LIGO's first detection of gravitational waves and the development of KAGRA

KMI2017 Jan. 2017

Tokyo Institute of Technology <u>Kentaro Somiya</u>

K.Somiya

(

Self Introduction

- Applied Physics (U Tokyo)
- NAOJ 2000-04
- Albert-Einstein Institute
 2005-07

- Caltech 2008-2009
- WIAS 2010
- Tokyo Tech 2011~

Gravity

Spacetime

Blackhole

Gravitational wave

1916 Einstein

 $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$

1969 Weber

1974 Hulse & Taylor

(1993 Nobel Prize)

70's: Interferometric GW detector

1994 TAMA construction 1999 TAMA observation

2002 LIGO (US) 2005 GEO (GE/GB) 2007 Virgo (IT/FR) Observations started

2010 Internal news of first GW?!

The 1G detectors were able to see GW events of up to 70M lightyears distant, but found no real GW signal.

Decision to upgrade the detectors

Sensitivity of the 1G detectors

Sensitivities are limited by seismic noise, thermal noise, and laser quantum noise.

Upgrade to 2G

Big news on Feb 12th 2016

Live streams in US and in Europe

0:30AM: Virgo announced the first detection 0:32AM: NSF person gave a speech in the US 0:35AM: LIGO announced the first detection 1:00AM: LIGO papers were published 1:30AM: Prof Kajita (KAGRA PI) commented in web

Big news on Feb 12th 2016

PRL 116, 061102 (2016)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016

Ş

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ . The source lies at a luminosity distance of 410^{+160}_{-180} Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$, and the final black hole mass is $62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M_{\odot}c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

36 and 29 Ms BHs merged to make a 62 Ms BH and its inspiral, merger, ringdown signals were observed.

More details about this PRL

- Waveform matched to a numerical relativity template
- The same waveform was observed by 2 LIGO detectors that are 3000km apart (with 6ms delay)
- The distance to the BH is ca 1.3B lightyears
- The Signal-to-noise ratio was 24 and the False-alarm rate was calculated to be less than 1 in 200,000 yrs

- Current members: 1006 (83 institutes)
- Total budget: ca 120B JPY

Advanced LIGO sensitivity in '15

below 20Hz \Rightarrow Control noise 20~100Hz \Rightarrow Mystery noise above 100Hz \Rightarrow Quantum noise

Data analysis

Significance

LIGO continued the observation for 2 weeks after the discovery to calculate the significance of this event compared with signal-like noises \Rightarrow The difference is larger than 5 σ

Second GW on Dec 26th 2015

Signal-to-noise ratio was not as high as the first one but the significance was high for its long observation time.

Engineering run and observation run

- GW150914 was found during the engineering run
- The result for the first 2 weeks was published in February (the rest was published in June)
- Observation was extended for a few days and the second GW was found in the extended period
- The second observation run started Nov 2016.

KAGRA

Location: Kamioka, Gifu

- Underground facility + Cryogenic mirrors
- To start the cryogenic operation in 2018
- Observation rage for NS binaries will be 0.5B LY

Cryogenic system

- System in a radiation shield
- Upper mass cooled via 6N AI heat link
- Sapphire test mass cooled in 23K via Sapphire suspension fiber

Underground facility

- Low seismic noise
- Low gravity gradient noise
- Low control noise due to low RMS motion

Nov 2012 Tunnel excavation

Dec 2012 Cryostat manufacture (Toshiba factory)

View at the central area

Dec 2012

Jul 2014

KAGRA test operation in 2016

at the test run

final configuration

- 2 x 2week operation in 3/25-4/25
- Test the integrated system
 - control system
 - commissioning
 - observation shift
- World first operation of a km scale underground GW detector

KAGRA schedule

2017: Installation of cryogenic suspensions

2018: Operation of a cryogenic interferometer

2019: Integration of optical resonators

2019~20: Commissioning and observation

Summary

- Discovery of GW in 2015
- GW astronomy is about to begin
- KAGRA is under development for the first observation in 2019~20

KAGRA-Chan

Future projects

Space detectors (LISA, DECIGO)

