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outline 
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•  thermo-elastic damping of Si disks 

•  direct measurement of coating thermal noise 

•  coating structure and mechanical loss 
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thermo-elastic damping of Si disks 
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unexpected results 
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Si disks used for coating characterization 

•  Gentle Nodal Suspension (GeNS) 
Cesarini & al., Rev. Sci. Instrum. 80, 2009 
Cesarini & al., Class. Quantum Grav. 27, 2010 

R. Flaminio & al., GWADW, Elba, 2013 
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•  isotropic thermoelastic loss does not explain the measured loss 
M. Granata & al., GWADW, Elba, 2013 



models 
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•  isotropic material 
•  developed mainly for MEMS 
•  from beams to disks 

Lifshitz & Roukes, Phys. Rev. B 61, 2000 

Sun & Tohmyoh, J. Sound Vib. 319, 2009 

→ thermoelastic damping only depends on frequency 



patterns 
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mode families 
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pure butterfly 
(x,1) – ‘rolling’ 

(1,x) [x >1] 
(2,x) [x >1] 
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mode families 
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pure butterfly 
(x,1) – ‘rolling’ 

(1,x) [x >1] 
(2,x) [x >1] 

lossy twins 

central vibration 



evidences 
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GeNS  
•  high repeatability 

•  high reproducibility 
Δf/f ~ 10-4 
ΔQ/Q < 10% 

•  very low excess loss at low temperature 
Q0,2 = 2.2 x108 
Q1,4 = 8.3 x107 
Q2,2 = 1.1 x108 
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ΔQ/Q < 10% 

•  very low excess loss at low temperature 
Q0,2 = 2.2 x108 
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crystalline nature of Si ? 

TED ANSYS 
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TE
 d

a
m

p
in

g
 

Frequency [Hz] 

→ mode families are for real 

•  indipendent simulations 
ANSYS + analytical 
COMSOL 

modes and loss confirmed 



CuBe 
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•  3" isotropic sample – t = 1 mm 

•  simulations predict mode families 

•  discrepancy with measurements 
lower frequency → lower measured loss 

higher frequency → higher measured loss 
in agreement 

→ tune simulations ? 

→ thinner sample ? 

→ new material ? 



next steps 
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•  thin Si disks show mode-dependent thermoelastic damping 

•  analytical models do not predict mode families 

→ new model is under developement 

•  no clear outcome from CuBe disk → new samples and simulations 

→ 0.5-mm thick CuBe disk 

→ 0.5-mm thick α-brass disk 
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direct measurement of coating thermal noise 
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technique 
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•  suitable to study coating thermal noise 
  direct measurement 
  simple setup 

•  key point 1 – micro-cantilevers 
low rigidity k ≤ 1 N/m 
high resonances f0 > 14 kHz 
low dilution factor tc ~ ts 

→ thermal noise ~ 10-13 m/√Hz 

•  key point 2 – polarization 
linear response of several μm 

nearly-common-path Michelson 
high noise rejection 

very low drift 

 quadrature-phase differential interferometer 
Bellon et al., Opt. Commun. 207, 2002 

Paolino et al., Rev. Sci. Instrum. 84, 2013 



results 
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•  metallic coatings  
Paolino & Bellon, Nanotechnology 20, 2009 
Li & Bellon, Europhys. Lett. 98, 2012 

•  optical dielectric mono-layer coatings 
Cagnoli et al., 22nd ICNF, IEEE, 2013 
Li et al., Phys. Rev. D 89, 2014 

•  band from 10 Hz to 20 kHz  

•  analysis 
fit of resonance 
background subtraction 
measured dilution factor D 

→  Φc (ω) 

•  measure 
average of 102 spectra of ~10 s 

1-D ~ (fs/fcc)2 µs/(µs+µc)  

YTa2O5 ? 



