Status of DECIGO

Shuichi Sato Hosei University

For the DECIGO and the DPF collaboration

✤ DECIGO

DECIGO pathfinder

Mission status

Gravitational-Wave Advanced Detector Workshop 2014

Idea of DECIGO

DECi-hertz Interferometer Gravitational wave Observatory

- Seto, Kawamura and Nakamura, PRL87, 221103(2001)
- Bridges the gap between LISA and terrestrial detector
- \clubsuit Low confusion noise \rightarrow Potentially high sensitive instruments

Gravitational-Wave Advanced Detector Workshop 2014

Pre-conceptual design

Interferometer topology

- Differential FP interferometer
- Three interferometers for redundancy
- Drag-free controlled S/Cs

Constellation

- ✤ 4 interferometer units
- ✤ 2 overlapped units \rightarrow Cross correlation
- ♦ 2 separated units \rightarrow Angular resolution

Arm length:
Mirror diameter:
Mirror mass:
Laser wavelength :
Laser power:
Finesse:

1000 km 1 m 100 kg 532 nm 10 VV 10

Hida Hotel Plaza, Takayama, Japan May 25-30, 2014

Gravitational-Wave Advanced Detector Workshop 2014

Science of DECIGO

IMBH binary inspiral
NS binary inspiral
Stochastic background

Galaxy formation (Massive BH)
Cosmology (Inflation, Dark energy)
Fundamental physics

Gravitational-Wave Advanced Detector Workshop 2014

Key technologies for DECIGO

- Precision measurement in orbit
 - laser interferometry : Fabry-Perot cavity
 All dof drag-free control
 - Demonstration by DPF

Precision formation flying technique

- Long-baseline formation flight : km scale
- mm scale precision
- Demonstration by Pre-DECIGO

Gravitational-Wave Advanced Detector Workshop 2014

Gravitational-Wave Advanced Detector Workshop 2014

Sensitivity of DECIGO pathfinder

Laser source : 1030nm, 25mW IFO length : 30cm Finesse : 100, Mirror mass : 1kg Q-factor : 10⁵, Substrate: TBD Temperature : 293K Satellite mass : 450kg Altitude: 500km Thruster noise: 0.1µN/Hz^{1/2}

(Preliminary parameters)

Fig. by Ando

Gravitational-Wave Advanced Detector Workshop 2014

DPF satellite overview

DPF Payload

Size : 950mm cube Weight : 200kg Power : 130W Data Rate: 800kbps Mission thruster x10

Power Supply SpW Comm.

Satellite Bus

('Standard bus' system) Size : 950x950x1100mm Weight : 250kg SAP : 960VV Battery: 50AH Downlink : 2Mpbs DR: IGByte 3NThrusters x 4

Gravitational-Wave Advanced Detector Workshop 2014

DPF mission system (schematic)

Mission weight : ~150kg (200kg for bus) Mission space : ~95 x 95 x 90 cm

> Drag-free control Local sensor signal → Feedback to thrusters

Stabilized laser Yb: fiberDFB laser (1030nm) Power : 25mW Freq. stab. by lodine absorption line

Gravitational-Wave Advanced Detector Workshop 2014

Fabry-Perot interferometerFig. by AndoFinesse : 100Length : 30cmTest mass : ~1kgSignal extraction by PDH

Mission module/system on-board

6

4

3

DPF Payload

Thruster head

5

Stabilized.

Laser source

On-board

Computer

Interferometer

module

6

Mission

Interferometer module Test mass module *** Test mass, caging frame, laser sensor, Electro static sensor/actuator, Test mass lock mechanism, Charge management system Input/output optics ** Monolithic optical bench, PDH control, WFSs, MMT Structure/shielding system Support frame, thermal shielding, Vacuum enclosure Stabilized laser module

Drag-free control system **

Signal processing/control system Satellite **Bus system**

> **Bus thruster Solar Paddle Satellite Bus** ('Standard bus' system)

Gravitational-Wave Advanced Detector Workshop 2014

Stabilized laser module

Laser source

- Yb: Fiber DFB laser 1030nm (20mW)
- YDFA amplifier (250mW)
 Compact and light, Vibration resistant

Frequency stabilization

- Iodine cell
 - Vibration resistant, Long-term stability
- Absorption line: 515nm
- Stability: 0.4 Hz/rtHz @ <10Hz</p>

✤ BBM Size: W550 x D300 x H82 mm

Interferometer module

Wa

✤ 2 Test mass modules

Test mass, caging frame, Electro static sensor/actuator, Test mass lock mechanism, Charge management system

- Input/output optics Monolithic optical bench, PDH control, WFSs, MMT
- Structure/shielding system Support frame, thermal shielding, Vacuum enclosure (10-6Pa)

Input optics (BBM2)

