## Quantum noise reduction for the third-generation GW detector

**YKIS** Jun 3, 2013

Tokyo Institute of Technology

Kentaro Somiya

## 2nd generation to 3rd generation



2000-10: 1G detectors TAMA, LIGO, Virgo, GEO

2015-25: <mark>2G detectors</mark> aLIGO, AdV, GEO-HF, KAGRA



- 2030- : 3G detectors ET, LIGO3
- 2030- : Space detectors LISA, DECIGO

## 2nd generation to 3rd generation

|             | aLIGO          | KAGRA               | ET-LF             |
|-------------|----------------|---------------------|-------------------|
| Baseline    | 4km            | 3km                 | 10km              |
| Facility    | On ground      | Underground         | Underground       |
| Test mass   | 40kg<br>Silica | 23~30kg<br>Sapphire | ~200kg<br>Silicon |
| Laser       | 1064nm         | 1064nm              | 1550nm            |
| Temperature | 290K           | 20K                 | 10K               |

## 2nd generation to 3rd generation



ET sensitivity exceeds the limit determined by Heisenberg's Uncertainty Principle.

\* KAGRA also exceeds the limit of its 23kg masses.

## <u>Standard Quantum Limit (SQL)</u>

Noise Spectrum (1/rtHz)



The limit cannot be exceeded just by increasing the power.

## How does ET beat the limit?



ET-LF: 20K, low power ET-HF: 290K, high power

- ET is composed of 2 detectors: one at 290K and one at 20K
- Each of them beats the SQL with **freq-dependent squeezing**
- 20K ET-LF exceeds the SQL more for its optical spring (KAGRA employs the same technique)

2 important techniques to beat the SQL

# **Optical spring** Nλ

[Buonanno and Chen (2001)]



Cavity is detuned from the resonance

Go further from the resonance >> Less radiation pressure (pull) Come closer from the resonance >> More radiation pressure (push) Optical spring is created

Signal enhancement at the spring frequency



Sensitivity is given for force Few, not for displacement x. -> SQL can be beaten at around the spring frequency.

## **Optical spring**



Optical spring is ready to be used in 2G detectors. (AdVirgo, KAGRA)



Squeezing of the vacuum reduces phase noise -> equivalent to the power increase



Phase fluctuation is reduced by the non-linear crystal

## Squeezing in GEO/LIGO

Observatory noise, calibrated to GW-strain (Hz<sup>-1/2</sup>)





In high-power detectors, increase of RPN is not good...



Low shot noise at high freq and low RPN at low freq.

## Sensitivity with FD squeezing

#### (broadband detector)



10dB FD squeezing makes the sensitivity sqrt 10 times better at all the frequencies.

## Sensitivity with FD squeezing

#### (detuned detector)



10dB FD squeezing makes the sensitivity sqrt 10 times better at all the frequencies.

### Some rooms for further improvement



low freq: speedmeter mid freq: many ideas high freq: 120K Silicon





## <u>Summary</u>

- Einstein Telescope composed of 2 detectors
- ET-LF employs the optical spring
- Both ET-LF and HF employ the FD squeezing
- Sensitivity exceeds the SQL of 200kg masses
- Some rooms for further improvements

## Supplementary slides

## ET-LF sensitivity with losses

[S.Hild]



Some deterioration at the resonances. This is due to optical losses (scattering, absorption, etc.).

## <u>Alternative configuration for ET-LF</u>



Speedmeter beats the SQL in broadband w/o filter cavities.



## **Optical losses and squeezing**

[Vahlbruch et al (2008)]



LIGO3

