

Mechanical loss of crystalline and amorphous coatings

 I. Martin^{1,} K. Craig¹, P. Murray¹, R. Robie¹, S. Reid², A. Cumming¹, R. Bassiri³, M. M. Fejer³, J. Harris³, M. Hart¹, G. Harry⁴, K. Haughian¹, D. Heinert⁶, J. Hough¹, A. Lin³, I. MacLaren¹, R.Nawrodt⁶, S. Penn⁵, R. Route³, S. Rowan¹

¹ SUPA, University of Glasgow
²SUPA, University of the West of Scotland
³Stanford University
⁴American University
⁵Hobart and William Smith College
⁶University of Jena

GWADW, Takayama, May 2014

Outline

- Introduction
- Measurements of crystalline coatings
 - AlGaAs on silica and silicon
 - AlGaP
- Measurements of amorphous coatings
 - TiO₂ / Ta₂O₅ coatings
 - SiO₂ doped-HfO₂

- Reductions in coating thermal noise required for planned future detectors e.g.
 - Enhancements to Advanced LIGO
 - May operate at cryogenic temperature or room temperature (or both – cryo-xylophone)
 - May operate around 1550 nm

Coating thermal noise

- 3rd generation detectors e.g. ET (LF)
 - Cryogenics (10 or 20 K)
 - Change of wavelength to 1550 nm

- Cryogenic loss peaks in tantala / silica films (single layers^{1,2} and aLIGO coating³) suggest reduction in coating thermal noise by ~2x by cooling to 20K
 - ET-LF requires loss reduction by ~4x (20 K operation) or ~1.6x (10 K operation)
 - Peaks at higher temperature (~30 K) in multilayer coatings (aLIGO & SiO₂/Ta₂O₅ on sapphire measured at ICRR⁴).

¹Martin et al, CQG (2014), ²Martin et al, CQG (2010), ³Granta et al, Opt. Lett. 38 (2013), ⁴E. Hirose et al, in preparation

- Improved amorphous coatings:
 - Beginning to understand causes of dissipation
 - Further improvements to current coatings?
 - Alternative materials?
- Crystalline coatings:
 - Intrinsic loss of AlGAs shown to be very low (G. Cole)
 - Measurements of low Brownian noise after being transferred to new substrate.
 - Can they be used successfully on silicon at low temperature?
 - GaP/AlGaP alternative lattice matched to silicon, also very low loss possible alternative?
- Different solutions may be required for different operating temperatures / wavelengths / mirror substrates – studies ongoing

- AlGaAs micro-resonators very low mechanical loss (2.5E-5 at room temperature, 4.5 × 10⁻⁶ at 10 K¹)
- Grown on GaAs, transferred to required mirror substrate
 - Optical cavity measurement loss of ~4E-5 at room temperature²
 - Small laser beam will not probe loss of entire bonded coating with equal sensitivity
 - More measurements at frequencies closer to GWD band
- AlGaAs samples
 - 81 alternating layers of GaAs and Al_{0.92}Ga_{0.08}As
 - Thickness 6.83 μm, HR at 1064 nm
 - Diameter 16.4 mm
- Bonded to disk substrates by G. Cole
 - SiO₂ substrate 1.8mm thick x 3" diameter
 - Si substrate 465 μm thick x 1.54" diameter

¹G. Cole, Applied Physics Letters 92 (2008) 261108, ²G. Cole, Nature Photonics 7 (2013) 644

- Previous measurements by Steve Penn and Gregg Harry suggested coating loss of 2.1E-4
- A second sample had visible features between coating and substrate areas of poor adhesion? Areas changed over time.
- Our sample appears much better, although some possible defects still visible

LHS: Samples measured S. Penn and G. Harry

RHS: Our sample, zoomed in to show some features

- Disks suspended in a nodal support
- Vibrational modes excited electrostatically, loss from amplitude ring-down

Energy ratio calculated using FE modelling

 Room temperature loss measurements of silica disk before and after application of AlGaAs coating

- Calculated coating loss varies significantly for different vibrational modes
- Two modes give losses 3.8E-5 and 6.1E-5 comparable with (2.5-4)E-5 (Cole 2013)

- Why is there so much variation in coating loss?
 - Possible energy loss to suspension wires re-suspend and repeat
 - Relative energy stored in coating varies significantly with mode shape. Sensitivity to coating loss varies with mode.
 - Coating thermoelastic effects? Further modelling required.