@NAOJ

Interferometer module

Monolithic input optics

300

Test mass module

Gravitational-Wave Advanced Detector Workshop 2014

Input/output optical system

- Monolithic optical bench
- Silicate bonding
- Compacted for IFO BBM, ø120mm
- Optics bonded on both sides

Input optics (BBM2)

Test-mass module

- Test mass
- Caging frame
- Electro static sensor/actuator,
- Test mass lock mechanism,
- Charge management system

Test mass Reference for GW and inertial frame Caging frame Stay for other components

Electrodes for electrostatic sensor/actuator Local sensing actuation of TM

Drag free control

Concept

- Control S/C with reference to TMs
- Diff. modes to TMs
- Comm. modes to S/C
- Using hierarchical control

Disturbance source @LEO500km

- Solar radiation pressure: 20µN@DC
- Air drag: typ.100µN@DC Annual/season dependent

Micro Thruster

- I0µN thruster x8 for drag free control
- I00µN thruster x2 for DC drag cancellation
- FEEP, Cold gas jet, Ion thruster

Attitude control

- Should work w/o thrusters
- Passive: owing to S/C shape
- Active: MTQ control

Gravitational-Wave Advanced Detector Workshop 2014

Fig. by Moriwaki

Attitude/Drag free control Solar radiation drag Passive control \sim "weathercock" stability (for air drag) ** Air drag SAP as "wing" Fin as "tail" Air drag Cant for SAPs (for solar radiation drag) * Cant angle SAP position to the S/C frame Solar radiation drag

Gravitational-Wave Advanced Detector Workshop 2014

Hida Hotel Plaza, Takayama, Japan May 25-30, 2014

©NEC

Signal process/control syste

Space Wire based system *

**

Demonstration in orbit * SWIM on SDS-I Space Cube 2 (SpC2))+Space Wire (SpW) system

Coil

Used for test-mass position control

Control and precision measurement SWIM demonstration in orbit (2009)

> TAM: Torsion Antenna Module with free-falling test mass (Size : 80mm cube, Weight : ~500g) Test mass

~47g Aluminum, Surface polished Small magnets for position control

Photo sensor Reflective-type optical displacement sensor Separation to mass ~1mm Sensitivity ~ 10⁻⁹ m/Hz^{1/2} 6 PSs to monitor mass motion Max current ~100mA

SDS-1 (Jan. 2009)

Photo bv JAXA

「いぶき」搭載カメラによる 衛星分離の様子 (2009年1月23日)@JAXA

JAXA, U-Tokyo, Kyoto-U

Gravitational-Wave Advanced Detector Workshop 2014

Mission status of DECIGO pathfinder

✤ JAXA's "Small science satellite series" program

"At least 3 satellites in 5 years with Standard Bus + M-V follow-on rocket"

Ist mission (2013): SPRINT-A /EXCEED 2nd mission (~2014/15) : SPRINT-B /ERG 3rd mission (~2016/17) : SPRINT-C? /TBD? ←cancelled Call for proposal : 2013?

SPRINT-A /EXCEED UV telescope mission

SPRINT-B /ERG Plasma observing mission

SPRINT-A/EXCEED 想像図(池下章裕氏作)

Gravitational-Wave Advanced Detector Workshop 2014

Hida Hotel Plaza, Takayama, Japan May 25-30, 2014

Next-generation Solid rocket booster (M-V FO) Fig. by JAXA

Epsilon rocket

Mission status of DECIGO pathfinder

- ✤ JAXA's "Small science satellite series" program
 - Ist mission (2013): SPRINT-A /EXCEED 2nd mission (~2014/15) : SPRINT-B /ERG
- JAXA's "small science mission using epsilon rocket" program
 - The program framework was changed: ~10 M\$ payload mission to ~150 M\$ full mission
 AO from JAXA : December 2013
 Deadline : End of February.
 - 7 mission proposals including DPF

Next-generation Solid rocket booster (M-V FO) Fig. by JAXA

DPF was dropped in the first down-selection (May)

Started discussions on the next strategy

Gravitational-Wave Advanced Detector Workshop 2014

Thinking back on DECIGO...

- DECIGO : Suggested in 2001 Seto, Kawamura and Nakamura, PRL87, 221103 (2001)
- DPF : Suggested in 2005 Ando, DECIGO workshop (2005)

Good chance to reconstruct the strategy to DECIGO

- Object of mission
- Instrument design
- Strategic demonstration of technologies

Gravitational-Wave Advanced Detector Workshop 2014

DECIGO : Rich Sciences !

Very beginning of the Universe Dark energy, Dark matter Galaxy formation

DECIGO Pathfinder

Mission proposal failed in selection Good chance to reconstruct the strategy to DECIGO

Started discussions on the next strategy

Gravitational-Wave Advanced Detector Workshop 2014