis denotes transmitted power, which is normalized to be 1 in the res-
onant state. The horizontal axis is normalized so that the half-width at half
maximum of the spectrum without the photothermal effect equals 1. We used
8F2ω0αα

′L′2P0/(π
2cC) = 8, 1/(kC) = 0.07 and 2F ω0|v|/(πckC) = 0.1

as dimensionless parameters. The red and blue lines denote the cases with pho-
tothermal effects, and these cases use the same velocity magnitude |v|.

The simulation results of the intracavity power obtained from Eq. (5.13) are il-
lustrated in Fig. 5.2. The qualitative explanation when α > 0 is as follows. When
the test mass is moved at a constant velocity without the photothermal effect,
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a Lorentzian spectrum is obtained regardless of the direction of the movement.
When the photothermal effect is included, significantly different spectra are ob-
tained depending on the direction of the movement of the test mass. The cavity
reaches the resonant state quickly for v > 0 because of increased thermal ab-
sorption while approaching the resonant state. Thus, a spectrum with a narrower
linewidth is obtained than the case without the photothermal effect. In contrast, for
v < 0, the photothermal effect cancels out the change in the test mass, resulting
in a spectrum with an extremely broad linewidth than without the photothermal
effect [139, 159, 160, 167–170]. Note that the spectrum distortion depends on not
only the magnitude of the photothermal effect but also the velocity of the test mass
because it takes a certain amount of time for photothermal absorption and relax-
ation. If the test mass is moved faster than the occurrence of the photothermal
effect, the time response of the cavity results in the same response as in the case
of the absence of the photothermal effect.

5.2.3 Frequency response of the cavity with photothermal ef-
fect

As discussed in the last subsection, in a band sufficiently lower than the time rate
at which the photothermal effect occurs, the time response of the cavity is modi-
fied as the cavity length changes owing to thermal expansion. It implies that the
photothermal effect can modify the frequency response of the cavity in a frequency
band that is sufficiently lower than the characteristic frequency of the photother-
mal effect. Here, we derive the characteristic frequencies of the photothermal
effect and investigate the frequency response of the cavity with the photothermal
effect.

The relationship between cavity detuning and the displacement of the test mass
is expressed in Eq. (5.12); however, the second term on the right-hand side of this
equation is nonlinear for δ. We assume that δ is feedback controlled to a constant
value and consider the linear response to the first-order small fluctuating term. We
can approximate it with δ(t) = δ0 + dδ(t) as follows:

1

1 + δ(t)2
≃ 1

1 + δ20
− 2δ0

(1 + δ20)
2
dδ(t). (5.14)

The same is applied for the displacement of the test mass and photothermal dis-
placement: xact(t) = x̄act + dxact(t) and xth(t) = x̄th + dxth(t). The effective
cavity length can be denoted as x(t) = x̄ + dx(t) with x̄ = x̄act + x̄th and
dx = dxact + dxth. From Eq. (5.12), we obtain the differential equation for the
first-order small fluctuating term. The Fourier transform of this equation can be
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written as

iΩdx(Ω) = −
(

1

kC
+

8F 2ω0αα
′L′2P0

π2cC

δ0
(1 + δ0)2

)
dx(Ω)

+

(
1

kC
+ iΩ

)
dxact(Ω). (5.15)

Here, we consider that dδ(Ω) is proportional to dx(Ω) obtained from Eq. (5.9).
We obtain the frequency response of the cavity, which is the response from the
displacement of the test mass dxact(Ω) for the effective cavity length dx(Ω):

Hth(Ω) =
dx(Ω)

dxact(Ω)
=

γth + iΩ

(ωth + γth) + iΩ
, (5.16)

where

ωth =
8F 2ω0αα

′L′2P0

π2cC

δ0
(1 + δ0)2

, γth =
1

kC
(5.17)

denote the characteristic frequencies of photothermal absorption and relaxation,
respectively. We refer to ωth as the photothermal absorption rate and γth as the
photothermal relaxation rate.

Eq. (5.16) is the same function as phase lead compensation, which possesses
one pole and one zero. When the photothermal absorption rate is sufficiently large
(|ωth| ≳ γth), the photothermal effect cannot be negligible. The qualitative expla-
nation with α > 0 and δ0 > 0 based on the analogy with an electric circuit are as
follows. When the mirror is moved at a frequency sufficiently larger than ωth, the
photothermal effect is not apparent because the phase of the signal reverses before
the cavity length changes owing to thermal expansion. When the mirror is moved
at a frequency comparable to ωth, the phase of the frequency response function
leads because the cavity length stored owing to thermal expansion is released as
changes in the signal. When the mirror is moved at a frequency sufficiently smaller
than γth, the phase does not change because the photothermal effect reaches ther-
mal equilibrium. However, the gain is reduced because the photothermal effect
cancels the displacement of the mirror.

It should also be noted that the sign of the poles of the frequency response
function can be inverted depending on the values of α and δ0. If a positive optical
spring is generated (δ0 > 0) and the negative thermo-optic effect exceeds the
thermal expansion (α < 0), the photothermal effect can induce instability in the
optical system or control system. As a result, non-stationary photothermal effects
significantly influence the response of the entire system [169, 171].

5.2.4 Photothermal effect on an optical spring
Let us discuss the impact of the photothermal effect on an optical spring. In the

system illustrated in Fig. 5.1, the bolometric force is not acting on the test mass;
thus, the radiation pressure force should be considered. The radiation pressure
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force acting on the test mass is proportional to the intracavity power. As obtained
from Eqs. (5.8) and (5.14), the intracavity power is proportional to a fluctuation
in the cavity length dδ(Ω). We denote the radiation pressure force fluctuation by
dFrad(Ω). There is a proportionality relation between them, and the proportionality
coefficient Kopt(Ω) denotes the complex optical spring constant:

dFrad(Ω) = −Kopt(Ω)dx(Ω). (5.18)

This relationship holds with or without the photothermal effect. However, it should
be noted that the effective cavity length does not correspond to the displacement
of the test mass. We obtain dx = Hthdxact from Eq. (5.16); thus, the optical spring
constant for the test mass can be written as Kopt-th = HthKopt.

If the frequency band is sufficiently lower than the cavity decay rate, the com-
plex optical spring constant can be written as Kopt = kopt + iΓoptΩ, where kopt
denotes the optical spring constant and Γopt denotes the optical damping constant.
As the influence of Γopt on the susceptibility of the optomechanical oscillator can
be negligible in our experimental system, we obtain the following equation:

Kopt-th ≃ (ωth + γth)γth +Ω2 + iωthΩ

(ωth + γth)2 +Ω2
kopt. (5.19)

This equation indicates that the photothermal effect converts the real component
of the optical spring constant into an imaginary component [138,139,170]. In par-
ticular, if ωth is positive and sufficiently large, the real and imaginary components
of the optical spring can be positive. In other words, a single carrier can generate
a stable optical spring using the photothermal effect.

Even a slight photothermal effect can generate non-negligible optical damping
when the mechanical oscillator possesses a high Q factor. It significantly modifies
the susceptibility of the optomechanical oscillator χeff(Ω), which can be written
as follows:

χeff(Ω) =
dxact(Ω)

dFext(Ω)
=

1

−mΩ2 +Km +Kopt-th
, (5.20)

where dFext(Ω) denotes the small external force applied to the oscillator, m de-
notes the effective mass of the oscillator, and Km denotes the complex mechanical
spring constant, which can be written as Km = km + iΩΓm with the mechanical
spring constant Km and the mechanical damping constant Γm. For simplicity, we
consider the case where the frequency band is sufficiently lower than the charac-
teristic frequencies of the photothermal effect (Ω ≪ |ωth|, γth). When the pho-
tothermal absorption and relaxation rates are equal (ωth = γth), optical damping
produced by the photothermal effect becomes maximum. In this case, the Q factor
of the optical spring can be calculated as

ℑ(Kopt-th/Ω)√
mℜ(Kopt-th)

∣∣∣∣∣
Ω→0

≃ 1

2
√
2

Ωopt

γth
, (5.21)
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where Ωopt =
√
kopt/m denotes the resonant frequency of the optical spring. In

some cases, photothermal effects can produce significant optical damping, result-
ing in an overdamped system.

We can appropriately model the photothermal effect by estimating the pho-
tothermal absorption rate ωth and photothermal relaxation rate γth. There are two
possible methods for estimating these parameters: one is to measure Hth, and the
other is to measure χeff. Hth can be obtained by measuring the transfer func-
tion from the displacement of the mirror to the transmitted light using an actuator
with a sufficiently higher mechanical resonance frequency than the optical spring,
e.g., a PZT. However, the phase lead caused by the photothermal effect can be
measured only when thermal absorption is sufficiently faster than the thermal re-
laxation (ωth > γth). In contrast, χeff can be measured using a suspended mirror.
In the case of ωth ≲ γth, photothermal effects can significantly modify χeff. Even
a minor photothermal effect, which cannot be estimated by measuring the fre-
quency response of the cavity, could potentially be estimated via a measurement
of the susceptibility of the optomechanical oscillator.

5.3 Experiments on the photothermal effect
The experiment of this section aims to investigate the influence of photothermal

effects on the intracavity signal amplification system. Based on the discussion in
the previous section, we found that it is sufficient to estimate the photothermal
absorption and relaxation rates to model the photothermal effect. We report the
measurement results of various phenomena caused by the photothermal effect,
intending to estimate these parameters.

5.3.1 Experimental setup
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Fig. 5.3: Experimental setup using a PZT. Abbreviations are defined as follows: photode-
tector (PD), half-wave plate (HWP), polarization beam splitter (PBS), electro-
optic modulator (EOM), and nonlinear optical crystal (NLC).
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We can directly measure Hth using an actuator with a resonant frequency suffi-
ciently higher than that of the optical spring, e.g., a PZT. The experimental setup
using a PZT is shown in Fig. 5.3. We use the OPO cavity configured in the previ-
ous chapter for the optical system. The characteristics of the mirrors that compose
the cavity are listed in Tab. 5.1. The phase of the incident light was modulated us-

Table 5.1: Mirrors that constitute the cavity for the photothermal experiment.

Name Manufacturer Number Reflectance AOI ROC
Input coupler Layertec 104373 = 94%@1064 6 degrees flat
Curved mirror Newport&LMA SPC025 = 99.95%@1064 15 degrees 68.5mm
Small mirror Edmund #38-901 > 99.8%@1064 0 ∼ 45 degrees flat

ing EOM, and we adjusted the input power using the HWP and PBS. We measured
the transmitted light and reflected light for the error signal; the former was used for
operating points with large cavity detuning, and the latter was used for operating
points with small cavity detuning via the Pound-Drever-Hall method [140]. The
beam waist exists in two points, i.e., between the curved mirrors and the flat mir-
rors, with a radius of approximately 40µm and 300µm. Unless otherwise noted,
NLC was installed in the former waist; however, when the mode mismatch caused
by the thermal lensing effect became severe, NLC was re-installed in the latter
waist. We measured the transfer function by taking the ratio of the input to the
adder to the output of the filter circuit.
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Fig. 5.4: Experimental setup using a suspended mirror.

We can measure χeff using an actuator whose resonance frequency is sufficiently
lower than the optical spring. The experimental setup with a suspended mirror is
shown in Fig. 5.4. A high-pass filter (phase lead compensation filter) is used to
control the suspended mirror with a coil magnet actuator. The suspended mirror is
the same model that is used as the mirror glued to the PZT shown in Fig. 5.3.

We used either periodically poled LiNbO3 (PPLN) or periodically poled
KTiOPO4 (PPKTP) as the NLC. The lengths of both crystals are L′ = 10mm.
In this chapter, we measured transfer functions with extreme phase mismatch
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conditions to reduce the influence of nonlinear optical effects as much as possible.
For example, PPKTP used in our experiments is phase-matched at approximately
35 ◦C. Nevertheless, in the transfer function measurement described in Sec. 5.3.6,
we heated the crystal to 120 ◦C to break the phase-matching condition and
minimize the loss caused by the second harmonic generation. The finesse was
estimated to be F = 100 ± 10 for both crystals by measuring with weak incident
light of approximately 5mW.

5.3.2 Cavity spectrum with the photothermal effect
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Fig. 5.5: Transmission power obtained from the cavity scan. The magnitude of the velocity
of the mirror movement v is adjusted to be approximately the same for each mea-
surement. Note that the horizontal axis denotes time; however, the scale differs by
about two orders of magnitude in each plot.

First, we measured the transmitted power obtained from the cavity scan using
the setup illustrated in Fig. 5.3. We used a PPLN crystal as the NLC. The mea-
surement results are shown in Fig. 5.5. Fig. 5.5(a) shows the transmitted power
when the mirror is moved to increase the cavity length, and the line width be-
comes narrower than in the absence of the photothermal effect. Fig. 5.5(b) shows
the transmitted power when the mirror is moved to decrease the cavity length, and
a unique spectrum is observed that takes a lot of time to reach the resonance state.
We found α > 0 because the cavity length increases as the intracavity power in-
creases. These tendencies are consistent with the simulation results described in
Fig. 5.2. We attempted to estimate photothermal parameters from the measured
spectra. However, there was a significant difference between the theoretical model
and measured results. The discrepancy may be because of the poor linearity of the
PZT. Another possibility is that the photothermal relaxation rate was not constant
because the intracavity power slowly changed, as discussed later.
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5.3.3 Slow photothermal effect
There is one approach to estimate the parameters of the photothermal effect, i.e.,

to measure the temperature of the crystal. Our experimental system is equipped
with a crystal heater and thermometer for phase matching. We measured the time
variation of the crystal temperature and attempted to estimate the parameters.

Let us consider heating the crystal to temperature T1 using a heater and then
switching off the heater and cooling it down to temperature T0. From Eq. (5.7),
we obtain the differential equation for the crystal temperature T as

∂T

∂t
= −T − T0

Ck
. (5.22)

The initial condition is T (0) = T1. The time variation of T can be written as

T (t) = (T1 − T0)e−t/(Ck) + T0. (5.23)

Next, let us consider heating a crystal with an initial temperature of T0 at a
constant heat rate of w0. The differential equation of this case is

∂T

∂t
=

w0

C
− T − T0

Ck
, (5.24)

and the initial condition is T (0) = T0. The time variation of T can be written as

T (t) = kw0

(
1− e−t/kC

)
+ T0. (5.25)

First, we measured the temperature change during the cooling of the PPLN
from approximately 50 ◦C to room temperature. The temperature change is shown
in Fig. 5.6. We initially attempted fitting using the whole time data indicated with
a red line; however, the measured data significantly deviated from Eq. (5.23). We
concluded that thermal radiation was not negligible because of the significant tem-
perature difference between the crystal and its surroundings. By fitting only data
below 23 ◦C, we can estimate that 1/Ck = 1.1 × 10−3 s−1 and T0 = 22 ◦C. The
theoretical curve derived from these parameters is indicated with a green line. The
time rate of heat outflow by thermal radiation q′ can be written as

q′ = l(T 4 − T 4
0 ), (5.26)

with l as the proportionality constant. The blue line indicates the simulation results
with l/C = 1.6 × 10−8 s−1K−3. The measurement results well agree with the
results of the theoretical model, including thermal radiation.

Next, we measured the temperature change when the cavity was locked at ap-
proximately δ0 = 1.0, and the crystal absorbed a constant amount of heat. We
injected approximately 600mW. The temperature change is shown in Fig. 5.7. The
blue line indicates the simulation results with w0/C = 2.1× 10−3 K/s.
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Fig. 5.6: Measurement results of slow thermal relaxation. The red line indicates the mea-
surement results, the green line indicates the fitting results using the data below
23 ◦C ignoring the thermal radiation, and the blue line indicates the simulation
results using the whole time data, including thermal radiation.
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Fig. 5.7: Measurement results of slow photothermal absorption. The red line indicates the
measurement results, and the blue line indicates the simulation results, including
thermal radiation.
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In summary, thermal absorption and relaxation occur at a very slow timescale.
However, photothermal parameters that can be estimated based on these measure-
ments were quite different from those estimated based on transfer function mea-
surements. The experimental results reflect that we can only measure the temper-
ature of the crystal surface if the measurement takes so long time that the tem-
perature of the entire crystal becomes uniform. The temperature inside the crystal
cannot be measured using this technique to estimate the photothermal parameters
related to the modification of the optical spring.

5.3.4 Self-locking of the cavity based on the photothermal
effect
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Fig. 5.8: Temperature and transmitted power during the self-locking of the cavity based on
the photothermal effect. The crystal is heated for 60 ∼ 79 s, filled in yellow.

The cavity can be locked without a feedback control mechanism by using the
photothermal effect that cancels out the change in the cavity length [139, 168]. In
particular, our experimental system was equipped with a heater of the nonlinear
optical crystal, which allows the locking of the cavity using the temperature con-
troller. Fig. 5.8 shows the self-locking of the cavity based on the photothermal
effect. The crystal is around room temperature, and the cavity is out of the reso-
nant state for 0 ∼ 60 s. The heater was switched on for 60 ∼ 79 s, and the crystal
was heated at a constant amount of heat. At this time, some resonance peaks are
observed because the cavity length is extended by a few µm owing to thermal ex-
pansion. After the heater is switched off, a slow thermal relaxation occurs, and
the cavity length decreases as the crystal temperature decreases. However, after
130 s, the cavity is close to the resonance state, the intracavity power becomes ro-
bust, and the heat inflow caused by the thermal absorption of the laser light starts.
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The self-locking of the cavity is achieved when thermal equilibrium is established,
where thermal relaxation and absorption are balanced.

5.3.5 Transfer function measurement with a PZT
If the photothermal absorption rate ωth is sufficiently larger than the photother-

mal relaxation rate γth, the photothermal effect modifies the frequency response of
the cavity. The PPLN crystal possesses a relatively large thermal absorption coef-
ficient, and the condition ωth ≳ γth can be easily achieved. We measured Hth with
the setup illustrated in Fig. 5.3. However, when we injected an intense laser light
with a power of approximately 600mW, the mode mismatch caused by the ther-
mal lensing effect could not be neglected; thus, the PPLN crystal was re-installed
at the beam waist of 300µm. Then, the crystal clipped the beam, and the finesse
was reduced to approximately F = 70± 10. Even under these conditions, ωth was
sufficiently large to measure the phase change caused by the photothermal effect.
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Fig. 5.9: Phase measurement results of the frequency response of the cavity Hth using a
PPLN crystal. Only data above 15Hz were used for fitting.

