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To treat the problem as a classification task, we divided the sky into 3072 
pixels using HEALPix; the solid angle of one pixel is 13.6 deg2. We used the 
following three methods to classify GW signals into one of the pixels. 

• Method I: ANN

This method was proposed by C. Chatterjee et al. [1]. Input of the ANN (Fig. 
1a) are the following seven features:

1. arrival time delays of signals
2. maximum cross-correlation values of signals
3. arrival time delays of analytic signals
4. maximum cross-correlation values of analytic signals
5. ratios of amplitudes around merger
6. phase lags around the merger
7. complex correlation coefficients of signals

• Method II: TCN

For method II, the raw time-series data were input to the TCN. A TCN is a 
one-dimensional convolutional neural network model which consists of several 
temporal blocks (Fig. 1b). We stacked seven temporal blocks with dilation 2! and 
kernel size 3 for the 𝑖-th block (see Fig. 1c). The input had three (or four) 
channels when using strain data from three (or four) detectors.

Each deep learning model in method I and II was implemented and trained by 
Pytorch using cross-entropy loss as a loss function and Adam optimizer.

• Method III: Combination

For method III, we took the weighted average of the output predictions of 
methods I and II, and selected the pixel with the highest accuracy. The weight 
was decided to maximize the accuracy of the validation set. 
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FIG. 1. The structure of our models. (a) ANN architecture for method I. (b) Temporal block 
in a TCN. (c) TCN architecture for method II. 

TABLE II. Accuracy of test set for each method.

DATA GENERATION

Mass1, Mass2 [30M⊙, 80M⊙] 
Spin1z, Spin2z [0, 0.998]
Right ascension [0, 2𝜋]

Declination [−𝜋/2, 𝜋/2]
Coalescence phase [0, 2𝜋]

Inclination [0, 𝜋]
Polarization [0, 2𝜋]

Network SNR [10, 50]

TABLE I. Parameters used to simulate 
the signals. 1) simulate waveforms using SEOBNRv4 

model and parameters in Table I with a 
sampling rate of 2048 Hz

2) simulate noise using the design 
sensitivity of each detector and inject 
signal

3) whiten and lowpass at 500 Hz
4) cut to a length of 0.25 secs: 0.2 secs 

before the merger and 0.05 secs after 
the merger.

We generated 800,000 samples for training, 100,000 samples for validation, 
and 100,000 samples for testing. 

We used ggwd package to generate datasets. The data generation process 
is as follows:

From Table II, we can see that 
method III, the combination of ANN and 
TCN, showed the best accuracy of the 
three methods. Since methods I and II 
are substantially different and learn 
different features of the input, each 
method would have compensated 
deficiencies of the other and the 
combination of them would have 
increased the accuracy.

Sky localization is measured by the 
90% credible area, the smallest area 
enclosing 90% of the output probability, 
and the searched area, the smallest area 
that contains the actual location of the 
source. Of the three methods, method III 
showed the minimum searched area, with 
a medium value of 26.9 deg2  when using 
three detectors (see Fig. 2). The time 
taken by method III to localize one GW 
signal was around 0.02 seconds.
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FIG. 2. Sky localization performance using 
three detectors (HLV) for each method. 

FIG. 3. Sky localization performance with and without KAGRA for method III.

FIG. 5. Accuracy vs SNR for method III.

Low-latency detection and sky localization of gravitational waves are important for electromagnetic follow-up observations. The current data-
analysis method relies on matched filtering, and the computational cost is often a problem. As an alternative, machine learning is increasingly being 
applied in the analysis of various gravitational-wave data. In this study, we used machine-learning method for sky localization of gravitational-wave 
signals from binary black hole mergers using four detectors: LIGO H1, LIGO L1, Virgo, and KAGRA. Our method consists of two deep learning 
models: artificial neural network (ANN) and temporal convolutional network (TCN). In this poster, we report and discuss the results.
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FIG. 4. Probability heatmap of localization of one test sample using four detectors.

It is a common problem in machine 
learning that the accuracy is low for a 
strain with a low SNR (Fig. 5). To solve 
this, we applied curriculum learning, but it 
did not help improve the accuracy. 

To improve the accuracy for such 
data, in the future, we intend to apply 
deep learning algorithms for denoising 
before using our localization method. We 
would also like to apply this method to 
GWs from binary neutron star mergers 
and compare the results with BAYESTAR, 
the rapid Bayesian sky localization 
algorithm.

When using four detectors, the classification accuracy was improved (Table I), 
and both the 90% credible area and the searched area were lowered (Fig. 3). 
Therefore, we confirmed that the fourth detector has a positive influence on sky 
localization. 

90% area: 54.4 deg2
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FIG. 1. The structure of our models. (a) ANN architecture for method I. (b) Temporal block 
in a TCN. (c) TCN architecture for method II. 
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FIG. 5. Accuracy vs SNR for method III.
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GWs from binary neutron star mergers 
and compare the results with BAYESTAR, 
the rapid Bayesian sky localization 
algorithm.

When using four detectors, the classification accuracy was improved (Table I), 
and both the 90% credible area and the searched area were lowered (Fig. 3). 
Therefore, we confirmed that the fourth detector has a positive influence on sky 
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