Light Sources and Interferometer Topologies - Introduction -

Roman Schnabel

Albert-Einstein-Institut (AEI) Institut für Gravitationsphysik Leibniz Universität Hannover

Light Sources and Interferometer Topologies

8:30 Roman Schnabel (AEI) "Introduction to the session"

9:00 John Miller (MIT) "Decoherence and degradation of squeezed states in quantum filter cavities"

9:30 Andreas Sawadsky (AEI) "Dissipative opto-mechanical coupling"

10:00 BREAK

10:30 Nobuyuki Matsumoto (U Tokyo) "Classical Pendulum Feels Quantum Back-Action"

11:00 Haixing Miao (Birmingh.) "Intra-cavity filtering scheme for detecting gravitational waves"

11:30 Georgia Mansell (ANU) "In-vacuum OPO squeezer"

Squeezed Light in GW Detection

Squeezed Light in GW Detection

///Leibniz Ø.Z. Universität ≠ 4. Hannover

quêst

Squeezed Light in GW Detection

Squeezing the shot noise in

Advanced Detectors (Dual-recycled Fabry-Perot Michelson interferometers):

No filter cavities required in the <u>shot noise</u> limited regime for tuned SR.

But: Advanced detectors will be (almost) back-action-noise limited at low frequencies → Filter cavities are required.

Leibniz Universität

Back-Action (Radiation pressure) Noise

Back-Action (Radiation pressure) Noise

Only recently, back-action noise was observed for the first time.

- Observation of radiation pressure noise on a membrane
 [T. P. Purdy, R. W. Peterson, C. A. Regal, Science 339, 801 (2013)]
- Observation of ponderomotive squeezing

 [A.H. Safavi-Naeini, S. Gröblacher, J.T. Hill, J. Chan, M. Aspelmeyer, O. Painter, Nature 500,185 (2013)]
- Classical Pendulum Feels Quantum Back-Action [N. Matsumoto, Y.Michimura, G.Hayase, Y.Aso, K.Tsubono, arXiv:1312.5031]

Back-Action: Talk by Nobuyuki Matsumoto

Poster by Shiori Konisho

Introduction to Light Sources and Interferometer Topologies

EUROPHYSICS LETTERS

15 October 1990

Europhys. Lett., 13 (4), pp. 301-306 (1990)

Quantum Limits in Interferometric Measurements.

M. T. JAEKEL(*) and S. REYNAUD(**)

(*) Laboratoire de Physique Théorique de l'Ecole Normale Supérieure([§])
24 rue Lhomond, F-75231 Paris Cedex 05
(**) Laboratoire de Spectroscopie Hertzienne(^{§§}), Université Pierre et Marie Curie
4 place Jussieu, F-75252 Paris Cedex 05

"Photon counting noise and radiation pressure noise in a GW detector can **both** be squeezed!"

First doubts on the free-mass SQL as the ultimate limit:

W. G. Unruh, in *Quantum Optics, Experimental Gravitation, and Measurement Theory* 647–660 (Plenum, 1983),

H. P. Yuen, Phys. Rev. Lett. 51, 719 (1983)

Squeezing SN and RPN: Filter cavities

[Kimble et al., Phys. Rev. D 65, 022002 (2001)]

11

Squeezing and Full Evasion of RPN

Squeezing and Full Evasion of RPN

13

Squeezed-Light Filter Cavities

Dynamical Back-Action

...describes a macroscopic laser power change of a cavity mode that is caused by and couples back to the mechanical motion, thereby creating an opto-mechanical oscillator.

Example: "Optical Spring"

Dynamical back-action → Spring constant No damping → Instability

[Dorsel, McCullen, Meystre, Vignes, Walther, Phys. Rev. Lett. 51, 1550 (1983)]

[Sheard, Gray, Mow-Lowry, McClelland, Whitcomb, Phys. Rev. A, 69, 051801 (2004)]

Dynamical Back-Action

If the mechanical motion causes a cavity length change: "*Dispersive coupling*" (e.g.: optical spring in a GWD at dark port)

If the mechanical motion causes a cavity linewidth change: "*Dissipative coupling*" (partially e.g.: optical spring in a GWD off dark port)

The combination of dispersive and dissipative couplings produces unexpected instabilities.

[Tarabrin *et al.*, PRA 88, 023809 (2013)]

Dynamical back-action:

Talk by Andreas Sawadsky

Posters by Chunnong Zhao and by Jonathan Cripe

Squeezed Light Sources

Mechanism:

Cavity enhanced parametric down-conversion in a χ_2 -nonlinear crystal, such as periodically poled KTP

Standing-wave cavity (AEI) Alternatively: Travelling-wave cavity (ANU)

quest

Squeezed Light Sources

Mechanism:

Cavity enhanced parametric down-conversion in a χ_2 -nonlinear crystal, such as periodically poled KTP

Standing-wave cavity (AEI). Alternatively:

Travelling-wave cavity (ANU)

Strongest directly observed squeezing so far: 12.7 dB (@1064nm), including all losses, also loss at photo diode, as well as phase noise [T. Eberle *et al.*, PRL **104**, 251102 (2010)] :

To achieve a 10 dB improvement in ET, maximally another 4% loss (at zero additional phase noise) is allowed to be imposed by the GW detector.

Squeezed Light Sources

Optical components, loss and phase noise of the GEO squeezer are already good enough for ET.

A major Goal: Realisation of a smaller and more compact design.

Squeezers:

Talk by Georgia Mansell

Poster by Eric Oelker

Summary and Outlook

- "The combination of intense coherent light and squeezed vacuum is the optimum quantum approach for GW detectors
 filter cavities are required to avoid increase of back-action noise."
- "Experiments on back-action and dynamical back-action are required to verify our models (for the design of GWDs)."
- "Smaller (and possibly cheaper) squeezed light sources would be great."

20