Cryogenic LIGO Upgrade

Nicolas Smith-Lefebvre GWADW 2014

Conclusions

- Cryogenic Silicon allows for high stored arm power not just thermal noise benefit
- We have ideas for the 140kg test mass
- We are still learning about the behavior of Silicon optics
 - 2 photon induced free carrier absorption is not a problem
 - Carrier density thermal noise may be very important, more work needed

Cryogenic LIGO

- 3-fold broadband sensitivity improvement over aLIGO goal
- Pure silicon test masses
 - Cryogenically cooled (124K)
 - 150kg mass
- Squeezed light at 1550nm

Design features

- High thermal conductivity of silicon suppresses thermal gradients
 - High power circulation in arm cavities, shot noise reduction
- Cryogenic suspension and crystalline mirror coatings
 - Reduces thermal noise
- "Generic" features
 - Frequency dependent squeezed light injection
 - Larger masses

Challenges

- Radiative cooling system
- Production of large silicon test masses
- Absorption
 - Substrate and coating
- 1550nm quantum optics
 - Intrinsic QE of InGaAs improves compared to 1064nm
 - 12dB squeezing already demonstrated down to ~10kHz

Initial cool-down simulation

• B Shapiro

Steady state test mass cooling/heating

- Radiative cooling capacity
 - About 10W
- Heating
 - Cavity power absorption ~6W (assuming 2ppm abs.)
 - 300K radiation through 10m cryogenic duct <10mW
 - ITM substrate absorption ~few W
- More detailed thermal model is needed
 - Emissivity of test mass coatings is not known

Test mass geometry

- Float zone purity required, but not currently available in pieces with 0.5m diameter
- Possible solutions
 - Composite test mass with FZ in the center, and surrounded with CZ
 - All FZ, log shaped test mass

CZ

FΖ

CZ

CZ

CZ

CZ

CZ

Thermal noise of a log

• How does TM thermal noise scale with aspect ratio?

2 photon induced carrier absorption

- Visit from Stanford group (Shapiro, Lantz, Fejer)
- Intensity in ITM is: 100W/cm²

$$\alpha = 3000 \frac{\text{ppm}}{\text{cm}} \times \left(\frac{I}{10 \text{kW/cm}^2}\right)^2$$

- Absorption = 0.3 ppm/cm
- This absorption mechanism is not a problem

Carrier density thermal noise

- Talk by D. Heinert
- Theoretically, pure silicon would not be a problem, but realistic impurity levels lead to high noise
- Full calculation still needs to be done, but basic scaling from plot on the right does not change much for 120K LIGO case

How can we reduce CD noise?Temperature dependence depends on donor dopant energy.

 Doping compensation is an idea, but not clear how to do this on large crystal

Conclusions, again

- Cryogenic Silicon allows for high stored arm power not just thermal noise benefit
- We have ideas for the 140kg test mass
- We are still learning about the behavior of Silicon optics
 - 2 photon induced free carrier absorption is not a problem
 - Carrier density thermal noise may be very important, more work needed (check back with me next year)

