

Self introduction

2005 Hannover

2004 PhD on control of detuned RSE

2005-07 AEI Potsdam

- Macroscopic Quantum Measurement
- aLIGO LSC development

2008-09 Caltech

- AEI 10m prototype design
- Finite-size coating thermal noise

2010- Japan (Waseda, Tokyo Tech)

- KAGRA design, SEO, IFI, OFI, OMC
- Parametric amplifier
- KAGRA+ and some other subjects

Niju-Ichi-Emon

2012 Kamioka

Laser interferometric GW detector

aLIGO sensitivity at GW150914

- Mainly limited by quantum and control noises
- The sensitivity is x2 better in 2022

Quantum noise

Vacuum fluctuation is equivalent to $\frac{1}{2}$ photon \Rightarrow SNR is defined by the ratio to signal photons

Quantum noise

(IFO=Interferometer GW=Gravitational Waves)

Sensitivity is given by solving $\Delta N \sim 1/2$ \Rightarrow For 1W IFO, it is $\Delta L=5e-17(m/rtHz)$

Optical cavity

(IFO=Interferometer)

However, the cavity bandwidth is ~30Hz with 4km arm.

Coupled cavity

(BW=Bandwidth BS=Beam Splitter)

Coupled cavity w/123 determines the power. Coupled cavity w/124 determines the BW.

"Power-recycled Resonant-sideband-extraction"

Both Advanced LIGO & KAGRA use this system.

Currently, Advanced LIGO uses ~1.5kW at BS and sensitivity reaches $\Delta L=2e-20(m/rtHz)$.

Quantum noise in GW detector

Noise Spectrum (1/rtHz)

Source of quantum noise

(SQL=Standard

Optical squeezing

Optical parametric amplification process creates a correlation in upper and lower sidebands.

(RP=Radiation Pressure

Frequency-dependent squeezing

- SQ angle is rotated in filter cavities
- Rotation angle depends on the frequency

This technique has been installed in LIGO & Virgo.

Optical spring

(RP=Radiation Pressure GW=Gravitational Wave OS=Optical Spring)

Far from reso \rightarrow less RP

Approach to reso \rightarrow more RP

Optomechanical restoring force

GW response increases at **OS resonance.**

KAGRA plans to implement this technique.

Optical spring

(QN=Quantum Noise NS=Neutron Star SQL=Standard Quantum Limit HP=Home Page)

QN exceeds the SQL at the optical spring frequency. \Rightarrow 20% sensitivity improvement to observe binary NS.

Optical spring frequency

Parametric signal amplification

Opt spring freq can be enhanced by tuning OPA gain s

- Detune phase ϕ is chosen to make the opt reso at 4kHz
- Optical losses are not inluced, readout phase is fixed to 0
- SRM reflectivity is 99%
 - -> Vacuum from dark port is amplifed as signal at HF ($s \ge 1/10$)
 - -> Optical spring does not appear in the sensitivity curve

Sensitivity improvement at HF

- Detune phase ϕ is chosen to make the opt reso at 4kHz
- Optical losses are not inluced , readout phase is fixed to 0
- SRM reflectivity is 99.95%
 - -> Vacuum from dark port is less amplifed at HF
 - -> Optical spring appears in the sensitivity curve

Sensitivity comparison

- HF sensitivity is better with 99.95% SRM
- Other parameters: m=1kg, I_{BS}=100kW, readout phase=0
- Lossless

Sensitivity comparison (with loss)

- HF sensitivity is better with 99.95% SRM
- Other parameters: m=1kg, I_{BS}=100kW, readout phase=0
- With loss (1000ppm at SRC and 10% at PD)

Tuning readout phase ζ

- Here the SRM reflectivity is 99%
- Readout phase ζ is tuned for each OPA gain s (left panel)
- In right panel, losses are included; ζ is same as left
- Sensitivity improvement is not by signal amplification at opt spring but by ponderomotive squeezing

Amplification of internal loss

- Let us consider a simple case with a cavity and an intracavity OPA. $r_1 < r_2$.
- Vacuum field *a* and loss field c enters the cavity and output is *b* and *d*.
- Coherent sum of <u>a in b</u> and <u>a in d</u> equals to original <u>a</u>.
- With OPA, each component (<u>a in b</u> or <u>a in d</u>) can exceed the size of a

Amplification of internal loss

- Left: internal loss contribution does not change much with SRM reflectivity (optimal would be 99.95% or so)
- Right: noise magnitude (size of noise ellipse) starts increasing after *s* exceeds the threshold

Target sensitivity

- The red solid is the target sensitivity (QN only, with loss, L=1.2km). It is better than aLIGO above 2kHz.
- The pink is with ambitious parameters either with 100ppm loss in SRC or with L=3km. Circulating power is 300kW.