The measurement results of Hth with P0 = 600mW and |δ0| = 1.00 ± 0.02 is
shown in Fig. 5.9. The red and blue circles show the measured data, corresponding
to positive and negative cavity detuning, respectively. As discussed in Sec. 5.2.3,
the phase leads when cavity detuning is positive. In contrast, when cavity detuning
is negative, the sign of the poles is reversed, and the phase in the low-frequency
band becomes −180 degrees. However, it does not agree with theoretical predic-
tions below approximately 15Hz. We concluded that the effective specific heat
capacity might be increased when the signal slowly varied because the region con-
tributing to the photothermal relaxation was expanded. As discussed in Sec. 5.3.3,
γth has a frequency dependence that decreases in the low-frequency band. The red
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and blue solid lines indicate the results of fitting the respective data above 15Hz.
The theoretical model and measured data are in high precision agreement above
15Hz.

The estimated parameters are ωth/2π = 51.7 ± 4.4Hz and γth/2π = 12.0 ±
1.5Hz for δ0 = 1.00, and ωth/2π = −79.3±20.5Hz and γth/2π = 8.95±5.4Hz
for δ0 = −1.00. Note that the parameter estimation accuracy is low for δ0 < 0
because the transfer function does not change significantly as these parameters
change. We can simultaneously estimate ωth and γth at high accuracy by measuring
Hth with δ0 > 0. However, it is necessary to achieve the condition ωth ≳ γth.

In addition, as described in the following subsection, we used a PPKTP crystal
to measure the optical spring and needed to measure γth in advance. γth does not
depend on δ0. We measured Hth using the PPKTP crystal with multiple values of
δ0 and estimated γth at high accuracy. The crystal was installed at the beam waist
of 40µm because the PPKTP crystal possessed a relatively small thermo-optic
coefficient, and the thermal lensing effect was negligible. The estimation results
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Fig. 5.10: Estimation of the photothermal relaxation rate γth for a PPKTP crystal. The input
power is 600mW, and we use only the data with around δ0 ∼ 1/

√
3. The red

circles indicate the estimated value from the phase measurements of Hth, and
the red line indicates their weighted average. The error bars on the vertical and
horizontal axes indicate the standard error estimated from fitting and the setting
error of δ0 estimated from the fluctuations in the transmitted light, respectively.

of γth for the PPKTP crystal are shown in Fig. 5.10. PPKTP possesses a larger γth
and smaller ωth than PPLN, so that ωth ∼ γth with P0 = 600mW and δ0 ∼ 1.
We estimated γth using measurements where ωth is reasonably large. By taking
a weighted average with the inverse of the variance as the weight, we obtained
γth = 30.0± 0.3Hz.
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5.3.6 Transfer function measurement with a suspended mir-
ror

Before measuring the optical spring with photothermal effect, the resonant fre-
quency and damping constant of the mechanical spring were re-evaluated because
the way of mirror attachment slightly alters the characteristics of the suspension.
The resonant frequency of the mechanical spring was estimated by applying a sig-
nal to the coil magnet actuator and measuring the amplitude using an interferom-
eter; we obtained Ωm/2π = 14.2 ± 0.1Hz. The damping constant was estimated
based on the ring-down measurements of the mechanical suspension. The Q fac-
tor of the mechanical suspension Qm = mΩm/Γm was measured using the shadow
sensing method. We attached a cutter knife blade to a magnet glued to the back of
the mirror and measured its oscillation as the laser beam was blocked by it. The
mirror was given an initial velocity by bringing a large magnet close to it and then
vigorously moving it away.
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Fig. 5.11: Measurements of the ring down of the mirror using the shadow sensing method.

The measurement results of the shadow sensing method are shown in Fig. 5.11.
The vertical axis shows the voltage V (t), and the fitting was conducted using the
following equation:

V (t) = Aerf
[
Bexp

(
− Ωm

2Qm

)
sin(Ωmt+ ϕ0)

]
+ Voff, (5.27)

where A and B denote coefficients representing the magnitude of the signal, ϕ0

denotes the initial phase, Voff denotes the offset of the voltage, and erf[z] denotes
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the error function:

erf[z] =
2√
π

∫ z

0

e−y2

dy. (5.28)

We used six parameters, A, B, ωm, Qm, ϕ0, and Voff, in the fitting to estimate
Qm. The multiple estimation results are shown in Fig. 5.12. As shown in Fig. 5.11,
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Fig. 5.12: Estimation results of the Q factor of the mechanical suspension Qm. The blue
circles indicate the estimation results from fitting and the error bars indicate the
standard errors. The solid blue line shows the weighted average of the estimated
results. Note that systematic errors mainly cause measurement errors.

each measurement well agreed with the fitting function, with minor standard er-
rors but relatively large systematic errors. As the direction of mirror oscillation
was different for each measurement, there is a possibility that a slightly differ-
ent mode of vibration was excited. We estimated Qm = 193 ± 3 by taking a
weighted average with the inverse of the variance as a weight. In contrast, the
Q factor of the optical spring without the photothermal effect can be calculated
as mΩopt/Γopt ≃ −Ωopt/γ ∼ −10−5. Mechanical damping is dominant in the
absence of the photothermal effect, and optical damping can be negligible.

Next, we selected the crystal to be used for the measurement. As described in
Sec. 5.2.4, when ωth ∼ γth, the conversion of the optical spring constant owing
to the photothermal effect was maximum, and the maximum optical damping was
induced. The photothermal parameters of each crystal with P0 = 600mW and
δ0 ∼ 1 were estimated in the previous subsection. The ωth value of the PPLN
was approximately 4 times larger than γth, and the thermal lensing effect was not
negligible. In contrast, ωth of the PPKTP was comparable to γth, and the thermal
lensing effect was negligible; thus, the measurements of the optical spring were
conducted using this crystal.
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We measured the transfer function of the optical system with a suspended mir-
ror in the setup illustrated in Fig. 5.4. In this case, the transfer function from the
force applied to the mirror Fext to the cavity length x was measured. The optome-
chanical response function can be denoted as Hthχeff using the susceptibility of
optomechanical oscillator χeff(Ω) defined in Eq. (5.20). The input power P0 was
set to three patterns of 600, 300, and 150mW, and the normalized cavity detuning
δ0 was finely varied in the range of approximately 0 ∼ 3.
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Fig. 5.13: (a) Measurement results of the transfer function. The red dots indicate the
data for P0 = 600mW, green dots for P0 = 300mW, and blue dots for
P0 = 150mW, and the square for δ0 ∼ 0.6, circle for δ0 ∼ 1.2, and triangle for
δ0 ∼ 1.5. The solid lines show the results of fitting the respective measurements
with kopt and ωth as parameters. (b) Coherence between the input and measured
signals. The average numbers are 200 for all the measurements.

The representative measurement results of the transfer function are shown in
Fig. 5.13(a). kopt and ωth exhibit maximum values with δ0 = 1/

√
3 ∼ 0.58. There-

fore, with regard to the data of this figure, kopt and ωth increase with a decrease
in δ0 and an increase in P0. The effect of kopt on the optomechanical response
function appears at the resonance frequency, at which the phase is approximately
−90 degrees. A larger value of P0 and smaller value of δ0 result in a higher res-
onant frequency. The effect of ωth is evident in the optical damping and phase
leading. Optical damping is caused by converting the real component of the com-
plex optical spring constant into an imaginary component through the photother-
mal effect. Even if optical damping in the absence of the photothermal effect is
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negligible, this conversion process can significantly change the damping constant
of the entire optomechanical system. The measurement results show that the phase
inversion of the optomechanical response function was more gradual than it would
be in the absence of the photothermal effect. In addition, the phase lead is caused
because Hth is multiplied by the transfer function. The measured phase is led by
more than −180 degrees in a band higher than the resonant frequency.

If P0 and δ0 are selected to provide the same value of kopt, the value of ωth
would be equal. For example, the bright red (P0 = 600mW, δ0 = 1.52) and dark
green lines (P0 = 300mW, δ0 = 0.60) in Fig. 5.13(a) are overlapped, indicating
that the estimated kopt and ωth are almost identical. The estimation results show
that kopt and ωth exhibit identical functional dependence on the parameters related
to the cavity.
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Fig. 5.14: Estimation results of the optical spring constant. The solid line indicates the
fitting result using the inverse of the variance as weights, with the maximum
value of kopt as a parameter. The vertical axis is normalized by the maximum
value of kopt estimated for P0 = 600mW.

The estimation results of kopt and ωth are shown in Figs. 5.14 and 5.15, respec-
tively. The circles with error bars represent the estimated values obtained using the
same fitting method as illustrated in Fig. 5.13(a). In these measurements, we var-
ied δ0 such that the ranges of P0 variations were approximately equal. However,
there were some measurement data for which the parameters could not be esti-
mated using the fitting program, and the variance was estimated to be zero. Such
data were excluded in Figs. 5.14 and 5.15. The solid lines indicate the results of
the weighted fitting. The estimated maximum kopt for P0 = 600mW corresponds
to 56.1± 0.5Hz in terms of the resonant frequency of the optical spring.

We have neglected the influence of intracavity optical losses owing to second
harmonic generation and other factors in those estimations. Optical loss caused
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Fig. 5.15: Estimation results of the photothermal absorption rate. The solid line indicates
the fitting result using the inverse of the variance as weights, with the maximum
value of ωth as a parameter.

by second harmonic generation was maximum at P0 = 600mW and δ0 = 0.
The maximum intracavity loss was estimated to be approximately 0.074 times
that of the input coupler based on the measurement of reflected light power at
resonance; thus, the condition of over-coupling was sufficiently achieved. When
kopt and ωth are maximum, the influence of the optical loss proportional to the
intracavity power is most pronounced. In Figs. 5.14 and 5.15, both estimation
results of P0 = 600mW and δ0 ∼ 1/

√
3 deviate slightly from the fitting function,

possibly owing to the optical loss caused by nonlinear optical effects. Although we
have successfully estimated the parameters with reasonable accuracy, the effect of
optical loss, which depends on the intracavity power, should be considered while
using optical systems that are more susceptible to nonlinear optical effects.

Fig. 5.16 shows the estimated maximum values of kopt and ωth. The circles
with error bars indicate the maximum values estimated from the fittings shown
in Figs. 5.14 and 5.15. The error bars on the vertical axis indicate the standard
errors, and the error bars on the horizontal axis indicate the measurement errors of
P0 determined based on the measurement accuracy of a power meter (±7%). In
addition, weighted fitting exhibits a linear function with an intercept of zero for
both parameters.

5.3.7 Comparison of methods for estimating the photother-
mal absorption rate

The photothermal absorption rate ωth can be estimated based on both measure-
ments using the fixed mirror, as shown in Fig. 5.3, and suspended mirror, as shown
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Fig. 5.16: Estimated maximum value of the optical spring constant kopt and photothermal
absorption rate ωth. The dotted lines indicate the weighted fitting of each result
using a linear function with an intercept of zero.

in Fig. 5.4. The frequency response of the cavity Hth can be measured using a fixed
mirror. However, unless ωth is sufficiently larger than the photothermal relaxation
rate γth, sufficient phase lead cannot be caused, and parameter estimation cannot
be achieved. In contrast, when a suspended mirror is used, Hthχeff can be mea-
sured, where χeff denotes the susceptibility of the optomechanical oscillator. Even
when ωth is smaller than γth, photothermal effects can produce non-negligible opti-
cal damping. The measurement using a suspended mirror is a promising parameter
estimation method for minor photothermal effects.

The estimation of ωth using suspended mirrors is shown in Fig. 5.15. A sim-
ilar estimation was conducted using a fixed mirror, and the results are shown in
Fig. 5.17. The value of γth is estimated when ωth is sufficiently large, as shown
in Fig. 5.10. The circles with error bars indicate the estimated results of fitting
the measured transfer function with only ωth as a parameter. Error bars and solid
lines are defined similarly to Fig. 5.15. To compare the two parameter estimation
methods, we calculated the root mean square error (RMSE) for the estimation of
the maximum value of ωth. The RMSE means the deviation between the data and
fitting function. We compare the RMSEs normalized by the estimated value be-
cause the RMSE depends on it. The normalized RMSEs of the estimate with a
suspended mirror were 0.0074 for P0 = 600mW, 0.011 for P0 = 300mW, and
0.035 for P0 = 150mW. In contrast, the normalized RMSE of the estimate with
the fixed mirror was 0.052 for P0 = 600mW, 0.16 for P0 = 300mW, and 0.41 for
P0 = 150mW. In both cases, systematic errors increase with lower P0 and smaller
ωth. In particular, the normalized RMSEs with the fixed mirror are approximately
10 times worse than those with the suspended mirror. This result indicates that the



114 Chapter 5 Photothermal effect on the signal amplification system

0 0.5 1 1.5 2 2.5 3
-10

0

10

20

30

40

Fig. 5.17: Estimation of the photothermal absorption rate using a fixed mirror. The solid
lines indicate the weighted fitting results with the inverse of the variance as the
weight and maximum value of ωth as the parameter.

systematic error in the measurement of Hth is non-negligible when ωth ≲ γth. We
note that there is also a lower limit of ωth that can be estimated with a suspended
mirror, which is determined by the minimum value of optical damping that can be
measured.

5.4 Summary of this chapter
Photothermal effects can affect optical interferometers in various ways. In our

experimental system, we found that photothermal effects modified the effective
cavity length, causing the cavity to exhibit a frequency dependence even on a
frequency band sufficiently lower than the cavity decay rate. Moreover, the pho-
tothermal effect modifies the characteristics of the optical spring. We can virtually
eliminate the photothermal effect by measuring the susceptibility of the optome-
chanical oscillator and simultaneously estimating the optical spring constant kopt
and photothermal absorption rate ωth. This method is still effective when ωth is
smaller than the photothermal relaxation rate γth. We succeeded in estimating the
photothermal parameters with approximately one order better accuracy than the
method of measuring the frequency response of the cavity.

In our experiment, γth was estimated based on the measurement of the frequency
response of the cavity Hth. If the beam radius r0 is constant in the region contribut-
ing to thermal absorption, γth can be calculated using the physical property values
of the crystal [172]:

γth =
κth

ρC0r20
, (5.29)
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where κth denotes the thermal conductivity, ρ denotes the density, and C0 denotes
the specific heat capacity. For the experiment using PPKTP, the beam radius of the
waist is 40µm, the crystal length is 10mm, the refractive index is 1.7, the thermal
conductivity of KTP is κth ∼ 2.2W/(m · K) [173], the specific heat capacity is
C0 = 6.9 × 102 J · kg · K, and the density is ρ = 3.0 × 103 kg/m3; considering
these values, the average value of γth/2π is approximately 95Hz. This value is
approximately 3.2 times larger than the measured value. This difference may be
because of the extra thermal resistance at the junction of the periodic polarization
inversion. In addition, the value of the beam radius used in the calculation may
be inaccurate because the beam radius is sensitive to the position of the curva-
ture mirror and crystal. If the beam radius is accurately measured, this method
is sufficiently accurate to be applied to the high-precision estimation of thermal
conductivity [159].

As shown in Fig. 5.17, even when ωth can be accurately estimated based on the
measurements using a fixed mirror (P0 = 600mW, δ0 ∼ 1/

√
3), the estimated

values are significantly smaller than those estimated using a suspension mirror.
This difference may be caused by a slight shift in the position of the beam as it
passes through the crystal, which occurs when the suspended mirror is replaced by
a fixed mirror, resulting in a change in the photothermal parameters. The estimated
γth obtained from the measurements with a fixed mirror may also differ from γth
with a suspended mirror. In other words, γth cannot be accurately estimated from
measurements using a focused beam whose Rayleigh length is comparable to the
crystal length.

The optical spring constant is the proportionality factor of the relationship be-
tween the fluctuation of radiation pressure force and cavity length. Moreover, a
proportional relationship exists between the fluctuation of thermal absorption and
cavity length, and the photothermal absorption rate is obtained by multiplying this
proportionality coefficient by the thermal expansion coefficient per heat capac-
ity. As the radiation pressure force and thermal absorption are proportional to
the intracavity power, the optical spring constant and photothermal absorption rate
are identical except for the proportionality constant determined by the physical
property value of the crystal. In other words, the optical spring constant and pho-
tothermal absorption rate change by the same factor for cavity parameters such
as input power, finesse, and cavity detuning. A detailed discussion in the next
chapter shows that intracavity squeezing enhances the optical spring constant and
photothermal absorption rate by the same factor. It is impossible to avoid the pho-
tothermal effect in the intracavity signal amplification system comprising macro-
scopic and massive test masses. Such a system should be designed to utilize the
stabilization of the optical spring based on the photothermal effect. The combina-
tion of the photothermal effect and intracavity squeezing allows us to generate a
stable and stiff optical spring.
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Chapter 6

Signal amplification
experiment based on Kerr
scheme

In Chapter 4, we implemented intracavity squeezing using optical parametric
amplification (OPA) and conducted signal amplification experiments. However,
we found that the OPA process could not be maintained because of the strong
intracavity power required to generate the optical spring. In this chapter, we im-
plement intracavity squeezing using the optical Kerr effect. The Kerr scheme can
achieve strong intracavity power and large signal amplification gain because the
stronger Kerr effect can be induced as the intracavity power increases.

The general Kerr effect requires extremely high intensity because it is a third-
order nonlinear optical effect. However, it is known that a chain of second-order
nonlinear optical effects can induce phenomena equivalent to the Kerr effect by
setting the phase-mismatched condition. This phenomenon is known as the cas-
caded nonlinear optical effect*1 [174,175]. Even in experiments using continuous-
wave lasers, it is possible to produce a sufficient Kerr effect using the aforemen-
tioned phenomenon. Nevertheless, the required intracavity power is approximately
an order of magnitude stronger than that in the experiment with the OPA scheme;
thus, the photothermal effect cannot be neglected. In the previous chapter, we dis-
cussed a method to model and virtually eliminated the photothermal effect. How-
ever, it should be noted that the Kerr effect also modifies photothermal parameters.

6.1 Theory of intracavity signal amplification
based on the Kerr effect

This section discusses the Kerr signal amplification effect and impact of the
Kerr effect on photothermal parameters.

