

Reducing coating thermal noise through atomic structure investigations

Riccardo Bassiri rbassiri@stanford.edu

Introduction

- Enable gravitational wave astronomy
 - Mitigate noise sources that limit sensitivity
- Ensure and enhance the success of Advanced LIGO (aLIGO)
- Develop technologies for future generation detectors

Reduce coating Brownian thermal noise

Introduction

- aLIGO mirrors are dielectric stacks of ion beam sputtered (IBS) silica and titania doped tantala

- Tantala is the highest source of mechanical loss
- Changes in mechanical loss are the result of changes in atomic structure

Research Approach

coating series

measure atomic structure

structural modeling

GWADW 2014 - Takayama, Japan

R. Bassiri et.al, Appl. Phys. Lett. 98, 031904 (2011) R Bassiri et al, Acta Mat. 61, 1070–1077 (2013)

Atomic structure

- Main experimental tools for measuring the atomic structure:
 - Pair Distribution Function (PDF), G(r), electron or X-ray diffraction

Atomic structure Titania doped tantala

[P. Murray et al, Glasgow]

- Increasing Ti-doping suppresses the low temperature loss peak
 - 75% Ti-doping shows large reduction of loss
- Large differences in structure occur above 2 Å
 - Metal-metal and metal-oxygen distance suppression with higher doping

Stanford University

Atomic structure Heat-treated tantala

Heat-treatment results in low temperature loss peaks [IW Martin et al, Class. Quant. Grav. 27 225020, 2010]

- Main differences in structure occur above 2 Å
 - First X-ray PDF measurements show changes in structure in short and medium range

Atomic structure

- Mechanical loss mechanism
 - Double-well potential
 - Activation energy gives a range of possible movements
 - Changes with heat-treatment and doping
 - Bad actors acting as loss centers
 - Nano-crystalline structures in the medium range
 - Defects over a longer range
 - Ordering of metal-metal and > 2 Å metal-oxygen distances may be key to identifying further correlations with loss
- What can change/improve IBS coatings?
 - Heat-treatment, doping
 - Oxygen partial pressure
 - Heat-treatment environments
 - Multi component systems

Future work

- Continuing atomic structure investigations
 - Atomic modeling based on X-ray, TEM data
 - Focus on mechanical loss correlations
- Depth dependent measurements
 - Depth dependent structure on coatings
 - Include studies of silica understand silica coating vs. surface vs. bulk
- Development of materials-by-design approach
 - Model effect of different dopants on structure, correlate with loss based on Ti-doping model

Conclusions

- Targeted approach: coating atomic structure vs. mechanical loss
- Tantala coating atomic structure
 - Both heat-treatment and Ti-doping show larger differences in the atomic structure beyond the first nearest neighbor
 - Possible further correlation to mechanical loss
- Results will target studies to probe mechanical loss mechanisms
- Atomic structure investigations provide:
 - Capability for materials-by-design approach
 - Key route to understanding and mitigating mechanical loss, to lower coating thermal noise

tanford University

Collaborators and funding

HOBART AND WILLIAM SMITH

COLLEGES

A. Mehta, B. Shyam

M. R. Abernathy, E. K. Gustafson

S. C. McGuire

S. D. Penn

Funding from National Science Foundation - PHYS 1068596

GWADW 2014 - Takayama, Japan

R. L. Byer, M. M. Fejer, N. Kim, B. Lantz, A. C. Lin, R. K. Route, J. F. Stebbins

K. Craig, M. Hart, J. Hough, I. MacLaren, I. W. Martin, P. Murray, S. Rowan

Coatings Workshop Friday, August 29