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Gravitational Waves

* 90 GW events from CBC have been detected.
« GWs from supernovae are expected to be detected in the near future.

Gravitational-Wave Transient Catalog

Detections from 2015-2020 of compact binaries with black holes & neutron stars
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https://dcc.ligo.org/LIGO-G2102338/public

Credit: LIGO/Virgo/KAGRA/S. Ghonge/K. Jani


https://dcc.ligo.org/LIGO-G2102338/public

Deep Learning for GWs from CBC
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GW from CCSN

 Numerical simulations have revealed common features that the
GWs from CCSNe have in time-frequency representation.

-
- 18
\ b

Al A
-23 N
i

-23

-23.5
-23.5

SASI

b wasrtuss ol standing accretion shock instability
0 100 200 300 0 100 200 300
T (ms) T (ms)

Kuroda et al., ApJL 829 L14 (2016)

-24
-24



Deep Learning for GWs from CCSNe

Training :
d test phenomenological
andies waveform with g-mode
data
Noise Gaussian noise
HLV
2D-CNN
CNN Model binary classification:

signal and noise

train: phenomenological

waveform with g-mode

(updated from Astone)
test: simulation data

real noise in O2
HLV

Mini Inception-Resnet
(2D-CNN)

binary classification:
signal and noise

simulation data
(magenetorotational and
neutrino-driven)

simulation data and glitches

Gaussian noise
HLVK, LIGO A+&VK

Gaussian noise
Virgo, ET (single detector)

1D-CNN
1D- and 2D-CNN
three-class classification:
magnetorotational
neutrino-driven
noise

binary classification:
signal and glitch

— We try to use phenomenological waveforms with g-mode and SASI to improve the

detection efficiency




Phenomenological Waveform
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Training Data

¢ NOISG * GWOSC, The O3a Data Release,
« PSD: Estimate from O3 open data* using Welch’s method nipsifun.qu-openscience.or/08103a)
- Gaussian noise 10719 ==y
— L1 ]
10720 ¢ v
 Signal
« Phenomenological waveform T 10
- Sampling rate: 4096Hz élo-zz U

» 1 second of data after core-bounce
» Direction: randomly sampled

« SNR: randomly sample from [5, 30]
* Whitened T
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We generated 1,000,000 samples in total; 500,000 signal + noise samples &
500,000 pure-noise samples


https://www.gw-openscience.org/O3/O3a/

Test Data

 Signal
e Simulation data from Radice+2019, Powell+2019, Powell+2020 and
Powell+2021

SASI did not occur SASI occurred

s3.5 in Powell2019 )

WWMMWN MMMWM s18 in Powell2020

y20 in Powell2020 MWMM\W s25 in Radice2019

s9 in Radice2019 z100 in Powell2021
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Test Data

 Signal

e Simulation data from Radice+2019, Powell+2019, Powell+2020 and
Powell+2021

* Preprocessing: resampling, highpass filtering, tukey window and zero
padding

« Distance:[1, 3,5,7,9,11,13, 15, 17, 19] kpc

 Noise

« Generated two test sets: signals in Gaussian noise and those in real
noise of O3.




CNN Model

« 1D-CNN whose input are whitened strains

0.59
Layer Input 1 2 3 4 5 6 7 8 9
0.58
Type Conv Conv Conv Conv Conv Conv  Linear Linear Linear 0571
Size (3,4096) (16,4033) (16,992) (16,961) (16,310) (16,295) (16,140) 64 64 2 0.56 |-
Kernel size 64 64 32 32 16 16 0.55 -
v
Maxpool size - 4 3 - 2 8 0.54r
-
Dropout 0 0 0 o) o) o) 0.25 0.25 0 0.53
Activation SiLU SiLU SiLU SiLU SiLU SiLU  SiLU  SiLU  Softmax 0.52r
. 0.51F
Number of parameters: 191,842
0.5
0.49

 We trained two models:

— Validation loss
— — Training loss 106

—— Validation accuracy

— — Training accuracy | | 05
10.4
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T TN~ 10.1

Il Il Il Il 0

0 5 10 15 20 25 30

Epoch

* Model 1 is trained with phenomenological waveforms with g-mode and SASI
* Model 2 is trained with phenomenological waveforms with only g-mode

Accuracy



ROC Curve
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False alarm rate

AUC (the area under the curve)

e S koe | 15 ko

model 1 1.00 0.97 0.80

model 2 1.00 0.96 0.77

Left figure: ROC curve for the signals
that SASI occurred and injected in
Gaussian noise.

Model 1, trained using signals with
SASI, shows better detection
efficiency.
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Detection efficiency vs. Distance
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* Model 1, trained with signals with SASI performs better than model 2 for signal with SASI at
large distances.

» For signals without SASI, there is no much difference between model 1 and 2 at any distance
because the training set of model 1 also includes signals without SASI.
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Detection Efficiency of Each Data
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(Gaussian noise vs. Real noise

* The efficiency for signals in real | | e ——
noise was expected to be lower  °°] —Real |
than those in Gaussian noise 081
due to non-stationary or non- 0.7
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* The right figure shows the
opposite, and we do not know
the cause at the moment and
would like to continue the
Investigation.
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Conclusion

« Trained CNN using phenomenological waveforms with g-mode
and SASI| and improved the detection efficiency

« Somehow signals in real noise showed better efficiency than
Gaussian noise

Future work

* Investigate the Gaussian vs. real noise issue

 Improve the efficiency by using 2D-CNN

« Compare the efficiency and speed with coherent WaveBurst
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