SiO2 and Ta2O5 
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•  1/f noise – Saulson model confirmed 

•  f-independent loss after annealing 

in agreement with resonant method 
– GeNS –   



stack 
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•  quarter-wavelength coating 
plain Ta2O5 and SiO2 layers 
λ = 1064 nm, 10 doublets 

– straight coated cantilever – 
technique developed at LMA  both surfaces 

coated 



results 
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•  before coating 
f0 = 14280.33 ± 0.01 Hz 

•  after coating 
f0 = 21619.79 ± 0.03 Hz 

measured loss 
Φc = 3.86 x10-4 

expected loss 
Φc = 2.73 x10-4 
[linear combination 
of mono-layer loss] 

loss higher than expected 

same phenomenon observed with macro-cantilevers ? 
M. Granata & al., GWADW, Waikoloa, 2012 



next steps 
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•  quadrature-phase differential interferometer 

very powerful tool to study out-of-resonance coating thermal noise 

→ additional informations on present optical coatings 

→ enhance R&D programs on new materials 

•  mono-layer dielectric optical coatings characterized 

•  LMA developed a technique to deposit stacks on micro-cantilevers 

→ multi-layer coatings under study 

•  2nd setup being assembled at LMA 

to be coupled to a cryostat 
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coating structure and mechanical loss 
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mechanical loss 
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due to structural relaxation of materials 

 → investigation of microscopic structure 

•  TiO2Ta2O5 
 reduced density functions 

Bassiri & al., Acta Mater. 61, 2013 

Bassiri & al., LIGO-G1400271, 2014 

talk in this session 
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•  Ta2O5 
→ Raman spectroscopy at Institut Lumière Matière 

•  SiO2 



Raman in a nutshell 
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laser  E = E0 cos(2π f0 t) → dipole  p = α E 

polarizability & normal coordinates  α(Qk) ~ α0 + Qk ∂α/∂Qk 
~ harmonic vibration of atoms  Qk = Qk0 cos(2π fk t) 

→ p = p(f0) + p(f0-fk) + p(f0+fk)  

P. Vandenabeele, Practical Raman Spectroscopy, Wiley, 2013 

wavenumber ω = (f0-f)/c 

[ω] = cm-1 → spectrum of vibrational transitions 



Ta2O5 
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O≡3Ta / Ta‒O‒Ta 
deformation 

O≡3Ta 
stretching 

Ta‒O‒Ta 
stretching 

•  annealing decreases losses by a 
factor 2 

•  little evolution of spectra wrt 
annealing  

M. Granata & al., Amaldi10, Warsaw, 2013 

peak identification 
Ono & al., Thin Solid Films 381, 2001 

•  problem of samples? 



warning 
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ion-beam-sputtered SiO2 used in this study  
is not the same  

as that of detector mirrors 

golden rule: 
different deposition parameters give different coatings 



SiO2 
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•  peak identification 
Galeener, J. Non-Cryst. Solids 71, 1985 

θ

ϕ 

ϕO-Si-O = 109.7° 

rSi-O = 1.62 Å 
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Jin & al., Phys. Rev B 50, 1994 

•  bulk 



SiO2 
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•  in agreement with 
density measurements 
ρbulk = 2.20 g/cm3 

ρfilm = 2.47 g/cm3 

•  film 
different R-band → different θ distribution 
shifted peaks 

higher D2 intensity 

→ similar to densified bulk 



annealing 

GWADW – Takayama, May 28th 2014  31 

•  remarkable differences wrt to cumulated annealing time 
evolution of the R-band → different θ distribution 
clear reduction of D2 peak 

as deposited 

ann. t1 

ann. t1+t2 

ann. t1+t2+t3 

ann. t1+t2+t3+t4 
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SiO2 structure and loss 
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•  loss measured on 3 cantilever blades 
•  close correlation between D2 spectral evolution and loss 

Annealing time [a. u.] 

t1 t2 t3 t4 



next steps 
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•  Raman spectroscopy used to investigate Ta2O5 and SiO2 coatings 

  no clear outcome from Ta2O5 → new set of samples 

  first observation of structure/loss correlation in SiO2 

→ repeat with advanced-detector SiO2 
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•  mode-dependent thermoelastic damping observed on Si disks 

→ new model under developement 

relevant for other planar structures (ribbons and blades) 

conclusions 

•  simple out-of-resonance measurement of thermal noise is now possible 

→ optical mono-layer coatings characterized 

→ first results from high-reflectivity coatings (stacks) 

excess mechanical loss observed, study ongoing  

→ additional cryogenic setup being assembled for R&D 

•  Raman spectroscopy used to investigate coating structure 

→ measured SiO2 relaxation wrt annealing time 

→ first observation of SiO2 structure/loss correlation 