*1 See App. B.3.4.
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6.1.1 Enhancement of the optical spring based on the Kerr
effect

Kerr medium

Fig. 6.1: Schematic of Fabry-Perot cavity containing a Kerr medium. The end mirror is
supposed to work as a test mass, and the initial phase is modified so that the
carrier light on the test mass is in the amplitude quadrature.

First, we obtain a formula of the optical spring enhanced by the Kerr effect using
the two-photon formalism. Let us consider a Fabry-Perot cavity containing a Kerr
medium, as shown in Fig. 6.1. Let r2 and t2 = T be the power reflectivity and
transmissivity of the input mirror, respectively; ϕ and α be the phase change and
delay during a half cycle in the cavity, respectively; L be the half cycle length of
the cavity. Similar to the intracavity OPA discussed in the previous chapter, we
assume that the intracavity carrier E is in the amplitude quadrature.

As expressed in Eq. (3.57), the Kerr effect changes a phase of Φ := ΦF ′ =
ΦE′ = dKPE′ for the carrier light, considering dK as a constant depending on the
gain of the Kerr effect. By defining the normalized cavity detuning δ in addition to
the phase change caused by the Kerr effect, the intracavity power in the presence
of the Kerr effect can be denoted by Lorentzian:

PE′ =
4

T

1

1 + δ2
PA, (6.1)

where we defined δC = ∆C/γ, δK = ∆K/γ, and δ = δC + δK. Here, ∆C = ϕc/L
and ∆K = Φc/(2L) denote the cavity detuning associated with the cavity length
and Kerr effect, and γ = Tc/(4L) denotes the cavity decay rate. Moreover, we
define ζ, a dimensionless quantity that characterizes the gain of the Kerr effect and
is independent of cavity detuning, as

ζ = δK(1 + δ2) =
8dK

T 2
PA. (6.2)

The normalized intracavity power p = 1/(1 + δ2) can be written as

p =
1

1 + (δC + pζ)2
. (6.3)

Fig. 6.2 shows the relationship between δC and p when ζ = −1 and ζ = 0.
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Fig. 6.2: Normalized intracavity power p as a function of δC.

When δC is varied by moving a mirror at a constant speed, we can observe that the
spectrum is wholly tilted owing to the Kerr effect. The gain of the Kerr effect can
be estimated by measuring the value of δC at resonance because δC → −ζ when
δ = 0.

Let us calculate light field fluctuations and derive the optical spring constant.
From Eq. (3.58), the intracavity light field fluctuation can be written as

e = 2k0E
′
0re2iα[I − re2iαR(2ϕ+Φ)P (−2Φ)]−1R(2ϕ+Φ)P (−2Φ)

(
0
1

)
δx.

(6.4)
Here, we neglected input light field fluctuation a. Considering Eq. (4.1), the com-
plex optical spring constant Kopt(Ω) can be obtained as

Kopt(Ω) = 4ℏk20(E′
0)

2 sin(2ϕ+Φ)

re2iα + r−1e−2iα − 2 cos(2ϕ+Φ) + 2Φ sin(2ϕ+Φ)

≃ 4k0PE′

L

∆

(γ + iΩ)2 +∆2 + 2∆∆K

=
4k0PE′

Lγ

δ

(1 + iΩ/γ)2 + δ2 + 2δδK
. (6.5)

The signal amplification effect induced by the Kerr effect corresponds to a squeez-
ing angle of θ = 0, and the effective squeezing factor is a function of the intracav-
ity power and cavity detuning.

The experimentally measurable cavity detuning dependence of the optical
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spring can be written as

Kopt(Ω) ≃ 16k0PA

LγT

1

1 + δ2
δ

1 + δ2 + 2δδK

[
1− i

2

γ(1 + δ2 + 2δδK)
Ω

]
:= kopt + iΓoptΩ, (6.6)

where kopt denotes the optical spring constant, and Γopt denotes the optical damp-
ing constant. Fig. 6.3 shows the cavity detuning dependence of the optical spring

Fig. 6.3: Optical spring constant kopt and optical damping constant Γopt with intracavity
Kerr squeezing. Each vertical axis is normalized so that the maximum value at
ζ = 0 is 1.

and damping constant. When the parameters are ζ < 0 and δ > 0, the optical
spring constant is enhanced by the signal amplification effect owing to the Kerr ef-
fect. Normalized cavity detuning that generates the maximum optical spring con-
stant is δ = 1/

√
3, even in the presence of the Kerr effect. However, kopt rapidly

decreases as δ increases because the effective squeezing decay rate depends on the
cavity detuning.

6.1.2 Optomechanical system with photothermal and Kerr ef-
fects

The last subsection discusses that the Kerr effect can enhance the optical spring.
Our experimental system is also affected by the photothermal effect. As the pho-
tothermal absorption rate and optical spring constant are equivalent except for the
proportionality factor, we can expect that the photothermal absorption rate is also
enhanced by the same factor. To analyze optomechanical systems with photother-
mal and Kerr effects, we derive the optical spring constant and photothermal ab-
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sorption rate based on the Hamiltonian notation [61, 176]. We note that the same
derivation can be obtained from the two-photon formalism.

In discussion with the Hamiltonian notation, we calculate the stochastic differ-
ential equation for the complex light-field amplitude a(t). In our system, we must
consider the Kerr Hamiltonian ĤKerr, which can be written as [177]

ĤKerr =
ℏ
2
χ(â†)2â2, (6.7)

where χ denotes a constant that refers to the gain of the Kerr effect and â† and â
denote the creation and annihilation operator, respectively. Thus, the term added
to the stochastic differential equation can be calculated as

− i

ℏ

[
â, ĤKerr

]
= −iχâ†â2. (6.8)

Considering the aforementioned calculation, the stochastic differential equation
for the complex light-field amplitude a(t) can be written as [61, 178]

ȧ = [i∆′ + iG0x− iχn− γ] a+ γamax, (6.9)

where ∆′ denotes the angular frequency of cavity detuning, x = xact +xth denotes
the effective cavity length, xact denotes the displacement of the test mass, xth de-
notes the photothermal displacement, G0 denotes the optomechanical frequency
shift per displacement, γ denotes the cavity decay rate, and amax denotes the max-
imum value of a(t) at resonance. Herein, we define the quantity corresponding to
the number operator as n = |a|2. The differential equation for xth can be obtained
from Eq (5.3) as follows:

ẋth = −γthxth + dℏG0n, (6.10)

where γth denotes the photothermal relaxation rate, d = αα′L′2c/(2C) denotes
the proportionality coefficient for heat absorption, α denotes the coefficient of
linear thermal expansion, α′ denotes the thermal absorption coefficient, L′ denotes
the crystal length, and C denotes the heat capacity. The equation of motion for xact
can be written as

mẍact = −mΩ2
mxact −mΓmẋact + ℏG0n+ Fext, (6.11)

where m denotes the mass of the mirror, Ωm denotes the mechanical resonance
angular frequency, Γm denotes the mechanical damping constant, and Fext denotes
the external force applied to the test mass. The third term on the right side corre-
sponds to the radiation pressure force Frad.

Suppose that a stable point is found where ẋact = 0, ẋth = 0, and ȧ = 0, and we
make a linear approximation as xact(t) = x̄act + δxact(t), xth(t) = x̄th + δxth(t),
and a(t) = ā + δa(t). Moreover, we define x̄ = x̄act + x̄th, δx = δxact + δxth,
n̄ = |ā|2, and δn = ā∗δa + āδa∗. Herein, δ represents small fluctuating terms,
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not normalized cavity detuning. The simultaneous differential equations for the
first-order small fluctuating terms are written as

δȧ = [i∆− γ]δa+ iā(G0δx− χδn), (6.12)
δẋth = −γthδxth + dℏG0δn, (6.13)
δẍact = −Ω2

mδxact − Γmδẋact + ℏG0δn/m+ δFext/m, (6.14)

where ∆ = ∆′ + G0x̄ − χn̄ denotes effective cavity detuning. Each equation is
Fourier transformed to derive the frequency response. From Eq. (6.12), we obtain

δa(Ω) = χc(Ω)iā(G0δx(Ω)− χδn(Ω)), (6.15)

where χc = 1/(iΩ − i∆+ γ) denotes the susceptibility of the cavity. Moreover,
we obtain

(δa∗)(Ω) = χ∗
c (−Ω)(−iā∗)(G0δx(Ω)− χδn(Ω)) (6.16)

because (δa∗)(Ω) = (δa(−Ω))∗. We have used (δx(−Ω))∗ = δx(Ω) and
(δn(−Ω))∗ = δn(Ω) because δx(t) and δn(t) are real numbers. The photon
number fluctuation δn(Ω) can be calculated as

δn(Ω) = in̄ [χc(Ω)− χ∗
c (−Ω)] (G0δx(Ω)− χδn(Ω))

= in̄G0
[χc(Ω)− χ∗

c (−Ω)]

1 + iχn̄ [χc(Ω)− χ∗
c (−Ω)]

δx(Ω)

= −2n̄G0
∆

(γ + iΩ)2 +∆2 − 2∆χn̄
δx(Ω). (6.17)

Here,

χc(Ω)− χ∗
c (−Ω) =

2i∆

(γ + iΩ)2 +∆2
(6.18)

is used for the variation of the equation. Based on Eq. (6.13), the influence of the
Kerr effect on the photothermal effect can be calculated as

(iΩ+ γth)δxth = −ωth(Ω)δx(Ω), (6.19)

where
ωth(Ω) = 2dℏG2

0n̄
∆

(γ + iΩ)2 +∆2 − 2∆χn̄
(6.20)

is the photothermal absorption rate. Based on Eq. (6.14), the susceptibility of the
optomechanical oscillator can be calculated as

δxact(Ω)

δFext(Ω)
=

1

m(−Ω2 +Ω2
m + iΩΓm) + Σth(Ω)

, (6.21)

where Σth(Ω) denotes optomechanical self-energy, which is defined as

Σth(Ω) =
γth + iΩ

(ωth(Ω) + γth) + iΩ
Kopt(Ω). (6.22)
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Kopt(Ω) is the complex optical spring constant and can be calculated as

Kopt(Ω) = 2ℏG2
0n̄

∆

(γ + iΩ)2 +∆2 − 2∆χn̄
. (6.23)

Here, n̄ denotes the intracavity photon number and the correspondence with the in-
tracavity power PE′ is PE′ = (ℏω0/2)(c/L)n̄. In addition, using G0 ≃ ω0/L and
∆K = −χn̄, Eqs. (6.5) and (6.23) are consistent. The complex optical spring con-
stant and photothermal absorption rate are identical except for the proportionality
factor, even in the presence of intracavity squeezing induced by the Kerr effect.
The intracavity squeezing enhances the optical spring constant and photothermal
absorption rate by the same factor.

6.2 Kerr experiments

6.2.1 Experimental setup
The experiment in this section aims to observe the optical spring enhanced by

the Kerr effect. The Kerr effect, in this experiment, is produced by cascaded non-
linear optical effects. The experimental setup for measuring the optical spring is
the same as illustrated in Fig. 5.4. Moreover, we have measured the frequency re-
sponse of the cavity with the setup shown in Fig. 5.3 to investigate the influence of
the Kerr effect on the photothermal effect.

In this experiment, phase-mismatched conditions are realized at several crys-
tal temperatures. Fig. 6.4 shows the relationship between the crystal temperature
and transmitted light power at resonance. The transmitted light power is the low-
est at approximately 33.6 ◦C, corresponding to the phase-matched condition. The
transmitted light power is increased at several temperatures, corresponding to a
phase-mismatched condition. With this crystal, signal amplification for the posi-
tive optical spring can be achieved when the temperature is higher than under the
phase-matched condition; 39.2, 44.8, and 49.2 ◦C correspond to the first, second,
and third phase-mismatched conditions, respectively. The strongest Kerr effect is
induced when we set the temperature to the first phase-mismatched condition*2.

The Kerr effect is reduced under the second or third phase-mismatched condi-
tion, and the increase or decrease in the signal amplification effect can be con-
firmed. However, the first phase-mismatched condition incurs higher intracavity
losses than the other conditions. We have compared the optical spring constants
by measuring under the first phase-mismatched condition and conditions whose
temperature slightly shifted from the second and third phase-mismatched condi-
tions to equalize the intracavity power to the first phase-mismatched condition. In
addition, as shown in Fig. 6.4(b), the transmitted light power at resonance finely

*2 In practice, there is a state in which the Kerr effect is the strongest between the phase-matched
and first phase-mismatched conditions. However, the optical spring was measured under the
phase-mismatched condition owing to the large optical loss resulting from the SHG in this state.
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Fig. 6.4: Crystal temperature and transmitted light power at resonance. We measured (a) in
the range of 22 ◦C∼ 52 ◦C and (b) in the range of 117 ◦C∼ 122 ◦C with steps of
0.2 ◦C. The vertical axis is normalized by the mean value measured in (b).

fluctuates when the temperature is approximately 120 ◦C. The vertical axes of the
graphs shown in Fig. 6.4 are normalized by the transmitted light power at reso-
nance measured in the range of 117 ◦C∼ 122 ◦C.

6.2.2 Confirmation of Kerr effect
The Kerr effect via cascaded nonlinear optical effects can be confirmed by mea-

suring the transmitted light power. The measured spectra when the crystal temper-
ature was set to the first phase-mismatch state are shown in Fig. 6.5. Carrier light
and counterpropagating light are incident on the cavity. As the pump light is not
incident, there is no intrinsic difference in the direction of the laser light into the
cavity. In this case, the Kerr effect only affects the carrier light because the carrier
light is sufficiently more intense than the counterpropagating light. The tempera-
ture of the crystal providing the first phase-mismatched condition is slightly differ-
ent from that shown in Fig. 6.4 because the crystal was installed at an inclination to
the optical axis to reduce coupling between the carrier light and counterpropagat-
ing light. We incident the counterpropagating light of sufficient intensity to avoid
coupling in the transmitted light power measurement. The cavity length was var-
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Fig. 6.5: Transmitted carrier and counterpropagating light power from the cavity under the
first phase-mismatched condition. The crystal temperature was set to 37.3◦C. The
input carrier power and counterpropagating light power are 530mW and 50mW,
respectively.

ied as fast as the photothermal effect can be neglected, and the counterpropagating
transmission power exhibited a Lorenz curve. As the carrier transmission power
reached a resonance state at approximately δC ∼ 1, the gain of the Kerr effect can
be estimated to be approximately ζ ∼ −1.

6.2.3 Enhancement of optical spring by Kerr effect
The impact of the Kerr effect on the optical spring can be estimated by measur-

ing the transfer function of the optical system with a suspended mirror. We can ex-
pect to confirm the change in the signal amplification effect depending on the gain
of the Kerr effect by comparing measurements under several phase-mismatched
conditions. If we set the intracavity loss that does not change with the gain of
the Kerr effect and observe a change in the optical spring constant, we can con-
firm that the signal amplification effect enhances the optical spring. As shown in
Fig. 6.4, the gain of the Kerr effect can be varied without changing the intracavity
loss by selecting a specific crystal temperature. Herein, the transfer function was
measured at three different crystal temperatures at 39.5◦C, 45.5◦C, and 50.0◦C,
considered as measurements with the strong, moderate, and weak Kerr effects.

Fig. 6.6 shows the phase measurement results with a suspended mirror. As
shown in Fig. 6.3, the optical spring constant reaches its maximum at δ = 1/

√
3 ∼

0.58, even with the Kerr effect. In these measurements, the optical spring constant
and photothermal absorption rate increase as δ decreases. Comparing measure-
ments shown in (a)-(c) with δ = 0.58, the resonance frequency of the optome-
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Fig. 6.6: Measured transfer function of the optical system for several cavity detuning δ
with a suspended mirror. (a), (b), and (c) correspond to the measurements with
the strong, moderate, and weak Kerr effects, respectively.

chanical oscillator decreases as the Kerr effect strengthens. We can conclude that
the conversion of the optical spring constant to an imaginary component owing to
the enhanced photothermal effect may be more dominant than the enhancement of
the optical spring owing to the Kerr effect. The measurement results indicate that
the optical damping increases as the Kerr effect strengthens.

Moreover, we measured the transfer function of the optical system with a PZT
to examine the frequency response of the cavity. The gain and phase measurement
results are shown in Figs. 6.7, 6.8, and 6.9. The original data exhibited a low-
pass characteristic owing to the capacitance of the PZT in the high-frequency band
above 1 kHz. The frequency response of PZT is removed by measuring the transfer
function without the nonlinear optical crystal and subtracting the gain and phase,
respectively. Even with the Kerr effect, the photothermal effect is expected to
be negligible in the high-frequency band. Owing to the mechanical resonance of
the PZT in the band above 7 kHz, the gain is normalized by the average value
of 6 ∼ 7 kHz. The measurement results with a strong Kerr effect indicate that
the gain is reduced up to approximately −12 dB, thus reducing the optical spring
constant.
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Fig. 6.7: Measured transfer function of the optical system for several cavity detuning δ with
a PZT. These results correspond to the measurement with a strong Kerr effect. The
measured gain is normalized by the mean value in 6 ∼ 7 kHz.
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Fig. 6.8: Measured transfer function with a moderate Kerr effect. The gain is normalized
in the same manner as in Fig. 6.7.
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Fig. 6.9: Measured transfer function with a weak Kerr effect. The gain is normalized in the
same manner as in Fig. 6.7.

The measurements also indicate that the phase does not follow a one-pole, one-
zero transfer function over a wide frequency bandwidth. We can expect the Kerr
effect to enhance the photothermal absorption rate because the measurement band-
width is sufficiently lower than the cavity decay rate. However, the measured
phase is roughly constant in the band lower than approximately 100Hz, indicating
that the photothermal relaxation rate increases. The frequency response does not
follow the theoretical prediction in the frequency range below the photothermal
relaxation rate, as shown in Fig. 5.9. We estimate that self-focusing induced by
the Kerr effect reduces the effective beam radius. The impact of the Kerr lens is
discussed in the next section*3.

In summary, it is difficult to analytically estimate the photothermal effect when
we perform the intracavity Kerr effect. However, as the measurement results with
the PZT can be regarded as the frequency response of the cavity, we can eliminate
the photothermal effect using these results. Therefore, we removed the photother-
mal effect from the measurements with a suspended mirror and estimated the op-
tical spring constant as the only parameter. The parameters of the photothermal
effect strongly depend on the beam position in the nonlinear optical crystal. When
replacing a suspended mirror with a mirror equipped with PZT, only the position
and angle of the replaced mirror are adjusted to restore alignment.

