

Observation of high-freq GW sources

[Kiuchi, 2010]

- BNS merger appears above the cavity pole
- Increase of the laser power is essential but challenging
- Input squeezing is one possibility
- Another possibility would be signal amplification

Squeezer and amplifier

Input squeezing

- decreases noise
- weak against losses

Parametric amplifier

- increases signal
- strong to losses(?)

Optical spring frequency

Optical spring frequency

 $8I_c\omega_0$

mLc

Spring freq cannot exceed the optical resonance. Highest frequency is given with $\Omega_{spr}=\Omega_{reso}$: $\Omega \cong$

Optical spring stiffness is given by the circulating power, arm length, and the mirror mass.

Parametric signal amplification

Optical spring frequency can be enhanced by tuning the OPO gain *s*.

Optical spring shifts

Increasing the OPO gain, the optical spring frequency shifts to higher frequencies.

Quantum noise spectra with 100g mirrors

The higher the OPO gain, the narrower but deeper the quantum noise spectrum.

Optical losses

- So far we did not include optical losses
- Compared with the squeezing, the amplification should be strong against external losses
- The amplification, however, turns out to be not so strong against internal losses as the losses also amplify with the signal

Contribution of each optical loss

It is a little strange that the loss vacuum increases at any quadrature: my student is now working on this issue.

Including optical losses

L=1200m, I=10kW, SQ=34dB Thomas code is used.

The sensitivity is better than aLIGO above 3kHz.

Table-top experiment at Tokyo Tech

- 200mg mirror
- 10W laser (600mW + fiber amp)
- **PPKTP for SHG/OPO**
- Detuned SRMI (no PR)
- The goal is to see the shift of the optical spring frequency by a TF measurement

Experiment plan

- (1) Generation of 532nm
- (2) Operation of SRMI with fixed mirrors
- (3) Operation of SRMI + unlocked OPO with fixed mirrors
- (4) Operation of SRMI + unlocked OPO with a suspended mirror
- (5) Operation of SRMI + locked OPO with a suspended mirror

We have done (1)-(3) in 2016. Now we are developing a suspension system. Control scheme of the OPO is not yet considered.

How much 532nm do we need?

Punp beam power (mW)

Generation of 532nm

[Kataoka, thesis '17]

The efficiency is a bit lower than expected but the requirement has been satisfied.

[Kataoka, thesis '17]

- 92MHz subcarrier is used to lock the SRMI
- MICH is locked to the bright fringe of subcarrier
- SRCL is locked to the resonance of subcarrier

- The lock was kept for more than 30 min
- UGF is 700Hz
- Currently it is a tuned SRMI

Operation of SRMI + OPO in SRC

- OPO is roughly aligned and modematched to carrier
- OLTF gain decreased at LF

Development of a small-mirror suspension

previous suspensions

 For the SRMI operation, it would be good if pitch/yaw freq are much higher than the longitudinal mode

- Thermal noise is not an issue
- Optical spring frequency w/o OPO is about 20Hz so suspension freq is better to be <~10Hz

designed by John Winterflood

Development of a small-mirror suspension

<u>Summary</u>

- Parametric amplification of GW signal can be a way to improve the sensitivity at high frequencies
- An issue is that optical losses are amplified at the optical spring freq together with GW signals
- We built a prototype experiment at Tokyo Tech and locked SRMI with an intracavity OPO
- We are to install a small mirror and now working on its suspension system (damping)