

Cryogenic system for KAGRA

- Status and results of performance test of a cryogenic duct shield -

ICRR, Univ. of Tokyo, KEK^A, JECC TORISHA^B, NAOJ^C

Yusuke SAKAKIBARA, Nobuhiro KIMURA^A, Masaki TANAKA^B, Tatsuya KUME^A, Shigeaki KOIKE^A, Tomotada AKUTSU^C, Takayuki TOMARU^A, Toshikazu SUZUKI^A, Kazuhiro YAMAMOTO, Kazuaki KURODA

2014.5.27 GWADW (Takayama, Japan)

Contents

- KAGRA cryogenic system
- Pipe-shaped radiation shield (duct shield)
 - Thermal radiation
 - Calculation
 - Measurement (in Jecc Torisha)
 - Scattered light noise
 - Calculation
 - Measurement (in Jecc Torisha)
- Future work

KAGRA (Large-scale Cryogenic Gravitational wave Telescope)

http://www.gw.hep.osaka-cu.ac.jp/openworks/whatisgw.html

- Interferometer with 3 km arms
- Features
 - Kamioka underground with small seismic motion
 - Mirrors (~20 kg) are cooled down to 20 K
 - Reduce thermal noise

KAGRA cooling system

Purpose of duct shields

- Only suspension system is cooled down (3 km duct and SAS: 300 K)
- Mirror must be surrounded by radiation shields
- Holes for main laser are necessary
- Duct shields •
 - To reduce thermal radiation
 - Duct to decrease solid angle to 300 K region
 - Duct reflects radiation
 - Baffles can reduce thermal radiation through duct shield
 - To cause no scattered light noise
 - Small vibration with rigid supports

Design of duct shield |Cryostat

- Baffles are designed to satisfy KAGRA requirement of thermal radiation and scattered light
- Duct and baffles are coated with black coating Solblack to absorb thermal radiation and scattered light
- Baffles are tilted to catch scattered light
- Cooled down by one cryocooler 2014.5.27 GWADW (Takayama, Japan) Yusuke Sakakibara

Design of duct shield

S. Koike

• Vacuum duct and duct shield was supported rigidly to the ground to reduce vibration

Thermal radiation

Calculation of thermal radiation

Reflectivity (AI + Solblack) used for calculation .

- Rays are reflected by duct
 shield many times -> power of
 rays is reduced
- Radiation was calculated by commercial ray-tracing software ZEMAX
 - Rays of thermal radiation were emitted with random direction
 - When ray hits duct shield, power of ray is multiplied by reflectivity

Measurement of thermal radiation

- Coated with Solblack to enhance emissivity or absorptivity
 - Plate 1 is heated up to 300 K and emits thermal radiation
 - Plate 2 absorbs radiation and is heated up
 - Calibration is conducted using heater on plate 2 2014.5.27 GWADW (Takayama, Japan)

- Calculation predicts only order of magnitude of heat input
 - Measured reflectivity at 10 um of shield has error
 - Rays are reflected by shield many times
- Mirror will absorb 10 mW (It satisfies KAGRA requirement: 1 W including laser absorption)

- Experiment where PLATE 2 is heated up to 300 K and PLATE 1 absorbs radiation was conducted
- Heat transfer of left and right direction should be equal
 - Otherwise, even if two plates have same temperature, heat will be transferred

Temperature log

Scattered light

2014.5.27 GWADW (Takayama, Japan) Yusuke Sakakibara

Scattered light noise

- Some of main laser beam
 - Scattered by mirror
 - Reflected by duct shield with vibration (comparable to seismic motion)

Calculation of scattered light noise

- How much laser light recombine main laser beam
 - Rays were traced using ZEMAX
 - Rays were emitted with BRDF (angular distribution of scattered light) of mirror

Upconversion of vibration of duct shield

- It is necessary to include higher order terms about vibration amplitude
- E.g. micro seismic peak at ~0.2 Hz can be upconverted to observation frequency band

D. J. Ottaway et al. OPTICS EXPRESS 20 (8) (2012) 8329

Calculated scattered light noise

- Seismic motion of Kamioka is assumed as vibration of duct shield
- One order of magnitude smaller in main frequency band (>10 Hz)

Measurement for scattered light

- It is difficult to measure scattered light noise without KAGRA interferometer
- What we can do now
 - Mechanical resonance frequency measurement
 - Vibration measurement (future work)

Taking photographs of scattering of red laser

Mechanical resonance frequency of duct shield

Photographs of scattering of red laser

Summary

- Summary
 - Thermal radiation through duct shield was measured
 - Result is consistent with calculation and satisfies KAGRA requirement
 - Scattered light noise was calculated
 - One order of magnitude smaller in main frequency band
- Future work

- Vibration measurement of duct shield