The optical spring constant kopt is predicted to follow a function of

kopt =
16

3
√
3
kopt-0

1

1 + δ2
δ

1 + δ2 + 2ζδ/(1 + δ2)
, (6.24)

*3 See also App. E.2.4.



128 Chapter 6 Signal amplification experiment based on Kerr scheme

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

Fig. 6.10: Enhancement of the optical spring based on the Kerr effect. The error bars on
the vertical and horizontal axes denote the standard error and the setting error of
δ0 estimated based on the fluctuations in the transmitted light, respectively.

where kopt-0 denotes the maximum value of the optical spring constant without the
Kerr effect. The estimated optical spring constants in measurement with a strong
Kerr effect are shown in Fig. 6.10. The solid line represents the fitting results
with kopt-0 and ζ as parameters, and the gain of the Kerr effect is estimated to be
ζ = −0.59 ± 0.29. The vertical axis is normalized by the estimated kopt-0. The
optical spring constant is estimated to be enhanced by a factor of up to 1.6 via the
signal amplification effect. The dotted line indicates the fitting results with ζ = 0
and only kopt-0 as a parameter. These fitting results indicate that the measurement
results do not agree with the fitting function unless the signal amplification effect
is assumed. In other words, the change in the shape of the optical spring constant
function is caused by the signal amplification effect. Note that these fittings are
strongly dependent on data of δ0 ∼ 1.7; thus, we need to increase the number of
measurements.

Fig. 6.11 shows the optical spring constants for different gains of the Kerr ef-
fect. The vertical axis is normalized with the same value described in Fig. 6.10.
The measurements with the moderate and weak Kerr effects demonstrate a de-
crease in the optical spring constant compared with the measurement with the
strong Kerr effect. In addition, the transfer function measurements indicate that
there is no significant difference in the magnitude of the optical spring constants
in the measurements with the moderate and weak Kerr effects. The gains of the
Kerr effect estimated for the measurement with the moderate and weak Kerr ef-
fects are ζ = −0.55 ± 0.19 and ζ = −0.49 ± 0.19, respectively, and we have
not observed a significant difference in the measurements with the strong Kerr ef-
fect. By measuring the transfer function with finely varying cavity detuning, the
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Fig. 6.11: Comparison of the optical spring constants for different gains of the Kerr effect.
The error bars are defined in the same manner as in Fig. 6.10.

difference in the signal amplification effect can be clearly identified.
In summary, we can conclude that we succeeded in observing an optical spring

enhanced by the signal amplification effect because the magnitude of the optical
spring constant differed depending on the gain of the Kerr effect, and the change
in the shape of the optical spring constant function induced by the Kerr effect
was confirmed. However, the estimation error of the gain of the Kerr effect is
significant, and the estimation method of the optical spring constant needs to be
further improved.

6.2.4 Estimation of Kerr lensing effect
In this experiment, the photothermal relaxation rate may have increased with

the Kerr effect. The nonlinear optical crystal may have behaved as a lens owing to
self-focusing induced by the Kerr effect. The focal length of the Kerr lens fK can
be written as [179]

1

fK
=

8nNLPEL
′

πr40

≃ λ0Tζ

πr20(1 + δ2)
, (6.25)

where r0 denotes the beam radius, and we used that the nonlinear refractive index
nNL can be calculated as

nNL =
T 2ζcπr20
16PAω0L′ . (6.26)
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Calculating the parameters as T = 0.06, ζ = −0.59, r0 = 40µm, and δ = 1,
the Kerr lens possess a concave focal length of approximately 27 cm. If a con-
cave lens is placed between the curved mirrors, the beam radius that satisfies the
self-consistent equation reduces. In the case of this experiment, the effective beam
radius may have decreased to approximately 30µm*4. The photothermal relax-
ation rate is inversely proportional to the square of the beam radius, and we can
estimate that the photothermal relaxation rate increased by approximately 1.8.

6.3 Summary of this chapter
In addition to the OPA, the Kerr effect can be applied to implement the intra-

cavity signal amplification effect. This chapter derives the optical spring constant
with the Kerr effect and confirms that the Kerr effect is a squeezer that depends
on the intracavity power. Moreover, we found that the photothermal absorption
rate is enhanced by the same factor that enhances the optical spring constant. Ex-
perimentally, we succeeded in observing an optical spring enhanced by the signal
amplification effect by eliminating the photothermal effect from the transfer func-
tion measurements.

Cascaded nonlinear optical effects can produce a relatively significant nonlin-
ear refractive effect. The nonlinear refractive index from the third-order nonlinear
polarization of the KTP is approximately 3 × 10−19 m2/W [180]. In contrast, as
expressed in Eq. (6.26), the nonlinear refractive index from the cascaded nonlin-
ear optical effects observed in this experiment is approximately 2× 10−17 m2/W.
Compared with the estimated accuracy of the gain of the Kerr effect, the third-
order nonlinear optical effect is negligible. By improving the measurement accu-
racy, it may be possible to measure the Kerr effect produced by the third-order
nonlinear optical effect as a signal amplification effect independent of phase mis-
match.

In this experiment, the effective beam diameter may have been modified by the
Kerr lens. If the beam radius changed from the designed value, the conversion effi-
ciency of the nonlinear optical effect might have decreased. Therefore, the gain of
the Kerr effect ζ might have depended on the intracavity power. The focal length
of the Kerr lens might have also varied with the conversion efficiency. In addition,
the optical loss caused by the SHG effect was relatively significant under the first
phase-mismatched condition. We can estimate from the reflected light measure-
ments that the intracavity loss at resonance was approximately 0.23 times that of
the input coupler, which may have impacted the measurement of the optical spring.
Thus, optical springs should be modeled considering more factors. The combined
effect of these factors may be responsible for the non-negligible difference in the
ζ estimated from the spectra and optical spring measurements.

On the transfer function, the resonance frequency of the optical spring decreased
as the Kerr effect strengthened. In the experiment, the conversion of the optical

*4 See App. E.2.4.
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spring constant based on the photothermal effect was predominant. When a sig-
nal amplification system is introduced in an actual gravitational wave detector, a 
mechanism is required to radically cancel the photothermal effect.

Note added on April 4, 2024

1. We later found that the reference on the Kerr lensing effect [179] assumes the 
beam radius is sufficiently larger than the crystal length. The parameters in our 
experiment did not satisfy this condition. Even in such a case, the equations in the 
following references are available:

V. Magni, G. Cerullo, S. De Silvestri, “ABCD matrix analysis of propagation of 
gaussian beams through Kerr media”, Optics Communications, Vol. 96, pp. 348–
355, (1993).

The Kerr lensing effect may have been negligible in our experiments. Although 
the cause of the change in photothermal relaxation rate has not been determined, 
it could simply be the observed temperature dependence of the physical property 
values of the crystal.

2. We later increased the measurement points and improved the analysis method 
to ensure the “Kerr-enhanced optical spring.” The results of this study were 
summarized in the following letter:

S. Otabe et al., “Kerr-Enhanced Optical Spring”, Phys. Rev. Lett., Vol. 132, p. 
143602, (2024).
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Chapter 7

Conclusion

7.1 Theoretical overview
To observe gravitational waves emitted from binary neutron star post-merger

remnants or supernovae, research and development are required to improve the
sensitivity of gravitational wave detectors in the high-frequency band. The signal
amplification system using nonlinear optical effects is a promising scheme for ob-
serving high-frequency gravitational waves. The essence of the gravitational wave
signal amplification system is that the nonlinear optical effect enhances the opti-
cal spring generated in the cavity. This study considered conducting experiments
using a Fabry-Perot cavity, which is an experimentally tractable interferometer
compared to the actual interferometric configuration of the gravitational wave de-
tector. Based on the established appropriate analogy, the Fabry-Perot cavity and
dual recycling Michelson interferometer (DRMI) are equivalent in terms of sensi-
tivity. To consider the optical spring generated in the Fabry-Perot cavity equivalent
to it generated in the DRMI, we need to normalize the optical spring constant by
the intracavity power and appropriately define the squeezing angle.

The signal amplification effect can be induced using nonlinear optical effects.
In this study, we investigated two types of nonlinear optical effects, i.e., optical
parametric amplification (OPA) and the optical Kerr effect, to configure a signal
amplification system. Experiments using the OPA scheme indicated that the car-
rier light power required to generate an observable optical spring is considerably
strong that the OPA process cannot be maintained. The conditions for signal am-
plification effects should be determined based on simulations because it is impos-
sible to analytically formulate three-wave mixing with non-negligible attenuation
of the pump light. In the experiments using the Kerr scheme, we found that the
photothermal effect prevented the measurement of the optical spring because it
requires relatively high laser light power. The photothermal effect converts the
real and imaginary components of the complex optical spring constant into each
other, allowing us to simultaneously generate a positive optical spring and damp-
ing. In addition, the photothermal effect and optical spring are phenomena that
result from the intracavity power proportional to the cavity length, and the pho-
tothermal absorption rate and optical spring constant are identical except for the
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proportionality factor. Furthermore, the signal amplification effect enhances the
optical spring constant and photothermal absorption rate by the same factor. We
can conclude that the photothermal effect is one of the essential factors that deter-
mine the characteristics of the signal amplification system.

7.2 Summary of experiments
We experimentally attempted to observe an optical spring enhanced by nonlin-

ear optical effects. In the OPA experiment, we constructed a second harmonic gen-
eration (SHG) cavity and optical parametric oscillator (OPO) cavity with excellent
conversion efficiency. This experiment required acquiring a squeezing angle error
signal for a detuned cavity. We showed that the squeezing angle of the detuned
OPO cavity could be controlled using the coherent control method and succeeded
in controlling it to maximize power amplification. Theoretical predictions indi-
cated that we achieved sufficient signal amplification to observe an enhancement
of the optical spring; however, we could not confirm the signal amplification effect
because the OPA process was suppressed.

In the experiments on photothermal effects, we have developed a method for es-
timating photothermal parameters by measuring the susceptibility of the optome-
chanical oscillator. This method can estimate even a slight photothermal effect that
cannot be estimated from the measurement of the frequency response of the cav-
ity. By simultaneously estimating the optical spring constant and the photothermal
absorption rate, we succeeded in estimating the optical spring constant without the
photothermal effect with a high precision of less than 1% standard error. Moreover,
we succeeded in estimating the photothermal absorption rate with an accuracy of
approximately one order of magnitude better than the method of measuring the
frequency response of the cavity.

In the Kerr experiments, we found that the Kerr effect also modified the pho-
tothermal parameters. The signal amplification effect enhanced the photothermal
absorption rate. Moreover, the Kerr effect increased the photothermal relaxation
rate because the Kerr lens reduced the effective beam radius. In this case, it is dif-
ficult to analytically model the photothermal effect. We measured the frequency
response of the cavity using a PZT to remove the photothermal effect from the
optical spring measurements. Consequently, we successfully observed an optical
spring enhanced by the signal amplification effect.

7.3 Prospects
The Kerr effect reduced the optical spring constant on the transfer function mea-

sured in this experiment. The conversion of the optical spring constant owing to
the photothermal effect may have predominated compared with the enhancement
of the optical spring owing to the Kerr effect. A compensation crystal with a
negative thermo-optic coefficient should be used to radically eliminate the pho-
tothermal effect. The condition for canceling the photothermal effect over the
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entire frequency band is that the compensation crystal possesses a photothermal
absorption rate of −1 times that of the nonlinear optical crystal and the same pho-
tothermal relaxation rate as that of the nonlinear optical crystal. These can be
adjusted by changing the crystal length of the compensation crystal; however, it
is not easy to tune them separately. It would be sufficient to set them so that the
impact of the photothermal effect is eliminated near the resonance frequency of
the optical spring.

This experiment confirmed a signal amplification effect of up to approximately
1.6. An actual gravitational wave detector requires a signal amplification effect
of roughly 10. The gain of the Kerr effect increases as the finesse of the cavity
increases. If the gain can be increased several times, we can expect the critical
Kerr effect to be realized. In this case, developing a new control method may
be necessary because the signal amplification effect becomes significant, making
stable control difficult.

The experiment was performed using a Fabry-Perot cavity; however, it is also
essential to experiment using a signal-recycling Michelson interferometer (SRMI),
which is a similar configuration to an actual gravitational wave detector. The OPA
scheme can be used in the SRMI because the carrier light intensity on the nonlin-
ear optical crystal can be weak. The OPA scheme can vary the squeezing angle;
thus, we expect to obtain further insight into signal amplification systems from the
SRMI experiments.

In experiments with macroscopic oscillators, it is challenging to directly mea-
sure quantum noise reduction by the optical spring. In contrast, it is possible to
demonstrate quasi-back action evasion by injecting classical noise. We can expect
the signal amplification system to allow the frequency of the dip in spectral density
to shift with the gain of the nonlinear optical effect.

High gain signal amplification effects and large cavity detuning are required to
improve the sensitivity of gravitational wave detectors; however, this characteristic
is difficult to achieve with the signal amplification system configured in this study.
Further theoretical consideration of the near-threshold behavior of the OPA and
Kerr effects and further experiments with high-gain signal amplification effects
are required.

This study has conducted a proof-of-principle verification of the signal ampli-
fication system for a gravitational wave detector. Based on further validation ex-
periments, we expect to implement the signal amplification system in actual grav-
itational wave detectors and observe high-frequency gravitational waves with high
sensitivity, thereby contributing to cosmology and astronomy.
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Appendix A

Derivation of gravitational
waves

Gravitational waves are derived from a linear approximation of the Einstein
equation, which links spacetime and the distribution of matter [1,2]. This appendix
provides derivations of gravitational wave propagation and emission and describes
the principles of interferometric gravitational wave detectors.

A.1 Propagation of gravitational waves
In a flat spacetime with no gravitational field, Minkowski spacetime, the small

distance between two spacetime points ds can be written as

ds2 =
3∑

µ=0

3∑
ν=0

ηµνdx
µdxν := ηµνdx

µdxν , (A.1)

where ηµν = diag(−1, 1, 1, 1) represents the metric tensor in Minkowski space-
time. Here, Greek letters such as µ and ν are defined to take the values 0, 1, 2, 3
and take summation for the same index. Because ds2 is invariant even in a dis-
torted spacetime with a gravitational field, we can define the metric tensor in a
distorted spacetime gµν from the Lorentz transformation xµ → x′µ:

ds2 = ηµνdx
′µdx′ν

= ηµν
∂x′µ

∂xα

∂x′ν

∂xβ
dxαdxβ

:= gαβdx
αdxβ . (A.2)

The metric tensor is a physical quantity that determines the distance between
spacetime points in the original coordinate or the geometry of spacetime and fol-
lows the Einstein equation:

Gµν =
8πG

c4
Tµν , (A.3)
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where Gµν is the Einstein tensor and Tµν is the energy-momentum tensor. The
Einstein tensor is defined using the Ricci tensor Rµν , Ricci scalar R, Riemann
tensor Rµ

νλκ, and Christoffel symbol Γµ
νλ:

Gµν := Rµν − 1

2
gµνR, R = Rµ

µ, Rµν = Rα
µαν , (A.4)

Rµ
νλκ := Γµ

νκ,λ − Γµ
νλ,κ + Γµ

σλΓ
σ
νκ − Γµ

σκΓ
σ
νλ, (A.5)

Γµ
νλ :=

1

2
gµσ (gσν,λ + gσλ,ν − gνλ,σ) . (A.6)

Let us assume that the gravity field is sufficiently small, and the metric tensor
can be denoted as

gµν = ηµν + hµν , (A.7)

where hµν is the perturbation term. The Einstein tensor can be calculated as

Gνλ =
1

2
[hδ

λ,νδ + hδ
ν,λδ −□hνλ − h,νλ − ηνλ(h

δσ
,δσ −□h)], (A.8)

with
h = hµ

µ, □ = ∂µ∂µ. (A.9)

Eq. (A.8) can be organized by using a trace-reverse tensor of hµν as

Gνλ =
1

2
(h̃δ

λ,νδ + h̃δ
ν,λδ −□h̃νλ − ηνλh̃

δσ
,δσ), (A.10)

with
h̃µν = hµν − 1

2
ηµνh, h̃ = h̃µ

µ = −h. (A.11)

Lorentz gauge and transverse-traceless (TT) gauge can be imposed simultaneously
as gauge conditions [181]. Lorentz gauge can be expressed as

h̃δσ
,δ = 0. (A.12)

TT gauge can be expressed as {
h̃µ0 = 0, (A.13)

h̃µ
µ = 0. (A.14)

Accordingly, we obtain the linearized Einstein equation:

□hµν = −16πG

c4
Tµν . (A.15)

The perturbation term follows the wave equation in a vacuum as Tµν = 0. Be-
cause the perturbation term is a symmetric tensor, the monochromatic plane wave
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solution propagating along the x3 axis can be denoted in matrix form as

hµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 exp[−ik(ct− z)], (A.16)

where k denotes the wave number of the gravitational wave and h+ and h× repre-
sent the amplitude of the + mode × modes, respectively. Gravitational waves are
transverse waves propagating at the speed of light with two modes.

A.2 Impact of gravitational waves on free masses
The trajectory of a free mass in distorted spacetime with a gravitational field

follows a geodesic equation:

d2xα

dτ2
+ Γα

νλ

dxν

dτ

dxλ

dτ
= 0, (A.17)

where τ denotes the proper time. If one free mass is stationary in the initial state,
we obtain

d2xα

dτ2
∝ −Γα

00 = 0 (∵ hµ0 = 0), (A.18)

indicating that acceleration does not act on the test mass, and the influence of
gravitational waves cannot be observed.

