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Observation of high-freq GW sources

[Kiuchi, 2010]
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e BNS merger appears above the cavity pole

e |ncrease of the laser power is essential but challenging
e |nput squeezing is one possibility

e Another possibility would be signal amplification




Squeezer and amplifier
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Input squeezing Parametric amplifier
- decreases noise - increases signal

- weak against losses - strong to losses(?)



Optical spring frequency
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Optical spring frequency

Shot noise (1/rtHz)
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Spring freq cannot exceed the optical resonance.
Highest frequency is given with Qspr=Qreso :
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Optical spring stiffness is given by the circulating

length, and the mirror mass.
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Parametric signal amplification

Optical spring w/o OPO
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Optical spring frequency can be enhanced by
tuning the OPO gain s.
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Optical spring shifts
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Increasing the OPO gain, the optical spring frequency
shifts to higher frequencies.



Quantum noise spectra with 100g mirrors
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The higher the OPO gain, the narrower but deeper the

quantum noise spectrum.




Optical losses

So far we did not include optical losses

Compared with the squeezing, the amplification
should be strong against external losses

The amplification, however, turns out to be not
so strong against internal losses as the losses
also amplify with the signal



Contribution of each optical loss
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L=1200m, 1=10kW, SQ=34dB
Thomas code is used.

- 50ppm losses in each arm
- 100ppm losses in BS
- 1000ppm losses in SRM
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It is a little strange that the loss vacuum increases at any
qguadrature: my student is now working on this issue.




Including optical losses

L=1200m, 1=10kW, SQ=34dB
Thomas code is used.

Sensitivity (1/rtHz)
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The sensitivity is better than aLIGO above 3kHz.



Table-top experiment at Tokyo Tech

- 200mg mirror
- 10W laser (600mW + fiber amp)
- PPKTP for SHG/OPO
- Detuned SRMI (no PR)
- The goal is to see the shift of
the optical spring frequency
by a TF measurement



Experiment plan

(1) Generation of 532nm

(2) Operation of SRMI with fixed mirrors

(3) Operation of SRMI + unlocked OPO with fixed mirrors

(4) Operation of SRMI + unlocked OPO with a suspended mirror
(5) Operation of SRMI + locked OPO with a suspended mirror

We have done (1)-(3) in 2016.
Now we are developing a suspension system.
Control scheme of the OPO is not yet considered.



How much 532nm do we need?
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Generation of 532nm
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[Kataoka, thesis ‘17]
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Finesse of the bowtie SHG cavity is 126.

The efficiency is a bit lower than expected but the
requirement has been satisfied.



Operation of SRMI

23MHz

H‘M" PBS1 HWP3 EOM1 HWP4 PBS2

[Kataoka, thesis ‘17]
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e 92MHz subcarrier is used to lock the SRMI
e MICH is locked to the bright fringe of subcarrier
e SRCL is locked to the resonance of subcarrier



Operation of SRMI

[Kataoka, thesis ‘17]
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The lock was kept for more than 30 min
UGF is 700Hz

Currently it is a tuned SRMI



Gain

e OPOis roughly aligned and
modematched to carrier
e OLTF gain decreased at LF 0
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Development of a small-mirror suspension

Thermal noise is not an issue
Optical spring frequency w/o OPO
is about 20Hz so suspension freq
is better to be <~10Hz

previous suspensions

* For the SRMI operation, it would R
be good if pitch/yaw freq are much ———
higher than the longitudinal mode

designed by John Winterflood
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Development of a small-mirror suspension

[Hisatomi, thesis ‘17]
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Summary

Parametric amplification of GW signal can be a
way to improve the sensitivity at high frequencies

An issue is that optical losses are amplified at
the optical spring freq together with GW signals

We built a prototype experiment at Tokyo Tech
and locked SRMI with an intracavity OPO

We are to install a small mirror and now working
on its suspension system (damping)



