深層学習による超新星爆発からの重力波の検出

日本物理学会2022年秋季大会 9月7日 7pA122-14

<u>笹岡聖也</u>, Hou Yilun, Diego Dominguez, 宗宮健太郎, 高橋弘毅^A 東工大理, 東京都市大^A

重力崩壞型超新星爆発

- ・8太陽質量以上の恒星が起こす爆発
- 中性子星の形成過程
- 重力波の観測によって内部コアの物理を知ることができる

重力波の波形

 数値シミュレーションにより、時間周波数表現における共通の 特徴が分かってきている

波形の正確な予測が困難 → マッチドフィルタは使えない

- coherent WaveBurst (cWB)
 - Wavelet 変換を用いて、複数の検出器間でコヒーレントに発生する時間
 間周波数領域の excess powerを見る
- 深層学習ベース: López et al., PRD 103, 063011 (2021)など
 - gモードのphenomenological波形を用いてCNNを学習
 - シミュレーション波形を用いてテスト

→ 本研究: SASIを加えたphenomenological波形で学習し、比較

phenomenological波形

4

- PSD: O3のデータ*からWelchの方法で推定
- ガウシアンノイズ

• 信号]
------	---

- phenomenological波形
- サンプリングレート4096Hz, 1秒分
- ・ 到来方向: ランダムに選択
- SNR: [5,30]からランダムに選択
- ホワイトニング

→計100万個 (信号+ノイズ:50万, ノイズのみ: 50万)

・3次元シミュレーション波形

	SASIあり	SASIなし
Kuroda 2016	SFHx	TM1 DD1
Powell 2020	s18	m39 y20
Radice 2019	s25	s9 など

• 前処理

四重極モーメントが分かっているデータは あらゆる方向からの振幅を計算

- 等間隔にリサンプリング
- ・ハイパスフィルタ
- tukey窓
- ゼロパディング
- 距离: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] kpc

- ・ホワイトニングした時系列信号を入力とする1次元CNN
- Gabbard et al. (2018)のモデルをもとに作成 カーネルサイズや活性化関数を変更

Layer	Input	1	2	3	4	5	6	7	8	9
Туре		Conv	Conv	Conv	Conv	Conv	Conv	Linear	Linear	Linear
Size	(3,4096)	(16,4033)	(16,992)	(16,961)	(16,310)	(16,295)	(16,140)	64	64	2
Kernel size		64	64	32	32	16	16	-	-	-
Maxpool size		-	4	-	3	-	2	-	-	-
Dropout		0	0	0	0	0	0	0.25	0.25	0
Activation		SiLU	SiLU	SiLU	SiLU	SiLU	SiLU	SiLU	SiLU	Softmax

パラメータ数: 191,842

テスト結果 (ROCカーブ)

SASIなしで

学習

0.805

0.644

0.786

0.672

SASIなしで

学習

距離に対する検出可能性

テストデータ2: SASIが現れなかったシミュレーション波形

FAR: 0.01に固定

- SASIを含む波形で学習することでSASIが現れた波形に対して各距離での真陽性率が向上 •
- SASIが現れなかった波形に対してはほとんど変化なし •

各波形の検出可能性

SASIありのモデルでテスト FAR: 0.01に固定

- Radice 波形に対する精度は良い
- Kuroda 波形の精度が良くない → 波形パラメータや式を再考したい

まとめ

- SASIを加えたphenomenological波形でCNNを学習
- SASIが起きたシミュレーションデータに対して検出精度が向上
- SASIが起きなかったデータに対してもわずかに精度が向上

今後の展望

- phenomenological波形のパラメータ再考
- ・2次元CNNを用いて精度向上
- 実ノイズとガウシアンノイズの比較
- cWBとCNNの比較 (精度,速度)

Backup

深層学習ベースの探査手法の先行研究

	Astone et al. (2018)	López et al. (2021)	less et al. (2021)	Chan et al. (2020)
トレーニング・ テスト波形	phenomenological波形 (g-modeに着目)	 ・ phenomenological波形 (g-modeに着目)をアップデート (パラメータ数増など) ・ テスト波形として neutrino- driven CCSN波形も利用 	・neutrino-driven CCSN波形 ・モデル化したグリッチ波形 (Sine-gaussian と Scattered light)	・magnetorotational CCSN 波形 ・neutrino-driven CCSN 波形
ノイズモデル	LIGO, Virgo の シミュレーションノイズ (3台構成)	LIGO, Virgoの シミュレーションノイズ (Astone et al. との比較のため) O2の実ノイズデータ (3台構成)	Adv. Virgo (O3) or ET の シミュレーションノイズ (1台構成)	 LIGO 2台, Virgo, KAGRA (HLVK) LIGO A+ (Hanford, Livingston), V, K シミュレーションノイズ
CNNモデル	2D-CNN 2クラス分類: ノイズ 信号+ノイズ	Mini Inception-Resnet 2クラス分類: ノイズ 信号+ノイズ	1D-CNNと2D-CNN 2クラス分類: 信号 グリッチ ・1D-CNNと2D-CNNの アンサンブル: Multi-model 分類の可能性を調査	1D-CNN 3クラス分類: magnetorotational 信号 +ノイズ neutrino- driven 信号 + ノイズ ノイズ
前処理などの特徴	●cWB を使用して time-frequency image を作成 ●Image はそれぞれの検出器データで 作成しRGBとして扱う	Astone et al. (2018)と同等	 Wavelet Detection Filter を使用して trigger 情報を作成 入力: 1D-CNN: trigger 周りのホワイトニングされた時系列データ 2D-CNN: trigger 周りの時間周波数 image (spectrogram) トレーニングに使用していないmodelをテ ストmodelとして使用している場合も評価 	入力: ホワイトニングされた 各検出器の時系列 データ トレーニングに使用していないmodelをテ ストmodelとして使用している場合も評価