Now, we examine the effect of gravitational waves on the distance between the
origin xµ

(1) = (−ct, 0, 0, 0) and point xµ
(2) = (−ct, R cos θ,R sin θ, 0) which is

located at a distance R from the origin in Minkowski spacetime. When a + mode
gravitational wave hµν = diag(0, 1, 1, 0)h+ cosΩt with wavelength sufficiently
larger than R is incident from the direction of the z-axis, the distance between two
points d+ can be expressed as

d+ =

∫ xµ
(2)

xµ
(1)

|gµνdxµdxν |1/2

≃
√
(1 + h+ cosΩt)(R cos θ)2 + (1− h+ cosΩt)(R sin θ)2

≃ R

(
1 +

1

2
h+ cos 2θ cosΩt

)
, (A.19)

thus indicating that the distance between two points changes owing to the gravita-
tional waves. When a × mode gravitational wave is incident, the distance between
two points d× can be expressed as

d× = R

(
1 +

1

2
h× sin 2θ cosΩt

)
. (A.20)
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A.3 Radiation of gravitational waves
We consider the case where a gravitational wave source exists (Tµν ̸= 0).

A.3.1 Generation of gravitational waves
The requirements that gravitational waves in the TT gauge must satisfy are

hijδ
ij = 0, (A.21)

hijk
j = 0, (A.22)

where ki is the wave number vector, and Latin characters such as i and j are
defined to take values 1, 2, 3. The TT component of the plane wave can be written
as

hij
TT = P i

kh
klP j

l − 1

2
P ijPklh

kl, (A.23)

where P i
j = δij−ninj is the projection operator and ni = xi/|x| is the unit vector

in the direction of the observation point.
Let us calculate the equation that hij

TT obeys when the gravitational wave source
exists. By solving Eq. (A.15) using Green’s function of the wave equation, we
obtain

hµν(t,x) =
4G

c4

∫
Tµν(t− |x− x′|/c, |x|′)

|x− x′|
d3x. (A.24)

Assume that the distance to the observation point |x| is sufficiently larger than
the wavelength of the gravitational wave. Note that the distance to the point sig-
nificantly contributes to the integration |x|′, which is comparable to the wave-
length. Furthermore, assuming that the time variability of the wave source is suf-
ficiently slow compared to the speed of light, Eq. (A.24) can be approximated as
follows [182]:

hij(t,x) =
4G

|x|c4

∫ ∞∑
m=0

∂m

∂tm
T ij(t− |x|/c,x′)

(n · x′)m

m!
d3x′. (A.25)

The lowest term of this equation can be calculated using Tµν
,ν = 0 as

hij(t,x) =
4G

|x|c4

∫
T ij(t− |x|/c,x′)d3x′

=
2G

|x|c2

∫
T 00

,00(t− |x|/c,x′)xixjd3x′. (A.26)

Note that the Bianchi identities yield T ν
µ ;ν = 0; hence, we need to redefine the

effective energy-momentum tensor that follows the conservation laws more rig-
orously [183]. When the wave source is a perfect fluid of density ρ ≃ T 00, we
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obtain

hTT
ij (t,x) =

2G

|x|c4

(
ÏlmP l

iP
m
j − 1

2
PijP

jmÏlm
)
, (A.27)

where

Iij =

∫
ρ

(
x′
ix

′
j −

1

3
δij |x′|2

)
d3x′ (A.28)

is the quadrupole moment for mass distribution. Gravitational waves are gener-
ated from the asymmetric acceleration motion of objects, whose lowest order is
quadrupole radiation. Let M be the mass of the wave source and v be the velocity.
Then, we obtain roughly Ïij ∼ Mv2.

A.3.2 Quadrupole formula
We have calculated hµν as a first-order small fluctuating term. Within this ap-

proximation, the energy flux T i0 is zero. By calculating the effective energy-
momentum tensor, including second-order small fluctuating terms for hµν , the
time variation of the energy E can be written as [184]

W =
dE
dt

=
G

5c5
...
I ij

...
I ij

. (A.29)

This equation is called the quadrupole formula.
Let us roughly derive the effect of gravitational waves on a binary system of two

stars of mass M with semi-major axis a. From Kepler’s law, the angular velocity
of the orbit Ωorb can be written as

Ωorb =

√
2GM

a3
. (A.30)

Therefore, the power of gravitational waves W emitted from this binary system is
roughly

W ∼ G4M5

c5a5
. (A.31)

Because the energy of the binary system is roughly E ∼ −GM2/a, the time
variation of the semi-major axis can be written as

da

dt
∼ −G3M3

c5a3
. (A.32)

By solving this differential equation, we obtain the time for binary mergers to
occur as

tM ∼ c5a4

G3M3
. (A.33)

Note that the coefficients can be obtained from a more rigorous calculation [185]
and that the time required for coalescence is approximately two orders of magni-
tude less than this estimate.
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A.4 Principle of interferometric gravitational wave
detectors

Let us derive the response of the Michelson interferometer, as shown in
Fig. 2.3(a). Let Lx and Ly denote the lengths of the x-arm and y-arm, respec-
tively. Assume that a + mode gravitational wave (h× = 0) denoted by Eq. (A.16)
is incident on the Michelson interferometer. Because the speed of light is invariant
to any inertial system, the micro distance traveled by the photon ds is constantly
zero. For light traveling in the x-axis, from Eq. (A.2), we obtain(

1− 1

2
h(t)

)
cdt = dx, (A.34)

where we defined h(t) = h+ exp(−Ωt) with Ω as the angular frequency of the
gravitational wave. Let ∆tx be the round-trip time required for a photon to travel
the x-arm and integrate both sides of Eq. (A.34), obtaining∫ t

t−∆tx

{
1− 1

2
h(t′)

}
dt′ =

2Lx

c
, (A.35)

which yields

∆tx ≃ 2Lx

c
+

1

2

∫ t

t− 2Lx
c

h(t′)dt′. (A.36)

For the y-arm, we obtain

∆ty ≃ 2Ly

c
− 1

2

∫ t

t− 2Ly
c

h(t′)dt′. (A.37)

Michelson interferometers can measure the phase difference between the x- and
y-arms ϕ′

− = ω0(∆tx − ∆ty), modified by gravitational waves. By assuming
L ≃ Lx ≃ Ly , we obtain

ϕ′
− ≃ 2(Lx − Ly)ω0

c
+ ω0

∫ t

t− 2L
c

h(t′)dt′ = ϕ− + δϕGW, (A.38)

where ϕ− = 2(Lx − Ly)ω0/c is the phase difference without gravitational waves
and δϕGW is the phase variation induced by gravitational waves. Denoting the
inverse Fourier transform of h(t) as

h(t) =
1

2π

∫ ∞

−∞
h(Ω)eiΩtdΩ, (A.39)
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the frequency response of the gravitational wave can be written as

δϕGW =

∫ ∞

−∞
HMI(Ω)h(Ω)eiΩtdΩ, (A.40)

HMI(Ω) =
2ω0

Ω
sin

(
LΩ

c

)
e−iLΩ/c, (A.41)

which corresponds to the second term on the right-hand side of Eq. (3.63). For
the range of baseline lengths that can realistically be constructed, the response for
gravitational waves of ∼ 100Hz becomes better with longer arms.

A.5 Amplitude spectral density
When a physical quantity x(t) is measured for a sufficiently long time, the inte-

grated amount of this deviation from the average is zero. The effective amplitude
magnitude of x(t) can be evaluated by the root-mean-square, which is the amount
obtained by integrating the square of the deviation from the average. Let

√
⟨x2⟩

be the root-mean-square for x(t). Thus, we obtain

⟨x2⟩ = 1

T

∫ T/2

−T/2

[x(t)]2dt

=
1

2π

∫ ∞

−∞

|X(Ω)|2

T
dΩ, (A.42)

where T is the measurement time and X(Ω) is the Fourier-transformed physical
quantity of x(t). The integrated function excluding the coefficients in Eq. (A.42),
P (Ω) = |X(Ω)|2/T , is called the power spectral density, and A(Ω) =

√
P (Ω)

is called the amplitude spectral density. The amplitude spectral density represents
the frequency component contained in the physical quantity, which can be used to
discuss noise.
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Appendix B

Nonlinear optical effects

This appendix describes the classical theory of nonlinear optical effects used in
the experiments.

B.1 Overview of nonlinear optical effects
In ordinary optics, light and matter interact because of the induced electric po-

larization proportional to the light field. However, when light becomes sufficiently
intense, the nonlinearity of crystal polarization becomes non-negligible. In this
section, the second- and third-order nonlinear optical effects are overviewed. The
polarization P (t) is represented with the electric susceptibility χ(1), the second-
order nonlinear susceptibility χ(2), and the third-order nonlinear susceptibility
χ(3) as follows:

P (t) = ε0χ
(1)E(t) + ε0χ

(2) [E(t)]
2
+ ε0χ

(3) [E(t)]
3
+ · · · . (B.1)

Let us consider that a light field E(t) = E0 cosω0t with angular frequency ω0

is incident on a nonlinear optical crystal. The second- and third-order nonlinear
polarization P (2)(t) and P (3)(t), respectively, are induced, resulting in nonlinear
optical effects corresponding to the respective orders.

The second-order nonlinear polarization can be written as

P (2)(t) = ε0χ
(2)E2

0 cos
2 ω0t =

1

2
ε0χ

(2)E2
0 cos(2ω0t) +

1

2
ε0χ

(2)E2
0 . (B.2)

Light with angular frequency ω3 = 2ω0 is emitted, indicating the occurrence of
wavelength conversion of light. This phenomenon is called the second harmonic
generation (SHG) and corresponds to the generation of one photon with energy
ℏω3 from two photons with energy ℏω0. On the other hand, the reverse process
occurs if light with angular frequency ω3 is sufficiently strong. It corresponds
to the generation of two photons with energy ℏω1 and ℏω2 from one photon with
energy ℏω3. This phenomenon is called the optical parametric process and satisfies
ω3 = ω1 + ω2, corresponding to the energy conservation law.
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The third-order nonlinear polarization can be written as

P (3)(t) = ε0χ
(3)E3

0 cos
3 ω0t =

3

4
ε0χ

(3)E3
0 cosω0t+

1

4
ε0χ

(3)E3
0 cos(3ω0t).

(B.3)
The polarization corresponding to the second term of the right-hand side of
Eq. (B.3) results in the light emission with angular frequency 3ω0. This conver-
sion process is called the third harmonic generation. In addition, the polarization
corresponding to the first term of the right-hand side emits a fundamental
wave with angular frequency ω0. The total polarization corresponding to the
fundamental wave can be written as

P
(1)
tot (t) = ε0

(
χ(1) +

3

4
χ(3)E2

0

)
E0 cosω0t, (B.4)

which implies that the relationship between the susceptibility and refractive index
n is modified as follows:

n2 = 1 + χ(1) +
3

4
χ(3)E2

0 . (B.5)

Therefore, the refractive index varies in proportion to the light intensity I0:

n = n0 + nNLI0, (B.6)

where n0 and nNL are the linear and nonlinear refractive indexes, respectively. The
phenomenon that provides the nonlinear refractive index is called the optical Kerr
effect.

Third-order nonlinear optical effects can be generally neglected in experiments
using continuous-wave lasers because the third-order nonlinear polarization is ex-
tremely small. However, a chain of second-order nonlinear optical effects can pro-
duce phenomena equivalent to higher-order nonlinear optical effects [174, 175].
This phenomenon is called the cascaded nonlinear optical effect. Our experiment
used the Kerr effect owing to the cascaded nonlinear optical effect.

B.2 Principle of three-wave mixing
Second-order nonlinear optical effects are caused by the interaction of three

light waves propagating through a nonlinear optical crystal. In this section, we
derive the coupled-wave equations, which are the fundamental equations for three-
wave mixing, and discuss the phase matching necessary to induce significant non-
linear optical effects.
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B.2.1 Coupled-wave equations
The Maxwell equations in a nonlinear optical crystal, similar to those in ordi-

nary crystals, can be written as

∇ ·D(r, t) = 0, (B.7)
∇ ·B(r, t) = 0, (B.8)

∇×E(r, t) = −∂B(r, t)

∂t
, (B.9)

∇×H(r, t) =
∂D(r, t)

∂t
. (B.10)

Here, we assume that there is no current or free charge in the nonlinear optical
crystal and that absorption of the electromagnetic field is negligible. The rela-
tionship between the electric flux density D(r, t) and electric field E(r, t) can be
written as

D(r, t) = ε0εE(r, t) + P (2)(r, t), (B.11)

with the second-order nonlinear polarization P (2)(r, t). ε is the relative permittiv-
ity, which is related to the refractive index of the crystal n by ε = n2. In contrast,
because the nonlinearity of magnetization can be neglected in a frequency band
of light, the relationship between the magnetic flux density B(r, t) and magnetic
field H(r, t) can be written as

B(r, t) = µ0H(r, t). (B.12)

The wave equation for the electric field E(r, t) = E(r) cosωt with angular fre-
quency ω is obtained from Eqs. (B.7) to (B.12):

−∇2E(r) +∇(∇ ·E(r))− ω2

c2
εE(r) =

ω2

ε0c2
P (2)(r). (B.13)

Let the amplitude of the electric field E(r) be represented as

E(r) = uF (z)eikz, (B.14)

where k = ωn/c is the wavenumber, F (z) is the complex amplitude, and the
electric field is assumed to propagate along the z-axis. u is a unit vector in the
direction of polarization and is orthogonal to the z-axis such that ∇·E(r) = 0. We
further assume that F (z) is a slowly varying function with z such that d2F/dz2 is
sufficiently small. Eq. (B.13) can be written as

d

dz
F (z) =

iω

2ε0cn
u∗ · P (2)(z). (B.15)
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Let us consider three light waves with angular frequencies ω1, ω2, and ω3 =
ω1 +ω2 in a nonlinear optical crystal. Similar to Eq. (B.2), the nonlinear polariza-
tion P

(2)
3 (z) for an electric field with angular frequency ω3 is induced by electric

fields with angular frequencies ω1 and ω2 as follows:

P
(2)
3 (z) = ε0χ

(2)
3 F1F2ei(k1+k2)z, (B.16)

where F1, F2, k1, and k2 are complex amplitudes and wavenumbers of electric
fields with angular frequencies ω1 and ω2, respectively. Further, χ(2)

3 denotes
the nonlinear susceptibility vector. Nonlinear polarization for electric fields with
other angular frequencies can be considered similarly. By substituting these into
Eq. (B.15), the following equations are derived because of the intrinsic permuta-
tion symmetry of the nonlinear susceptibility [186]:

dF1

dz = iω1χ
(2)

2cn1
F ∗
2 F3ei∆kz,

dF2

dz = iω2χ
(2)

2cn2
F ∗
1 F3ei∆kz,

dF3

dz = iω3χ
(2)

2cn3
F1F2e−i∆kz,

(B.17)

with the identical effective nonlinear susceptibility χ(2) in all equations. Here,
χ(2) is a real number, and ∆k = k3 − k2 − k1 denotes phase mismatch. The
simultaneous differential equations for complex amplitudes are called coupled-
wave equations.

B.2.2 Phase matching and quasi-phase matching
When the phase ∆kL′ (where L′ is the length of the nonlinear optical crystal)

is reached approximately π, the nonlinear optical effects are suppressed because
the generated electric fields weaken each other. Therefore, the phase-matching
condition ∆k = 0 must be satisfied to maximize the nonlinear optical effect. This
condition, for the second harmonic generation or degenerate optical parametric
amplification, is satisfied when the refractive index of the fundamental and sec-
ond harmonic are equivalent. However, generally, it is not achievable because of
material dispersion. There are several methods for satisfying the phase-matching
condition, such as birefringence and waveguides. In our experiment, we used
quasi-phase matching by periodic poling.

The length lc = π/∆k at which nonlinear optical effects become suppressed
is called the coherence length. Periodic poling is a method of inverting the sign
of nonlinear susceptibility with a period Λ that is an integer multiple of 2lc, as
shown in Fig. B.1. Because the phase of the light generated by nonlinear optical
effects is reversed as it propagates for a length lc, the phase-matching condition
is quasi-satisfied by periodically inverting the sign of the nonlinear susceptibility.
The quasi-phase-matching condition can be written as follows:

∆k = ±mK (m = 0,±1,±2, ...), (B.18)
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Fig. B.1: Schematic of periodic poling. r denotes the duty cycle, and N = L′/Λ is the
number of periodic poling. Arrows indicate the direction of the crystal axis, and
the sign of the nonlinear susceptibility is opposite for upward and downward di-
rections.

where K = 2π/Λ denotes the wavenumber of periodic poling.
Quasi-phase matching allows the use of materials and polarizations that stan-

dard phase matching cannot satisfy. For example, the nonlinear susceptibility of
lithium niobate (LiNbO3) to the second harmonic generation has its maximum
when both the polarization of the fundamental and second harmonics are paral-
lel to the c-axis (extraordinary rays). However, this combination of polarizations
cannot achieve phase matching using birefringence. In our experiment, we used
periodically poled lithium niobate (PPLN) for second harmonic generation, where
both the fundamental and second harmonic waves were extraordinary rays. A
comparison of the conversion efficiencies of standard and quasi-phase matching is
discussed in the following section.

B.3 Second harmonic generation
Second harmonic generation (SHG) is the process of generating the harmonic

wave with angular frequency ω3 = 2ω0 from the fundamental wave with angular
frequency ω0. The complex amplitudes of each light are denoted as F0 and F3.

B.3.1 SHG with low conversion efficiency
Let us consider the case of standard phase matching. If the absorption of the

light field by the nonlinear optical crystal is negligible, the coupled-wave equations
can be written as {

dF0

dz = iω0χ
(2)

2cn0
F ∗
0 F3ei∆kz,

dF3

dz = iω0χ
(2)

cn3
F 2
0 e−i∆kz,

(B.19)
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where ∆k = k3−2k0. If the conversion efficiency is low and F0 can be assumed to
be constant, the complex amplitude of the second harmonic wave from the crystal
can be calculated as

F3(L
′) =

ω0χ
(2)F 2

0

cn3∆k

(
1− e−i∆kL′

)
. (B.20)

Here, we assume F3(0) = 0 because the second harmonic wave is not in-
jected into the crystal. The light intensity Ij (j = 0, 3) can be denoted as
Ij = nj |Fj |2/(2µ0c). The intensity of the generated second harmonic wave I3
can be written as

I3 = 8π2µ0c

(
(χ(2))2L′2

n2
0n3λ0

)
sinc2

(
∆kL′

2

)
I20 , (B.21)

where sinc(x) = sin(x)/x is the sinc function. The normalized efficiency of SHG
is presented in Fig. B.2. The intensity of the second harmonic wave generated by
the SHG is proportional to the square of the intensity of the incident fundamental
wave and varies periodically with the phase mismatch.
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Fig. B.2: Relationship between phase mismatch and SHG efficiency.