Experimental demonstration

- In 2016, I proposed to implement this technique in GEO600. Prof Danzmann said, "the idea is attractive, we will consider it if two prototype experiments succeeded in a demonstration."
- We have been working on a proof-of-principle experiment with SRMI, aiming at an observation of a shift of optical spring with an intracavity OPA.
- We also performed an experiment of a single Fabry-Perot cavity with intracavity OPA. UWA people performed a similar experiment with a membrane.

(1) A single cavity with OPA

- Comparing the spectra of carrier and counter-propagating beam, we can see the signal amplification rate by the OPA.
- This setup has an advantage to having more power on the suspended mirror, but careful treatment is necessary to properly interpret the result to that with SRMI.

Interpretation to SRMI

- Treatment 1: intracavity power changes with OPA and it should be normalized to see a net signal amplification rate
- Treatment 2: relative phase between carrier and signal changes with OPA and it should be modified for each detuning. [It is not right to maximize the carrier power at each detuning.]

Interpretation to SRMI

Measured spectrum

- The gain decreases with high input power due to the SHG loss
- We observed optical spring with 150mW input and no OPA, so a few mW should be enough to see the amplification effect. 29

Interestingly, the amplification rate is proportional to $P_{in}^{-0.63}$. We could not model this from the theory.

Optical spring measurement

[Otabe thesis, 2023]

Left: Without OPA, the optical spring was observed in phase of the transfer function.

Right: With OPA, the 4mW carrier was amplified by a factor of 16.7 but no optical spring was observed. ₃₁

(2) SRMI with OPA

[Harada 2022] [Suzuki 2023]

Locking the interferometer

[Harada 2022] [Suzuki 2023]

5DoF control

- Michelson dark fringe
- SRC w/70MHz p-pol
 SHG
- PLL (20MHz s-pol)
- OPA phase: coherentcontrol with 20MHz

Digitally controlled by single-board computers (RedPitaya)

We succeeded the simultaneous control of all the 5 DoFs, then tested if the 1kHz Michelson signal increases with OPA.

Signal amplification with OPA [Harada 2022] [Suzuki 2023]

Dithering the arm at 1kHz and sweeping the pump phase, we found a 0.13dB oscillation of output of a lock-in amplifier at dark port.

We use a secondary laser (20MHz different from main laser) and perform coherent-control method to obtain the error signal (demod at 40MHz).

Locking the OPA phase

[Harada 2022]

With the coherent control, the OPA phase is locked to the amplitude squeezing condition. Now we are ready to measure the transfer function of SRMI with OPA.

Observation of optical spring [Suzuki 2023] 20 10 Gain (dB) Opt Spr at 3.8Hz -10 $\square P_A = 5 \text{ W}, f_{AOM} = 34 \text{ MHz}$ Opt Spr at 4.8Hz $\square P_A = 8 \text{ W}, f_{AOM} = 38 \text{ MHz}$

We observed an optical spring without OPA, and are currently working to see it shift with OPA.

38

Frequency (Hz)

39

40

37

-20

36

<u>Summary</u>

- Intracavity amplification technique improves the sensitivity at high frequencies, though internal optical losses turned out to be a limiting factor.
- A single cavity experiment was performed to reveal a challenge to observe the optical spring shift due to the second-harmonic generation loss.
- A SRMI experiment is being conducted; optical spring has been observed, its shift with OPO is to be observed soon.

Supplementary slides

Parametric signal amplification

- Opt spring freq can be enhanced by tuning OPA gain s
- SRMI response can be changed by η (instead of ϕ)

Optical resonance also moves with OPA

Optical resonance w/o OPO

$$\Omega_{\rm res}\simeq rac{\phi c}{L}$$

Optical resonance with OPO

$$\Omega_{\rm res}\simeq rac{\phi_s c}{L}$$

where

$$\cos 2\phi_s = \frac{1}{2}\left(s + \frac{1}{s}\right)\cos 2\phi$$

We shall define the detuned phase with OPA as above. The optical resonance frequency is then fixed.

Spring enhancement with optimal η

- Detune phase ϕ is chosen for each s to make ϕ_s fixed to ϕ_0
- **OPA** phase η is optimized -> enhancement is symmetric with *s*
- Rapid enhancement near s = 1; denominator approaches zero (No rapid enhancement with high detune) 42

Spring enhancement with optimal η

In our work hereafter, we focus on this region of parameters, so it would be ok to assume $\eta = 0$.

Frequency-dependent intra-OPA?

- If we could realize a freq-dependet intra-OPA phase, the sensitivity would look like the envelope of these curves (left)
- If we could realize a freq-dependet intra-OPA gain, the sensitivity would look like the envelope of these curves (right)
- Or we can dynamically change s or η with the inspiral.
 (as was proposed in Zhang et al.)