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• Signal: phenomenological waveforms

• Noise
Ø Gaussian

Ø Real

• Training data: 

• Test data: 

• Loss curve

• Model1 vs. Model2

• Gaussian noise vs. Real noise
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Core-collapse supernovae (CCSNe) are potential sources of gravitational waves (GWs) that could be detected by ground-
based interferometric detectors, and their detection and analysis are of great importance for understanding their explosion 
mechanism. In this study, we applied deep learning to detect GWs from CCSNe. We used phenomenological waveforms with g-
mode and SASI to train a model and validated it using waveforms from three-dimensional numerical simulations. 

FIG. 1. A phenomenological waveform in 
time domain and its spectrogram

TABLE I. Range of the parameters of the 
phenomenological waveforms

FIG. 2. Estimated Amplitude spectral 
density of each detector.

Produced using power 
spectral density derived 
from O3a open data [1] 
using Welch’s method

Obtained from O3a open data [1]

We used 3D numerical simulation data from the following 
papers: Radice 2019 [2], Powell 2019 [3], Powell 2020 [4], 
and Powell 2021 [5], and generated two test sets: signals 
in Gaussian noise and those in real noise.

MODEL

TABLE II. The structure of the convolutional neural network model we used.

5,000,000 phenomenological  waveforms in Gaussian 
noise and 5,000,000 pure Gaussian noise samples

We trained two models; the structure is same (Table II), but 
the model 1 is trained using waveforms with SASI, and the 
model 2 is trained using only waveforms without SASI.

FIG. 3. Accuracy and loss curves. 

After 30 epochs of training, 
the accuracy of validation 
set was about 80%.

FIG. 4. ROC curve of the signals 
with SASI in Gaussian noise. 

Figure 4 shows that model 
1, trained using signals 
with SASI, exhibits better 
detection efficiency for the 
signals with SASI in 
Gaussian noise.

Figure 5 shows that model 
1, trained with signals with 
SASI performs better than 
model 2 for signal with 
SASI at large distances. 
This indicates that training

FIG. 5. Detection efficiency vs. distance curve for the signals with SASI (left) and 
without SASI (right) in Gaussian noise. False alarm rate is fixed to 0.01.

On the other hand, for signals without SASI, there is no 
much difference between model 1 and model 2 at any 
distance because the training set of model 1 also includes 
signals without SASI.

a model using SASI works well when detecting small signals.

FIG. 6. Detection efficiency vs. distance 
curve of model 1 for the signals with 
SASI in Gaussian and real noise.

The efficiency of the model 
for signals in real noise was 
expected to be lower than for 
signals in Gaussian noise 
due to non-stationary or non-
Gaussian noise, but Fig. 6 
shows the opposite. We do 
not know the cause at the 
moment and would like to 
continue the investigation.
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