B.3.2 SHG with a periodically polled crystal
Let us consider the SHG with a periodically polled crystal of period Λ and duty

cycle r. The effective nonlinear susceptibility is χ(2) in the range (n− 1)Λ ≤ z <
(n+ r − 1)Λ and −χ(2) in the range (n+ r − 1)Λ ≤ znΛ, with n = 1, 2, ..., N .
From the coupled-wave equation (B.19), the complex amplitude of the second
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harmonic wave transmitted from the crystal can be calculated as

F ′
3(L

′) =
ω0χ

(2)F 2
0

cn3

(1 + e−i∆kΛ − 2e−i∆krΛ)(1− e−iN∆kΛ)

∆k(1− e−i∆kΛ)
. (B.22)

The normalized efficiency of SHG is presented in Fig. B.3. We denote the intensity
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Fig. B.3: Relationship between quasi-phase mismatch and SHG efficiency with r = 0.5
and N = 10.

of the second harmonic wave with quasi-phase matching as I ′3. A comparison of
the intensity with the quasi-phase matching condition ∆kΛ = 2mπ and standard
phase-matching condition is as follows:

I ′3
I3

=
4N2 sin2(mrπ)

m2π2
, (B.23)

which is maximized when the duty cycle is set to r = (2j+1)/(2m) (j = 1, 2, ...).

B.3.3 SHG with high conversion efficiency
If the conversion efficiency is high, the coupled-wave equations can be solved

using the energy conservation law, which is denoted as follows:

n0|F0(z)|2 + n3|F3(z)|2 = n0|F0(0)|2. (B.24)

Let us consider the case when the phase-matching condition is satisfied. Based on
the differential of the second equation of Eqs. (B.19) with z, we obtain

d2F3

dz2
+

ω2
0(χ

(2))2

c2n2
0n3

(n0|F0(0)|2 − n3|F3|2)F3 = 0. (B.25)
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By assuming F3 as a real number and non-dimensionalizing it with

η2 =
ω2
0(χ

(2))2|F0(0)|2

2c2n0n3
, (B.26)

x = ηz, (B.27)

y =

√
n3

n0

F3

|F0(0)|
, (B.28)

we obtain
d2y

dx2
+ 2(1− y2)y = 0. (B.29)

The solution of this differential equation is y = tanhx. Therefore, the intensity
of the second harmonic wave transmitted from the crystal can be written as

I3(L
′) = I0(0) tanh

2(ηL′). (B.30)

B.3.4 Cascaded nonlinear optical effect
Let us investigate the behavior of the fundamental wave in the phase-

mismatched condition. Based on the differential of the first equation of
Eqs. (B.19) with z, we obtain

d2F0

dz2
− i∆k

dF0

dz
+

ω2
0(χ

(2))2

2c2n0n3

(
|F0|2 −

n3

2n0
|F3|2

)
F0 = 0. (B.31)

When the phase mismatch is sufficiently large, we can assume that the intensity
of the fundamental wave does not change and that of the second harmonic wave is
zero. By approximating Eq. (B.31), we obtain

d2F0

dz2
− i∆k

dF0

dz
+ η2F0 = 0, (B.32)

where η is the parameter defined in Eq. (B.26). Under the condition ∆k ≫ η, the
complex amplitude of the fundamental wave transmitted from the crystal can be
written as

F0(L
′) = F0(0) exp(iΦ), (B.33)

with

Φ = −ω2
0(χ

(2))2µ0L
′

∆kcn2
0n3

I0(0). (B.34)

While the intensity of the fundamental wave does not change, the phase changes
in proportion to the intensity. In this case, a phenomenon equivalent to the optical
Kerr effect occurs, and the nonlinear refractive index nNL can be written as

nNL =
cΦ

ω0L′I0(0)
= −ω0(χ

(2))2µ0

∆kn2
0n3

. (B.35)
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This phenomenon can be explained as follows. Even in the phase-mismatched
condition, a slight second harmonic wave is generated while the fundamental wave
propagates a distance of approximately the coherence length lc. However, when
the fundamental wave propagates a distance exceeding lc, the phase of the gen-
erated second harmonic wave becomes inverted. The canceled second harmonic
wave is reconverted to the fundamental wave. It should be noted that the fun-
damental and second harmonic waves propagate at different speeds through the
crystal in the phase-mismatched condition. That is, the phase of the reconverted
fundamental wave is different from the original. Because the overall phase of the
fundamental wave depends on the amplitude of the intermediate-generated sec-
ond harmonic wave, the phase changes in proportion to the intensity of the inci-
dent fundamental wave. This phenomenon is called cascaded nonlinear optical
effects [174, 175] because it occurs in a chain of second-order nonlinear optical
effects. We can achieve a sufficiently large nonlinear refractive index using this
phenomenon even with a continuous wave laser. It is also worth noting that the
magnitude and sign of the nonlinear refractive index can be adjusted by varying
the phase mismatch.

B.4 Optical parametric process
In the optical parametric process, the lights with angular frequency ω1 and ω2

are generated from the light with angular frequency ω3, which satisfies ω1+ω2 =
ω3. Optical parametric amplification (OPA) is a phenomenon in which a seed light
of angular frequency ω1 incident on a nonlinear optical crystal is amplified. An
optical parametric oscillator (OPO) is a system that generates signal light with
an angular frequency of ω1 and idler light with an angular frequency of ω2 by
oscillating a cavity that contains a nonlinear optical crystal. The light with angular
frequency ω3 used in these applications is called pump light.

B.4.1 Optical parametric amplification
The coupled-wave equations for the optical parametric process can be written

as 
dF1

dz = iω1χ
(2)

2cn1
F ∗
2 F3ei∆kz,

dF2

dz = iω2χ
(2)

2cn2
F ∗
1 F3ei∆kz,

dF3

dz = iω3χ
(2)

2cn3
F1F2e−i∆kz,

(B.36)

where ∆k = k3 − k1 − k2. Let us assume that the conversion efficiency is suffi-
ciently low such that the attenuation of the pump light is negligible*1. The follow-

*1 The coupled wave equations for pump and seed light of comparable intensity are not easily
solved. The general solution of the coupled-wave equations is denoted with Jacobi’s elliptic
function [146, 187].
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ing differential equation for the seed light is derived:

d2F1

dz2
− i∆k

dF1

dz
− g20F1 = 0, (B.37)

g20 =
ω1ω2(χ

(2))2

4c2n1n2
|F3|2. (B.38)

The seed light exponentially increases when |∆k| < 2g0. When the phase-
matching condition ∆k = 0 is satisfied, the light transmitted from the crystal
can be written as

F1(L
′) = F1(0) coshu+ ieiϕ3

(
n2ω1

n1ω2

)1/2

F ∗
2 (0) sinhu, (B.39)

F ∗
2 (L

′) = −ie−iϕ3

(
n1ω2

n2ω1

)1/2

F1(0) sinhu+ F ∗
2 (0) coshu, (B.40)

where ϕ3 is the initial phase of the pump light. We defined u = g0L
′. The case

where the angular frequencies of signal and idler light are equal (ω1 = ω2 = ω0)
corresponds to a degenerate OPA. The amplification factor of the degenerate OPA
can be written as

I0(L
′)

I0(0)
= cosh 2u+ sinh 2u cos 2θ, (B.41)

with 2θ = ϕ3 − 2ϕ1 + π/2.
OPA can also be used as a squeezer for the vacuum field. Then s = exp(u) and

θ correspond to the squeezing factor and squeezing angle, respectively.

B.4.2 Optical parametric oscillator
OPO can be achieved by using the intracavity OPA. When the rate of light gen-

eration by the OPA, which corresponds to the squeezing decay rate, exceeds the
cavity decay rate, the cavity results in lasing. In this case, signal and idler light sat-
isfying the phase-matching condition is transmitted from the cavity even without
seed light.

Let us calculate the threshold of oscillation. Here, we assume an over-coupled
optical cavity in which the input mirror has the same power reflectivity R = e−µL′

for both signal and idler light. When the gain of the OPA reaches the oscillation
threshold, the light field that circles the cavity is consistent with the initial light
field:

F1(0) =

[
F1(0) coshut + ieiϕ3

(
n2ω1

n1ω2

)1/2

F ∗
2 (0) sinhut

]
e−µL′/2, (B.42)

F ∗
2 (0) =

[
−ie−iϕ3

(
n1ω2

n2ω1

)1/2

F1(0) sinhut + F ∗
2 (0) coshut

]
e−µL′/2,

(B.43)
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where ut denotes the value of u at the threshold. The determinant of the matrix
formed by the coefficients of the homogeneous equations must be zero because
the complex amplitude is finite. When the finesse of the cavity is sufficiently high,
we can calculate ut = µ/2.

Now let us consider the conversion efficiency at a steady state. Here, we assume
that the pump light does not resonate in the optical cavity. Hence, the OPA pro-
cess does not follow Eqs. (B.39) and (B.40) because the attenuation of the pump
light cannot be neglected. Nevertheless, the amplification of the light field is sat-
urated because the intensity of signal and idler light transmitted from the cavity
are sufficiently lower than the intracavity intensity. That is, the complex ampli-
tudes F1 and F2 in the cavity can be assumed constant. From the coupled-wave
equations (B.36), the change in the complex amplitude of the pump light can be
calculated as

F3(L
′)− F3(0) =

iω3χ
(2)

2cn3
F1F2L

′. (B.44)

Because the number of photons of the signal and idler light transmitted from the
cavity is equal to the change in those of the pump light, we also obtain

I3(L
′)− I3(0)

ℏω3
= µL′ I1

ℏω1
= µL′ I2

ℏω2
, (B.45)

where I1 and I2 are the intracavity intensities of the signal and idler light, respec-
tively. From these equations and the requirement for the threshold, we obtain the
following equation:

√
I3(0)−

√
I3(L′) =

I3(0)− I3(L
′)

2
√
I3t

, (B.46)

where I3t denotes the intensity of the pump light at the threshold. Therefore, we
can calculate the conversion efficiency:

I3(0)− I3(L
′)

I3(0)
= 4

√
ρ− 1

ρ
, (B.47)

with

ρ =
I3(0)

I3t
. (B.48)

The conversion efficiency is shown in Fig. B.4, which takes 1 when ρ = 4.
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Fig. B.4: Relationship between the intensity of the pump light and conversion efficiency of
OPO.
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Appendix C

Quantum noise in advanced
interferometers

This appendix discusses the methods of improving the sensitivity of gravita-
tional wave detectors that were not covered in the main article. Resonant sideband
extraction (RSE) improves the detector bandwidth and is the interferometer con-
figuration used in all second-generation gravitational wave detectors. The filter
cavity, used with the input squeezing, improves sensitivity in all frequency bands
and is beginning to be implemented in actual gravitational wave detectors.

C.1 Resonant sideband extraction and its
applications

This section discusses the RSE interferometer and its applications. First,
we briefly describe the properties of the Fabry-Perot Michelson interferometer
(FPMI), which is an interferometer configured by assembling a Fabry-Perot
cavity into the arms of a Michelson interferometer. The RSE interferometer is
an interferometric configuration that combines FPMI with a signal recycling
cavity. We obtain the conditions for the bandwidth expansion of the cavity. Next,
we derive the signal resonance phenomena in the RSE interferometer with a
long signal recycling cavity length. We finally discuss the quantum expander
idea, a method to achieve further bandwidth expansion and long SRC effect by
intracavity squeezing. The plots in this section assume that the arm length is
L = 3 km and the mass of the mirror is m = 23 kg.

C.1.1 Fabry-Perot Michelson interferometer
Let us consider an FPMI with perfect over-coupling cavities of length L on

both arms with an input test mass (ITM) of power transmissivity TI = t2I , as
shown in Fig. C.1. Assume that the Michelson interferometer, comprising the
beam splitter (BS) and ITM, operates at the dark fringe and performs measure-
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Fig. C.1: Schematic of the Fabry-Perot Michelson interferometer. The mirrors that consti-
tute the Fabry-Perot cavity are supposed to work as a test mass.

ments at appropriate positions. The Fabry-Perot cavities in both arms are in a
resonance condition, and the effective phase delay in the arms is equal in both
arms as β = arctan(−Ω/γ), where γ = TIc/(4L) is the cavity decay rate of the
arm cavities. Note that the parameters are multiplied by a factor compared to the
Fabry-Perot cavity considered in Sec. 3.3.2 because we consider the case where the
ITM is a free mass with an equal mass to the end test mass (ETM). Considering
the equations of motion for the relative motion of ITM and ETM, we can calculate
parameters in terms of the reduced mass of the test masses, and the effective mass
is multiplied by 1/2. In addition, the effective coupling constant is multiplied
by 2 because ponderomotive squeezing also occurs at ITM. From Eq. (3.90), the
input-output relation can be calculated as

b = e2iβ
(

1 0
−K 1

)
a+ eiβ

√
2K

hSQL

(
1
0

)
h(Ω), (C.1)

where K = 2γι/(Ω2(γ2 + Ω2)) is the optomechanical coupling constant,
hSQL =

√
8ℏ/(mL2Ω2) is the standard quantum limit, and we defined

ι = 16FarmPGω0/(πmLc) and Farm = 2π/TI. The sensitivity of FPMI can be
written as

Sh(Ω) =
h2

SQL

2

(
K +

1

K

)
. (C.2)
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This sensitivity is consistent with that for the dual-recycling Michelson interfer-
ometer (DRMI), except for the factor where the finesse of the signal recycling
cavity (SRC) and power recycling cavity (PRC) is Farm.

C.1.2 Resonant sideband extraction interferometer

SRM

PRM

PD

ITMX

ITMY

ETMY

ETMXBS

Fig. C.2: Schematic of dual-recycling Fabry-Perot Michelson interferometer. The mirrors
that constitute the Fabry-Perot cavity are supposed to work as a test mass.

Let us consider a Fabry-Perot Michelson interferometer with two recycling cav-
ities, as shown in Fig. C.2. This configuration is the dual-recycling Fabry-Perot
Michelson interferometer (DRFPMI). However, as described below, this optical
configuration is usually called the RSE interferometer because signal recycling is
not performed for a km-scale FPMI.

Let L be the arm length, r2I and t2I = TI be the power reflectivity and transmis-
sivity of ITM, and r2S and t2S = TS be the power reflectivity and transmissivity of
the signal recycling mirror (SRM). From Eq. (C.1), we obtain

f = e2iβ
(

1 0
−K 1

)
e+ eiβ

√
2K

hSQL

(
0
1

)
h(Ω), (C.3)

where we defined γ = TIc/(4L), β = arctan(−Ω/γ), K = 2γι/(Ω2(γ2 + Ω2)),
hSQL =

√
8ℏ/(mL2Ω2), and ι = 16FarmPIω0/(πmLc) = 32FarmFPPGω0/(π

2mLc).
Farm = 2π/TI is the finesse of the arm cavities, FP = 2π/TP is the finesse of the
PRC, and TP is the power transmissivity of the power recycling mirror (PRM).
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First, let us consider the case where the SRC is resonant and in the broadband
signal recycling (BSR) condition. Here, we assume that the distance between BS
and SRM is sufficiently shorter than the arm length, and the finesse of SRC is
sufficiently lower than that of the arm cavity. The phase delay between BS and
SRM can, therefore, be neglected. The input-output relation is the same as for the
Fabry-Perot cavity with the phase delay per half cycle being β and the coupling
constant being K, which can be calculated as

b =
e2iβ

(1− rSe2iβ)2

[(
1 + r2S − 2rS cos 2β 0

−t2SK 1 + r2S − 2rS cos 2β

)
a

+tSe−iβ

√
2K

hSQL

(
0

1− rSe2iβ

)
h(Ω)

]
. (C.4)

The operator for signal-to-noise ratio hn(Ω) can be written as

hn(Ω) =
hSQL√
2K

eiβ

tS(1− rSe2iβ)
(
−t2SKa1 +

[
1 + r2S − 2rS cos 2β

]
a2
)
. (C.5)

Thus, we obtain the sensitivity of DRFPMI:

Sh(Ω) =
h2

SQL

2

(
KBSR +

1

KBSR

)
, (C.6)

where we defined

KBSR =
t2S

1 + r2S − 2rS cos 2β
K ≃ 2γBSRι

Ω2(γ2
BSR +Ω2)

, (C.7)

and γBSR = γ×π/(2FS) is the effective cavity decay rate, and FS = 2π/TS is the
finesse of SRC. BSR for FPMI reduces the effective cavity decay rate by roughly
the inverse of the finesse of SRC.

Fig. C.3 shows the sensitivity curve. Power recycling has the same effect as
increasing the input laser light power so that the sensitive band can be moved to
higher frequencies. In contrast, BSR reduces the effective cavity decay rate with-
out changing the intra-arm power, thus narrowing the interferometer’s bandwidth
and deteriorating the high-frequency band’s sensitivity. In addition, the response
to the signal is further enhanced, increasing radiation pressure noise. Therefore,
BSR is not used for FPMI with km-scale arms.

The effective laser light power can be increased by increasing the power recy-
cling gain 2FP/π. Nevertheless, as the laser light power in the BS becomes robust,
it causes technical problems such as thermal lensing effects. The finesse of the arm
cavity needs to be increased to increase the intra-arm power further. However, the
cavity decay rate decreases, resulting in a narrower detector bandwidth. To solve
the trade-off problem, actual gravitational wave detectors adopt a method called
resonant sideband extraction (RSE) [102], in which the SRC is operated around
the anti-resonance condition.



158 Appendix C Quantum noise in advanced interferometers

100 101 102 103 10410-25

10-24

10-23

10-22

10-21

10-20

Fig. C.3: Sensitivity of DRFPMI. The parameters are set to PG = 1 × 102 W and TI =
0.05. The green line corresponds to the case without recycling (2FP/π → 1,
2FS/π → 1), the blue line corresponds to the case with only PR (2FP/π = 10,
2FS/π → 1), the orange line corresponds to the case with PR and BSR (2FP/π =
10, 2FS/π = 10).

