Current status of the intracavity OPO experiments at Tokyo Tech

AIC telecon Jun 2020

Tokyo Inst. of Tech. K.Somiya, S.Otabe, and K.Harada

Gravitational wave telescopes

Far Galaxy

Earth

aLIGO in US [4km]

- AdVirgo in Italy [3km]
 GEO-HF in Germany [600m]
 KAGRA in Japan [3km]

The sensitivity at high freq is limited by photon shot noise.

Mechanical and optical bars

Susceptibility to GW increases at its resonance
Sensitivity of a mech bar cannot be as good as the optical IFOs for its limited length

Optical spring frequency

Optical spring frequency

Spring freq is lower than optical resonance. Highest frequency is given with $\Omega_{\rm spr} = \Omega_{\rm reso} \rightarrow \Omega \cong \sqrt[3]{\frac{8I_c \omega_0}{mLc}}$

Optical spring stiffness is given by the circulating power, arm length, and the mirror mass.

Optical spring frequency can be enhanced by tuning the OPO gain *s*.

Sensitivity improvement at HF

- Optical losses are not included; will degrade the sensitivity by one order of magnitude
- Attractive configuration for a 2.5-3G detector ⁷

Proof-of-principle experiments

We set our first goal to observe the increase of optical spring frequency with an intracavity OPO.

A single-pass OPO is ok.

Proof-of-principle experiments

(1) Detuned Signal Recycling

- OPO in SR cavity
- High input power (<10W)
- Successful operation of SRMI
- 0.1dB Single-pass OPA
- 0.2dB lossy SRC OPO

(2) Detuned Fabry-Perot cavity

- OPO amplifies signal and deamplifies carrier, or vice versa
- Optical spring has been observed.

I will mainly talk about this experiment.

Comparison of the configurations

(1) Detuned Signal Recycling

- Carrier in amp. quad.
- Signal detuned from phase quad.

(2) Detuned Fabry-Perot cavity

- Carrier detuned from amp. quad.
- Signal also detuned from phase

Optical spring effect is equivalent between the two configurations even with an intracavity OPO.

Comparison of the configurations

[Otabe, 2019]

Two regimes to use the intra-OPO

Either regime works to increase the spring frequency.

Challenges in each regime

Phase squeezing

Phase amplification

• Signal amplification is lower after normalizing it by the carrier power

- Signal decreases until the critical coupling condition is almost met
- Control signals decrease according to the carrier deamplification

We have decided to try the phase squeezing regime.

Experimental setup

A ~210mg mirror is mounted in a double-side spiral suspension system (PET and BeCu). The mechanical resonances are 10Hz and 35.7Hz, respectively.

Optical spring

We measured the transfer function of the FP cavity without the OPO.

We saw that the resonant frequency decreases with the increasing detune phase owing to the optical spring.

m = 210 mg, F = 1000, $P_{in} = 140 \text{mW}$ $\rightarrow f_{opt} = 250 \text{Hz}$

17

OPO phase is controlled to its operation point using the beat signal of the subcarrier and a field generated in OPO.

Signal amplification experiment

The transmission power and the Lorentzian function were measured simultaneously for the forward and reverse beams in the OPO cavity. Here the finesse is ~300.

Signal amplification experiment

The circulating power increases by a factor of **19** and the signal is amplified by a factor of **1.4**. With the OPO crystal inserted, the finesse was reduced to ~100 (clipping loss).

Signal amplification experiment

The circulating power increases by a factor of **2.7** and the signal is amplified by a factor of **1.1**. The reduction of the amplification gain is caused by a <u>shortage of pump power</u>.

Prospects to observe the optical spring

ΟΡΟ	mass	oscillator	finesse	input power	opt spring
no	210mg	10Hz PET	400	120mW	100Hz, observed
no	210mg	10Hz PET	1000	140mW	250Hz, observed
no	280mg	10Hz PET	300	570mW	140Hz, observed
yes	280mg	10Hz PET	100	10mW	estimated to be 5.2Hz
yes	280mg	35Hz BeCu	100	0.6mW	estimated to be 1.3Hz

The BeCu suspension is stable enough to see the difference larger than 0.03 Hz. $\sqrt{35.7^2 + 1.3^2} = 35.72$ Hz is not good enough but a factor of 2 improvement in the total gain will let us see the shift of the optical spring frequency.

We plan to implement the green cavity to increase the gain.

Summary and discussions

- We succeeded in observing an optical spring in the transfer function measurement of a detuned FP cavity.
- We tried to see the optical spring with an intracavity OPO inserted in the FP, but have not succeeded.
- The signal amplification gain is measured to be 1.4 but the input power is limited to ~1mW as the carrier starts to oscillate in the OPO.
- We have replaced the PET suspension by the BeCu one so that a small difference of the optical spring can be found.