- Delamination observed around edges after 2 cooling cycles to ~14 K (period of ~48 hrs)
 - Garret Cole carried out cooling tests on smaller sample, which survived. Methods of strengthening the bond under investigation

GaP/AlGaP coatings

- Lattice matched to Si grown epitaxially on Si substrates (A. Lin et al, Stanford)
- Measurements of
 - (a) 10 GaP/AlGaP bi-layer stack on Si disk¹

AlGaAS

- On silica, 290 K lowest coating loss 3.6E-5
- On silicon coating detaching after two temperature cycles
- AlGaP
 - First coating, loss <~4E-5 below 40 K
 - Consistent with upper limit for single layer GaP

- Increased TiO₂ doping reduces the cryogenic loss, particularly with heattreatment
 - Insight into loss mechanisms, parallel structural measurements (R. Bassiri talk)
- New studies of:
- pure TiO₂
 - Interest for nano-layer coatings (Shiuh Chao, Innocenzo Pinto)
 - $Y_{TiO2} = 141$ GPa (Shiuh Chao, IBS TiO₂)
- 75% TiO₂ / 25% Ta₂O₅
 - Further improvement in loss?
- 0.5 μm thick films, ~60 μm thick Si cantilever substrates

Cryogenic loss of as-deposited TiO₂ and 75% TiO₂ / 25 % after various heat treatments 10⁻³ 口冊冊 75% TiO₂ / Ta2O5 600 C Coating Loss 10⁻⁴ -100% TiO₂ AD \square 75% TiO₂ 25% Ta₂O₅ AD 75% TiO₂ 25% Ta₂O₅ 400 10⁻⁵ 75% TiO₂ 25% Ta₂O₅ 600 \square 20 40 60 80 100 120 140 160 0 16 Temperature (K) P. Murray et al

- 75% TiO₂ (600C) coating has anomalously low loss
- Crystallized pure Ta₂O₅ displayed large 90 K loss peak
- 75% coating crystallized more fully?
- Absorption / scatter measurements of interest

- Titania doping can suppress cryogenic loss peak in tantala
- 75% TiO₂/Ta₂O₅
 - 400C heat treatment reduces cryogenic loss
 - crystallises at 600C, anomalously low cryogenic loss

- 30% silica-doped hafnia (CSIRO, 500 nm, Si cantilevers)
 - Silica prevents crystallisation, heat-treatment up to 400 C reduces loss
 - Best amorphous oxide coating so far, (almost) no low temperature loss peak

- Silica-doped hafnia (400C) close to meeting ET-LF (10K) loss requirements
- As Innocenzo suggested, SiO₂-doped TiO₂ may be of interest (good room temperature loss, prevent crystallization)

Summary

- Crystalline coatings
 - AlGaAs on SiO₂ loss 3.6×10^{-5} @ 290 K
 - AlGaAs on Si partially detached during cryogenic cycling
 - work required to produce stronger bond
 - Prototype GaP/AlGaP MBE coating on Si is $<4 \times 10^{-5}$ below 40 K
- Amorphous coatings
 - Anomalously low loss for crystallized 75%TiO₂/Ta₂O₅ (600C)
 - SiO₂-doped HfO₂ (400C) best amorphous oxide so far, no low T peak
 - SiO₂ doping in TiO₂ of interest

- Coating thermoelastic loss (Fejer et al, 2004)
 - Maximum TE loss is shown in the plot
 - Calculate fraction of energy γ associated with volume change for each mode