Let us consider the case where the SRC is in the anti-resonance condition, and
the phase change in the SRC can be written as ϕ ≡ lω0/c (mod 2π) = π/2, where
l is the distance between the BS and SRM. Such a condition is called broadband
RSE (BRSE)*1. The interferometer is given an effect that multiplies the amplitude
reflectivity of the SRM by −1 in the BSR calculation. That is, the sensitivity of
the BRSE condition can be written as

S′
h(Ω) =

h2
SQL

2

(
KBRSE +

1

KBRSE

)
, (C.8)

where the coupling constant is

KBRSE =
t2S

1 + r2S + 2rS cos 2β
K ≃ 2γBRSEι

Ω2(γ2
BRSE +Ω2)

, (C.9)

and γBRSE = γ × 2FS/π is the effective cavity decay rate. BRSE for FPMI in-
creases the effective cavity decay rate by roughly the finesse of SRC.

*1 The SRC in the BRSE condition is actually in a resonance condition because the cavity inverts
the phase of the light field. In such a depiction, the PRC in the DRFPMI is in an anti-resonance
condition.
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Fig. C.4: Sensitivity of DRFPMI. The parameters are set to PG = 1×102 W and 2FP/π =
10. The green line corresponds to the case of a low-finesse arm cavity without
BRSE (TI = 0.05, 2FS/π → 1), the blue line corresponds to the case of a low-
finesse arm cavity with BRSE (TI = 0.05, 2FS/π = 10), and the orange line
corresponds to the case of a high-finesse arm cavity with BRSE (TI = 0.005,
2FS/π = 10).

Fig. C.4 shows the sensitivity curve. BRSE increases the cavity decay rate and
detector’s bandwidth, but it also increases the shot noise. Combining a high finesse
arm cavity with BRSE, as shown by the orange line, the sensitivity is equivalent
to a low finesse and increased PR gain without RSE (TI = 0.05, 2FS/π → 1,
2FP/π = 100). BRSE allows interferometers with high intra-arm power and wide
bandwidth without changing the laser light power at the BS.

Fig. C.5 shows the comparison of the shot noise of DRFPMI. When TI and
2FP/π have the same value, meaning that the intra-arm power is equal, the product
of shot noise and bandwidth is constant:

lim
Ω→0

2K
h2

SQL
×γ = lim

Ω→0

2KBSR

h2
SQL

×γBSR = lim
Ω→0

2KBRSE

h2
SQL

×γBRSE =
mL2ι

2ℏ
. (C.10)

Generally, this trade-off relationship is called the Mizuno limit [99].

C.1.3 Long signal recycling cavity
In the last section, the phase delay between the BS and SRM was assumed to

be negligible. When this phase delay becomes comparable to that of the arms,
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Fig. C.5: Sensitivity of DRFPMI determined by shot noise. The parameters are set as in
Figs. C.3 and C.4.

the effect resulting from the finite SRC length becomes negligible, and the sen-
sitivity curve is modified. Let αS = −lΩ/c be the phase delay between BS and
SRM, where l is the distance between BS and SRM. The BRSE coupling constant,
denoted by Eq. (C.9), is modified as

K′
BRSE =

t2S
1 + r2S + 2rS cos(2β + 2αS)

K. (C.11)

By approximating that αS are much smaller than unity, we obtain

K′
BRSE ≃ 2γBRSEι

Ω2[γ2
BRSE + (1− 2γBRSE/γS + (Ω/γS)2)Ω2]

, (C.12)

where we defined γS = TSc/(4l).
Even without detuning the SRC, a dip appears in the sensitivity curve. Fig. C.6

shows the sensitivity curve. This dip is derived from the phase quadrature of the
vacuum field, implying that the signal satisfies the resonance condition at this fre-
quency, similar to the optical resonance of the detuned signal recycling (DSR).
The SRC, which was in an anti-resonance condition, switches to a quasi-resonance
condition near this frequency owing to the phase delay between the BS and SRM.
The sensitivity determined by the shot noise, h2

SQL/2 × 1/K′
BRSE, minimizes at

ΩLSRC = γS
√
ρ− 1/2, indicating that this is the angular frequency of the dip.

Here, we defined ρ = γBRSE/γS. At this frequency, the term derived from the
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Fig. C.6: Sensitivity of the RSE interferometer with a long SRC. The parameters are set to
PG = 1× 102 W, 2FP/π = 10, 2FS/π = 100, l = 1000m, and TI = 0.005.

amplitude quadrature temporarily deteriorates; hence, the depth of the dip does
not beat the SQL. If the sensitivity at the dip is sufficiently larger than SQL, the
relative depth of the dip can be written as

1/Ω2K′
BRSE|Ω=ΩLSRC

1/Ω2K′
BRSE|Ω→0

=
4ρ− 1

4ρ2
. (C.13)

In the frequency band higher than the dip, the sensitivity worsens in proportion to
the frequency square because the two composite cavities attenuate the signal.

The long SRC effect is valuable as a method of improving sensitivity in the
high-frequency band because it can produce a dip in the bandwidth of a few kHz,
similar to the system considered in Sec. 3.5.2. The SRC length of the second-
generation gravitational wave detectors is not quite long that it is challenging to
produce a dip. The proposed design of NEMO incorporates the long SRC effect
in the optical configuration [19].

C.1.4 Quantum expander
The long SRC effect is a promising method for improving sensitivity in a high-

frequency band. However, it is not easy to achieve as an upgrade idea for current
gravitational wave detectors because it requires both a relatively high-finesse SRC
and a long SRC length. Hence, let us consider applying intracavity squeezing to
the RSE interferometer to increase the SRC’s effective finesse. Intracavity squeez-
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ing can significantly reduce the requirements for producing a dip resulting from
the long SRC effect while increasing the effective bandwidth of the interferometer.
This interferometer configuration is called a quantum expander [188].

PD

BS ITMX

ITMY

ETMY

ETMX

SRM

PRM

Squeezer

Fig. C.7: Schematic of intracavity squeezing for the RSE interferometer.

We consider intracavity squeezing in the SRC of the RSE interferometer, as
shown in Fig. C.7. The SRC is in resonance condition, and the squeezing angle
is set to 0. The sign of the amplitude reflectivity of the SRM is inverted for the
calculation because the BRSE condition is considered. The input-output relation
can be written as

b = rSa+ tSd, c = tSa− rSd, d = eiαSS(u, 0)f ,

e = eiαSc, f = e2iβP (K, 0)e+ eiβ
√
2K

hSQL

(
0
1

)
h(Ω). (C.14)

Thus, the measured light field fluctuation b can be calculated as

b =

(
rS + t2Se2i(β+αS)S(u, 0)P (K, 0)

[
I + rSe2i(β+αS)S(u, 0)P (K, 0)

]−1
)
a

+tSei(β+αS)

√
2K

hSQL

[
I + rSe2i(β+αS)S(u, 0)P (K, 0)

]−1

S(u, 0)

(
0
1

)
h(Ω)

=
1

C
[Aa+Hh(Ω)] , (C.15)
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with

C = −
(
rSe2i(β+αS) + 1

rS
e−2i(β+αS) + 2 coshu

)
, (C.16)

A11 = (rS +
1
rS
) coshu+ 2 cos(2β + 2αS)− ( 1

rS
− rS) sinhu, (C.17)

A12 = 0, (C.18)
A21 = − 1

rS
e−ut2SK, (C.19)

A22 = (rS +
1
rS
) coshu+ 2 cos(2β + 2αS) + ( 1

rS
− rS) sinhu, (C.20)

H = −tS

√
2K

hSQL

(
0

ei(β+αS) + 1
rS

e−ue−i(β+αS)

)
. (C.21)

By approximating that t and u are much smaller than unity, the sensitivity can be
denoted in a simple formula:

Sh(Ω) =
h2

SQL

2

(
KQE +

1

KQE

)
, (C.22)

where
KQE =

TSK
2 + 1

4T
2
S − TSu+ u2 + 2 cos(β + αS)

is the effective coupling constant. As in the last section, by approximating that αS
are much smaller than unity, we obtain

KQE ≃ 2γBRSEι

Ω2[γ2
BRSE + ((1− ΣS/γS)2 − 2γBRSE/γS + (Ω/γS)2)Ω2]

, (C.23)

where we defined ΣS = uc/(2l).
Fig. C.8 shows the sensitivity curve. The angular frequency of a dip is modified

as ΩLSRC-QE = γS
√

ρ− (1− σS)2/2, where we defined σS = ΣS/γS. The relative
depth of the dip can be written as

1/Ω2KQE|Ω=ΩLSRC-QE

1/Ω2KQE|Ω→0
=

4ρ− (1− σ2
S)

4ρ2
(1− σS)

2, (C.24)

indicating that the requirement for the generation of the dip can be significantly
relaxed by setting σS as close to 1. This technique hardly changes the radiation
pressure noise and can improve the interferometer’s sensitivity over a whole band-
width. Realistic optical losses do not detract from this advantage [188]. Intracavity
squeezing is a promising method for upgrading current gravitational wave detec-
tors.

C.2 Frequency-dependent squeezing
Sec. 3.4.2 discussed a method to improve the sensitivity of gravitational wave

detectors via input squeezing. The sensitivity depends on the squeezing angle, and
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Fig. C.8: Sensitivity of the RSE interferometer with intracavity squeezing. The parameters
are set to PG = 1 × 102 W, 2FP/π = 10, 2FS/π = 10, l = 100m, and TI =
0.005. The green and blue lines correspond to the case with σS = 0 and σS =
0.97, respectively. The plot range of the horizontal axis is changed to 10 ∼
105 Hz.

achieving a frequency-dependent squeezing angle is necessary to improve sensi-
tivity over the whole bandwidth. This section discusses methods for achieving
frequency-dependent squeezing.

C.2.1 Input squeezing with a filter cavity
Frequency-dependent squeezing can be achieved using a detuned Fabry-Perot

cavity called a filter cavity [95]. Let us consider frequency-dependent input
squeezing for a dual-recycling Michelson interferometer, as shown in Fig. C.9.
We consider the case where the optical loss is absent in the filter cavity for
simplicity. This filter cavity is triangular over coupled ring cavity. Let r2F and
t2F be the power reflectivity and transmissivity of the input mirror, respectively;
ϕF ≡ LFω0/c (mod 2π) and αF = −LFΩ/c be the phase change and delay per
half cycle, respectively; and LF be the cavity half cycle length. We now solve
the same equation as in Eq. (3.83), assuming that no carrier light is present in the
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Fig. C.9: Schematic of frequency-dependent input squeezing with filter cavity.

filter cavity. The input-output relation can be calculated similarly to Eq. (4.20):

a′′ =
[
−rFI + t2Fe2iαF

[
I − re2iαFR(2ϕF)

]−1
R(2ϕF)

]
a′

≃ 1

(γF − iΩ)2 +∆2
F

(
γ2

F −∆2
F +Ω2 −2γF∆F

2γF∆F γ2
F −∆2

F +Ω2

)
a′, (C.25)

where γF = TFc/4LF and ∆F = ϕFc/LF are the cavity decay rate and cavity
detuning of the filter cavity, respectively.

Even with a fixed squeezing angle of OPA, an optimal sensitivity can be
achieved if the filter cavity has an effect the same as a rotation matrix that gives
a phase change of 0 in a high-frequency band (Ω > γ), π/2 in a low-frequency
band (Ω < γ), and π/4 at Ω = γ. By setting ∆F = γF, the transformation matrix
of Eq. (C.25) corresponds to the rotation matrix × (phase term) of angle 0 in
the high-frequency band (Ω ≫ γF) and the rotation matrix of angle π/2 in the
low-frequency band (Ω ≪ γF). In addition, by setting γF = γ/

√
2, it corresponds

to the rotation matrix × (phase term) of angle π/4 at Ω = γ. The sensitivity, in
this case, can be written as

Sh(Ω) =
h2

SQL

2K
1

γ4 +Ω4

[
s2(−KΩ2 + γ2)2 + 1

s2 (Kγ2 +Ω2)2
]
. (C.26)

Fig. C.10 shows the sensitivity curve. The filter cavity achieves almost optimal
sensitivity. Several experiments have demonstrated the rotation of the squeezing
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Fig. C.10: Sensitivity with frequency-dependent input squeezing by the filter cavity. The
parameters are set to ι = 2γ3, γ = 2π × 100Hz, and u = log(2).

angle using a filter cavity [106–109], and it has been and will be implemented in
actual gravitational wave detectors [110, 111]. Note that the transmissivity of the
input mirror of the filter cavity must be extremely low to achieve a low cavity de-
cay rate of ∼ 2π × 100Hz with a short filter cavity that is not costly to construct.
Optical loss is an essential factor in determining the performance of a filter cav-
ity because a slight optical loss in such cavities can limit the effective squeezing
factor. For example, calculations including optical losses are detailed in [189].
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Appendix D

Sideband cooling with
intracavity squeezing

One possible application of intracavity squeezing is ground-state cooling of op-
tomechanical oscillators in an unresolved sideband regime [22–24]. Recently, it
has been experimentally demonstrated that intracavity squeezing relaxes the con-
ditions required for ground-state cooling [190]. This appendix briefly reviews the
fundamental theory of sideband cooling and the impact of intracavity squeezing.

D.1 Thermal phonon number
Quantum mechanics is a well-established theory for describing the dynamics

of microscopic objects. However, whether quantum mechanics can be applied
to macroscopic objects remains uncertain. To investigate the quantum nature of
macroscopic objects, we need to reach the quantum ground state of the macro-
scopic oscillator. The closeness to the quantum ground state of an oscillator with
resonance frequency Ωeff is evaluated by the phonon occupation number n:

n =
mΩeff

ℏ
⟨x2⟩ − 1

2
, (D.1)

where m is the mass of the oscillator. The mean square displacement ⟨x2⟩ can
be calculated from the two-sided power spectral density of displacement of the
oscillator S(2)

x (Ω):

⟨x2⟩ =
∫ ∞

−∞
S(2)
x (Ω)

dΩ

2π
=

∫ ∞

−∞

S
(2)
f (Ω)

|m(Ω2
eff + iγeffΩ− Ω2)|2

dΩ

2π
, (D.2)

where S
(2)
f (Ω) is the two-sided power spectral density of the force applied to the

oscillator and Γeff = mγeff is the effective damping constant of the oscillator. If
the Q factor of the oscillator Q = Ωeff/γeff is sufficiently large, the susceptibility
of the oscillator is significant only near the resonant frequency. Hence, ⟨x2⟩ can
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be calculated as

⟨x2⟩ ≃ S
(2)
f (Ωeff)

∫ ∞

−∞

1

|m(Ω2
eff + iγeffΩ− Ω2)|2

dΩ

2π

≃ S
(2)
f (Ωeff)

2m2Ω2
effγeff

. (D.3)

Let us calculate the thermal phonon number resulting from interacting with
a heat bath with ambient temperature T . The effective resonant frequency and
damping constant correspond to the mechanical resonant frequency Ωm and damp-
ing constant Γm = mγm. From the fluctuation-dissipation theorem [83], the power
spectral density of the force applied to the oscillator is

S
(2)
f,th (Ω) = 2kBTγmm, (D.4)

and the thermal phonon number nth can be calculated as

nth ≃ kBT

ℏΩm
. (D.5)

For example, nth ∼ 106 for T = 300K and Ωm = 106 Hz, which is quite far
from the ground state. Then, we consider binding the oscillator with an optical
spring with resonant frequency Ωopt and damping constant Γopt = mγopt. Optical
damping does not cause thermal fluctuations to the oscillator because the stabilized
laser is at thermal equilibrium with a very low-temperature bath. When the me-
chanical oscillator and optical damping are adequately stiff and large, respectively
(Ωm ≫ Ωopt, γm ≪ γopt), the effective thermal phonon number can be calculated
as

n′
th =

kBTγm

ℏωmγopt
. (D.6)

Therefore, it is possible to significantly decrease the effective ambient tem-
perature of the optomechanical oscillator by generating a low noise-damping
source with light. This technique is called sideband cooling or radiation pres-
sure cooling [155, 191, 192], and some experiments have reached the ground
state [193–198], which refers to n < 1 in optomechanics. However, optical damp-
ing generates radiation pressure phonons because of quantum fluctuations in the
radiation pressure force, which determine the cooling limit of sideband cooling.
Here, we investigated a sideband cooling system with intracavity squeezing and
the impact of intracavity squeezing on the radiation pressure phonon number.

D.2 Radiation pressure phonon number
Let us calculate the radiation pressure phonon number of the Fabry-Perot cavity

with intracavity squeezing, as shown in Fig. D.1. The derivation using Hamilto-
nian notation is detailed in the supporting information in [24]. Here, we attempted
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Squeezer

Fig. D.1: Schematic of sideband cooling with intracavity squeezing. This system is the
same as Fig. 4.6. The initial phase of the incident carrier is φ = − arctan((δ +
σ sin 2θ)/(1−σ cos 2θ)). The end mirror is supposed to work as a test mass and
be cooled by the intracavity light field.

a derivation using two-photon formalism. To calculate the quantum radiation pres-
sure fluctuation, we neglected a small fluctuation of the test mass δx(Ω) and solved
the input-output relation (4.14) for e′, obtaining

e′ = teiα
[
I − re2iαR(2ϕ)S(u, θ)

]−1
R(φ)a

=
2γ

t

1

(γ + iΩ)2 +∆2 − Σ2

(
γ + iΩ+ Σcos 2θ −∆+Σsin 2θ

∆+Σsin 2θ γ + iΩ− Σcos 2θ

)
R(φ)a

=
2

t

1

(1 + iΩ/γ)2 + δ2 − σ2

×
(
1 + iΩ/γ + σ cos 2θ −δ + σ sin 2θ

δ + σ sin 2θ 1 + iΩ/γ − σ cos 2θ

)
R(φ)a, (D.7)

where r2 and t2 = T are the input mirror’s reflectivity and transmissivity, respec-
tively; ϕ and α are the phase change and delay during a half cycle in the cavity,
s = eu and θ are the squeezing factor and angle, respectively; γ = Tc/(4L) is
the cavity decay rate; L is the cavity half cycle length; ∆ = ϕc/L is the cavity
detuning; Σ = uc/(2L) is the squeezing decay rate. Further, δ = ∆/γ is the
normalized cavity detuning, and σ = Σ/γ is the normalized squeezing decay rate.
Here, the rotation matrix for the input carrier R(φ) is defined as Eq. (4.11). From
Eq. (4.1), quantum radiation pressure fluctuation δFqrp(Ω) can be written as

δFqrp(Ω) = 2ℏk0E′
0e

′
1(Ω) = η1a1 + η2a2. (D.8)

The one-sided power spectral density of the quantum radiation pressure fluctuation
Sf,qrp(Ω) is defined as

1

2
2πδ(Ω− Ω′)Sf,qrp(Ω) =

1

2
⟨0|
[
δFqrp(Ω)δF

†
qrp(Ω

′) + δF †
qrp(Ω

′)δFqrp(Ω)
]
|0⟩ .
(D.9)
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Similarly to the power spectral density to signal-to-noise ratio, Sf,qrp(Ω) can be
calculated as

Sf,qrp = |η1|2 + |η2|2

=
8ℏk0PE′

γL

1 + δ2 + σ2 + (Ω/γ)2 + 2σ(cos 2θ − δ sin 2θ)

(1 + δ2 − σ2 − (Ω/γ)2)2 + (2Ω/γ)2
. (D.10)

From Eq. (D.1), the radiation pressure phonon number nrp can be written as

nrp =
mΩeff

ℏ
⟨x2⟩rp −

1

2
, (D.11)

where the mean square displacement resulting from the quantum radiation pressure
fluctuation can be calculated as

⟨x2⟩rp =

∫ ∞

0

Sf,qrp(Ω)

|m(Ω2
eff + iγoptΩ− Ω2)|2

dΩ

2π
, (D.12)

and γopt can be written as

γopt =
1

m
ℑ
[
Kopt

Ω

]
Ω=Ωeff

= −8k0PE′

mLγ2

δ − σ sin 2θ

(1 + δ2 − σ2 − (Ωeff/γ)2)2 + (2Ωeff/γ)2
. (D.13)

Here, intracavity power PE′ and complex optical spring constant Kopt are calcu-
lated as expressed Eq. (4.13) and Eq. (4.16), and mechanical damping is negligible
because of sufficient sideband cooling. If the Q factor is sufficiently high, we can
calculate Eq. (D.12) the same as in Eq. (D.3):

⟨x2⟩rp = S
(2)
f,qrp(Ωeff)

∫ ∞

−∞

1

|m(Ω2
eff + iγoptΩ− Ω2)|2

dΩ

2π

=
S
(2)
f,qrp(Ωeff)

2m2Ω2
effγopt

, (D.14)

where S(2)
f,qrp(Ω) = Sf,qrp(Ω)/2 is the two-sided power spectral density of the quan-

tum radiation pressure fluctuation*1. Therefore, the radiation pressure phonon
number is calculated as

nrp = − (1 + σ cos 2θ)2 + (Ωeff/γ + δ − σ sin 2θ)2

4(δ + σ sin 2θ)Ωeff/γ
, (D.15)

and this result is consistent with [24] by denoting the squeezing parameter as εr =
−Σsin 2θ/2 and εi = Σcos 2θ/2.

*1 Rigorously, the two-sided power spectral density of the radiation pressure fluctuation is asym-
metric around Ω = 0 and needs to be defined from the susceptibility of the cavity [61].
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First, let us consider the case without intracavity squeezing (σ = 0). nrp takes
the minimum value when δ = −

√
1 + (ωeff/γ)2:

nrp ≥
(

γ

2Ωeff

)2
2

1 +
√

1 + (γ/Ωeff)2
. (D.16)

An optomechanical system with γ ≲ Ωeff is called a good cavity, and that with
γ ≳ Ωeff is called a bad cavity. If the mechanical resonance frequency is high
enough (Ωeff ≃ ωm), the bad cavity results in nrp ≫ 1, indicating that the oscil-
lator cannot reach the ground state owing to quantum fluctuations in the radiation
pressure force. Intuitively, a bad cavity amplifies the upper and lower sidebands
simultaneously. Hence, the optical damping with negative cavity detuning cannot
efficiently remove energy from the oscillator. Therefore, it is necessary to use os-
cillators with high mechanical resonance frequency and high finesse cavity to cool
oscillators to the ground state when using sideband cooling. However, macro-
scopic objects may have difficulty achieving good cavity conditions because of
their low resonant frequency and the limited finesse values that can be achieved.

Now let us consider the impact of intracavity squeezing (σ ̸= 0). In this case,
nrp takes the minimum value when δ = σ sin 2θ−

√
(1 + σ cos 2θ)2 + (ωeff/γ)2:

nrp ≥
(

γ

2Ωeff

)2
2(1 + σ cos 2θ)2

1 +
√
1 + (1 + σ cos 2θ)2(γ/Ωeff)2

. (D.17)

By setting θ = π/2 and σ → 1, we can obtain nrp → 0 independent of the side-
band resolution. It should be noted that the cavity becomes close to the oscillation
state with an extremely bad cavity condition because those parameters correspond
to δ → −Ωeff/γ. Fig. D.2 shows the radiation pressure phonon number with in-
tracavity squeezing. Without intracavity squeezing, the radiation pressure phonon
number cannot be lower than 1 because this parameter is in a bad cavity condition.
In contrast, the intracavity squeezing with somewhat gain can reduce the radiation
pressure phonon number to less than 1. It should also be noted that the calculation
method in this thesis can only be applied in the weak coupling regime (G0ā ≪ γ,
where G0 and ā are defined in Sec. 6.1.2). The cooling limit in the strong coupling
regime (G0ā ≫ γ) is derived from the master equation [24].
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Fig. D.2: Modification of the radiation pressure phonon number by the intracavity squeez-
ing. The parameters are set to Ωeff/γ = 0.1 and θ = π/2. The black line shows
the precondition for reaching the ground state, nrp = 1.
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Appendix E

Supplementary materials for
the experiments

This appendix provides supplemental material to the experiments.

E.1 Feedback control
In this experiment, it is necessary to investigate the system’s response while

keeping the cavity detuning and squeezing angle within a narrow range. We used
a feedback control to achieve a pull to the control point and a stable operation.

E.1.1 Stability of the feedback control
Transfer functions representing the system’s frequency response are used to dis-

cuss a feedback control system. The transfer function for an element T (Ω) is the
ratio of the input signal to the element U(Ω) and the output signal from the element
V (Ω) in the frequency domain:

T (Ω) :=
V (Ω)

U(Ω)
. (E.1)

The block diagram is a schematic of the elements that constitute the system un-

Fig. E.1: Block diagram of the optical system.

der control, represented as a concise diagram using transfer functions. Fig. E.1
presents a block diagram of the feedback control for the optical system, where
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H(Ω) and G(Ω) denote the transfer function of the optical system and filter, X(Ω)

denotes noises that fluctuate a mirror, X̃(Ω) denotes the effective displacement of
a mirror, and Y (Ω) denotes the error signal from the optical system. The error
signal is passed through a filter and multiplied by −1 before giving feedback to
the mirror. The effective displacement of the mirror X̃ can be written as

X̃ = X −HGX̃

=
1

1 +HG
X. (E.2)

The product of the transfer functions HG is called the open loop transfer function
(OLTF), and its magnitude |HG| is called the open loop gain (OLG). The effective
transfer function formed by the feedback component 1/(1 + HG) is called the
closed loop transfer function (CLTF).

Let us compare X̃(Ω) with the displacement in the absence of feedback control
X(Ω). If OLG is sufficiently larger than 1, CLTF equals approximately the inverse
of OLG, indicating that the disturbance can be suppressed. It also implies that the
same factor suppresses gravitational wave signals entering the system from the
same path. In general, the feedback control does not change the interferometer’s
sensitivity. In contrast, if the OLG is sufficiently smaller than 1, the CLTF equals ∼
1, which implies that the system is not under control. The frequency that satisfies
|H(Ω)G(Ω)| = 1, which is the split-off point that determines whether the control
is applied or not, is called the unity gain frequency (UGF).

If there is a frequency at which H(Ω)G(Ω) = −1, meaning that the phase
of OLTF at UGF is −180 degrees, this system amplifies the noise of UGF. The
transfer function of the optical system H(ω) cannot be easily changed; hence, we
avoided this instability by implementing the filter with an analog circuit using op-
amps. The phase margin is the sum of the phase at UGF plus 180 degrees, and
the gain margin is the gain (dB) at the frequency where the phase is −180 degrees
times −1. These are used as a reference to consider the stability of the control
system.

E.1.2 Phase compensation
The suspended mirror significantly oscillates near the resonant frequency of the

mechanical suspension. The UGF must be sufficiently higher than the resonant
frequency to control the optical system containing the suspended mirror. However,
the transfer function of the mechanical suspension has a phase of −180 degrees in
a band sufficiently higher than the resonant frequency, as shown in Eq. (4.40). In
other words, when the error signal is fed back directly to the suspended mirror, the
control system becomes unstable at the UGF. In this experiment, we avoided this
instability by leading the phase near the UGF with a filter. The transfer function
of the filter circuit can be written as

GPLF(Ω) = APLF
1 + iΩτ1
1 + iΩτ2

(τ1 > τ2), (E.3)
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where APLF is the filter gain, and 1/τ1 and 1/τ2 are the zero and pole of the filter,
respectively. This filter can lead the phase in the angular frequencies 1/τ1 to 1/τ2.
By adjusting the gain such that UGF is within this range, the stability of the control
system can be ensured while controlling with high gain in the frequency band
below 1/τ1. The compensation method that ensures a phase margin by leading the
phase is called phase-lead compensation.

When an actuator with a wide linear operating range is used, such as a piezoelec-
tric element, the UGF should be set in a band lower than the mechanical resonance
frequency of the PZT. The OLG must be sufficiently lower than 1 at the mechani-
cal resonance frequency to ensure stability. This experiment used a low-pass filter
in a control system with a PZT. The transfer function of the filter circuit can be
written as

GLPF(Ω) = ALPF
1

1 + iΩτ0
, (E.4)

where ALPF is the filter gain, and 1/τ0 is the pole of the filter. This filter can reduce
the gain in the frequency band above 1/τ0. The compensation method that ensures
a gain margin by delaying the phase is called phase-delay compensation.

E.2 Design of cavities
The laser source used in the experiment has a Gaussian beam profile with a

specific beam size and intensity distribution. Therefore, it cannot be regarded as
a plane wave resonating in a cavity. This section discusses the design method
of optical cavities for Gaussian modes by tracking the trajectory of the Gaussian
beam using the ABCD matrix.

E.2.1 ABCD matrix

Optical axis

Optical element

Fig. E.2: Schematic of an optical element modifies the trajectory of the ray.

As shown in Fig. E.2, the impact of the optical element on the ray can be quan-
titatively calculated if the distance from the optical axis x and the angle for the
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optical axis*1 p = tan θ of the ray before and after it enters the optical element are
known. The properties of this optical element can be denoted by a 2× 2 matrix as
follows: (

x1

q1

)
=

(
A B
C D

)(
x2

q2

)
. (E.5)

This matrix is called ray or ABCD matrix.

Fig. E.3: Ray tracing by the ABCD matrix.

The ABCD matrix for the optical elements shown in Fig. E.3 is summarized as
follows [199].

(a) For propagation at distance l in free space,(
1 l
0 1

)
. (E.6)

(b) For a thin lens with a focal length of f ,(
1 0

−1/f 1

)
, (E.7)

where f > 0 for a convex lens.
(c) For the reflection by a mirror with curvature R,(

1 0
−2/R 1

)
, (E.8)

*1 When considering the trajectory of a paraxial ray, the angle can be regarded as sufficiently small,
p ≈ θ. In addition, p is sometimes defined by multiplying the refractive index of the optical
element n.
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where R > 0 for a concave mirror.
(d) For the reflection at angle θ with curvature mirror,(

1 0
−2/Re 1

)
, (E.9)

where

Re =

{
R cos θ (tangential plane),
R/ cos θ (sagittal plane).

(E.10)

(e) For the incident to the dielectric interface of refractive index n1 to n2 with
curvature R, (

1 0
(n2 − n1)/R 1

)
, (E.11)

where R > 0 for the concave incident side.
(f) For the incidence to curved dielectric interface in the tangential plane at an

angle of incidence θ1 and angle of refraction θ2,(
cos θ2
cos θ1

0

∆ne/R
cos θ1
cos θ2

)
, (E.12)

where

n1 sin θ1 = n2 sin θ2, (E.13)
∆ne = (n2 cos θ2 − n1 cos θ1)/ cos θ1 cos θ2. (E.14)

(g) For the incidence to curved dielectric interface in the sagittal plane at an
angle of incidence θ1 and angle of refraction θ2,(

1 0
∆ne/R 1

)
, (E.15)

where

n1 sin θ1 = n2 sin θ2, (E.16)
∆ne = n2 cos θ2 − n1 cos θ1. (E.17)

E.2.2 Gaussian beam
The wave equation for the electric field E(x, t) can be written as(

∇2 − 1

c2
∂2

∂2t

)
E(x, t) = 0. (E.18)



178 Appendix E Supplementary materials for the experiments

By solving this equation under the paraxial approximation, we can obtain a
Hermite-Gaussian mode propagating in the z-axis Ulm(x, t) as one of the
solutions [199]. In correspondence with Eq. (3.2), the solution can be denoted as

E(x, t) = U∗
lm(x, t)E∗

0e−i(ω0t−k0z) + Ulm(x, t)E0ei(ω0t−k0z), (E.19)

with

Ulm(x, t) =

√
2

πw2(z)

1√
2l+ml!m!

Hl

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)

×exp
[(

− 1

w2(z)
− i

k

2R(z)

)
(x2 + y2) + i(l +m+ 1)ζ(z)

]
,

(E.20)

w(z) = w0

√
1 +

(
z

zR

)2

, (E.21)

zR =
πw2

0

λ0
, (E.22)

R(z) = z

[
1 +

(zR

z

)2]
, (E.23)

ζ(z) = arctan

(
z

zR

)
. (E.24)

Here, Hl denotes the Hermite polynomial. The mode with l = m = 0 is called the
fundamental mode or 00 modes and other modes are called higher-order modes.
w(z) denotes the size of the Gaussian beam (spot size), and an intensity of 1 −
e−2 ∼ 86.5% of the whole is contained within the radius of the fundamental mode
w(z). w0 denotes the spot size at the point where the spot size is minimum (beam
waist). zR denotes the Rayleigh length, the range where the beam behaves as a
plane wave. A beam far from the beam waist, where z is sufficiently larger than
the Rayleigh length, can be considered a spherical wave. R(z) denotes the radius
of curvature of the equiphase surface of the light field. ζ(z) denotes the Gouy
phase, the phase difference between higher-order modes that differ by one order.

E.2.3 Self-consistent equation
All parameters of the Gaussian beam can be written only by the distance from

the waist z and Rayleigh range zR. We define the q-parameters of the Gaussian
beam as

1

q
:=

1

z + izR
=

1

R(z)
− i

2

k0w2(z)
. (E.25)

The modification of the Gaussian beam trajectory by the optical elements can be
described only by the q-parameter. The transformation of the q-parameter q1 → q2
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by an optical element with a specific ABCD matrix follows the ABCD law [200]:

q2 =
Aq1 +B

Cq1 +D
. (E.26)

This relationship can be used to discuss the cavity’s stability. The laser injected
into the cavity can be regarded as a Gaussian beam with 00 modes. The cavity
should satisfy the condition that the q-parameter does not change during one cycle
of the cavity to treat a superposition of wavefronts equivalent to a plane wave.
That is, using the ABCD matrix during one cavity round, the q-parameter satisfies

q =
Aq +B

Cq +D
. (E.27)

This equation is called the self-consistent equation. From the condition that the
q-parameter becomes a pure imaginary value, we obtain the spot size at the beam
waist w0 as

w0 =

√√√√λ0

π

|B|√
1−

(
A+D

2

)2 . (E.28)

Here, we used the fact that the determinant of the ABCD matrix is 1 (AD = BC)
when the optical elements that constitute the cavity do not absorb or scatter.

E.2.4 Design of bow-tie cavities

Small waist

Large waist
Fig. E.4: Schematic of a bow-tie cavity.

The SHG and OPO cavities used in this experiment were bow-tie cavities con-
taining two curvature mirrors. As shown in Fig. E.4, this type of cavity has two
beam waists: one in the midpoint of the curvature mirror and one in the mid-
point of the flat mirror. The former was called a small waist, and the latter a large
waist. The small waist size was set to be approximately 40µm to maximize the
efficiency of the nonlinear optical effect. The mirror positions were calculated
using the ABCD matrix, the large waist was then determined, and the incident
beam mode matching was performed. Let d be the distance between the curvature
mirrors, and 2L be the one-round length of the cavity, and l = 2L− d.
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Fig. E.5: Waist sizes of the SHG cavity.

Curved mirrors with a curvature of 150mm were used for the SHG cavity. As
denoted in Eq. (E.9), the effective radius of curvature for tangential and sagittal
planes is different when a curved mirror reflects the beam at an angle of incidence.
The angle of incidence should be set as small as possible to reduce the effect of
astigmatism, and it was set to 8 degrees because a margin must be made to insert
a nonlinear optical crystal. Simulations for the tangential and sagittal planes with
these parameters are shown in Fig. E.5. Based on these results, we set d = 0.16m
and l = 1.2m.

Curved mirrors with a curvature of 68.5mm were used for the OPO cavity. It
is more compact than the SHG cavity, considering the possibility of constructing
a cavity for the pump light. The angle of incidence was set to 17 degrees. Sim-
ulations for the tangential and sagittal planes with these parameters are shown in
Fig. E.6. Based on these results, we set d = 0.078m and l = 0.35m.
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Fig. E.6: Waist sizes of the OPO cavity.

Moreover, in Sec. 6.2.3, the nonlinear optical crystal behaves as a lens owing to
the Kerr effect. From Eq. (6.25), the focal length of the Kerr lens is approximately
−27 cm. Simulations are shown in Fig. E.7, assuming that a thin concave lens is
placed in the midpoint of the curved mirror of the OPO cavity. For d = 0.078m
and l = 0.35m, the small waist size was reduced to roughly 30µm. In contrast,
the large waist size hardly changes, meaning that the beam diameter that should
enter the cavity does not change. That is, the Kerr lens does not affect the stability
requirements of the intracavity beam.
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Fig. E.7: Waist sizes of the OPO cavity with Kerr lens.

E.3 Circuit used in the experiment
Fig. E.8 shows the circuit of the mixer used in the PLL demodulation. The same

circuit was used for the PDH technique to demodulate and obtain the error signal.
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Fig. E.8: Circuit of the mixer.
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