

Gravitational wave detection with light and atoms

Holger Müller, UC Berkeley

Outline

- 1. Motivation
- 2. Atom interferometers
- 3. Sensitivity
- 4. Proposals for gravity wave detectors
- 5. Technical issues
- 6. Outlook

A. Peters

Principle

Light pulse atom interferometer

$$\Delta \varphi = -\frac{mc^2}{\hbar} \oint d\tau + \Delta \varphi_{\text{laser}} = kgT^2$$

- Independent of initial position and velocity
- No radiation pressure noise, as atoms interact with fixed number of photons
- No thermal noise, as parasitic transitions due to blackbody radiation are extremely rare
- We just drop the atoms => Nearperfect seismic isolation

Technology

- Large momentum transfer , 100- 1000 ħk
- Parasitic phase shifts

Large momentum transfer

12-24 $\hbar k$ interferometers

Comparison to $2\hbar k$

H. M. et al., PRL 100 (2009): Chiow et al, PRL 2009

ട്ട്

Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry

Susannah M. Dickerson, Jason M. Hogan, Alex Sugarbaker, David M. S. Johnson, and Mark A. Kasevich*

Department of Physics, Stanford University, Stanford, California 94305, USA (Received 24 April 2013; published 19 August 2013)

Scalable momentum transfer with Bloch oscillations

1: dual lattice (Matter wave accelerator)

- 2: single Bragg
- 3: quadruple lattice
- 4: dual Bragg

Large velocity difference can be used test PNO(4) while cancelling PNO(2)

H. M. et al., PRL 100 (2009)

Coriolis force

$$\vec{\delta} = 4nv_r \Omega_{\oplus} T(T+T') \cos \vartheta(1,0,0).$$

- Interferometer does not close
- Cancellation improves contrast (350%), T
- World's most sensitive atom interferometer (10 hk, 250 ms)

Lan et al., PRL 108, 090402 (2012)

Enclosed area

This is how it looks like

Parasitic phase shifts

Smaller at higher Bragg order

Incompletely understood

Technology: latest improvements

Atomic gravitational wave detection

- "AGIS" Two interferometers in a line
- Atom interferometers as dragfree sensors in otherwise LISAlike mission setup
- Atoms as clocks

"Old" AGIS

Dimopoulos, Graham, Hogan, Kasevich & Rajendran, PR D 78, 122002 (2008)

Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors

John G. Baker and J. I. Thorpe

Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA (Received 26 January 2012; published 21 May 2012)

Laser noise doesn't cancel

It's essentially a measurement of the distance between the atoms, using the light as a ruler

Concept of Atomic Disturbance Reduction System

Atom Interferometers for LISA DRS (aDRS)

<u>Big Idea</u>: Truly drag-free atomic proof masses for LISA's Disturbance Reduction System (DRS).

Approach: Atomic acceleration reference

<u>Concept</u>: Use atomic inertial sensors to replace LISA accelerometers <u>Goal</u>: Reduce/eliminate spacecraft drag-free requirement

Nan Ju, James Kohel, Massimo Tinto Gravitational wave detection with single-laser atom interferometers

Displacement along laser direction

- Narrow-linewidth, optical atomic transitions
- Similar to comparison of two inertial clocks
- Suppresses laser noise, single-arm possible
- Subject to same bandwidth limitations, wavefont distortions, etc

A New Method for Gravitational Wave Detection with Atomic Sensors

Peter W. Graham,¹ Jason M. Hogan,² Mark A. Kasevich,² and Surjeet Rajendran¹

¹Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305 ²Department of Physics, Stanford University, Stanford, CA 94305 (Dated: April 30, 2013)

Large momentum transfer reduces shot noise

Phys. Rev. Lett. 110, 171102 (2013)

Applications of atom interferometry

REPORTS

A Clock Directly Linking Time to a Particle's Mass

Lan et al., Science **339,** 554 (2013)

Key insight / innovation

- Feedback over atom interferometer using frequency comb
- Comb multiplies by N
- n-photon momentum transfer
- Clock frequency ~100 kHz= $(m\ell^2/b)/(2nN^2)$, exactly

Application

- Mass standard in new SI where *h* and *c* are defined, kg measured
- With elementary (anti-) particles => equivalence principle with antimatter
- Light nanomechanical objects
- => mesoscopic mass standard

Technology impact

- A single particle is useful as a time/frequency reference
- Cesium atom used as
- approximation of a point mass
- 4 ppb accuracy demonstrated,< 1 ppb feasible

Watt balance

- •33 ppb for amu
- •33 ppb for kg
- •Moving parts, gravity,
- standard resistors...
- Americans and
- Europeans disagree

Atom interferometer+counting

- •4 ppb for amu
- •30 ppb for kg
- •No moving parts, gravity, standard resistors...
- Agrees with European versions
 - <1 ppb in the future

Independent methods realize the same definition O

A scenario

Quantity		
Cavity linewidth	30 Hz	4 km
Natural linewidth	1 mHz	
Decoherence rate	10/s	1% f
Coupling	5x10 ⁻⁶ Hz	⁸⁷ Sr
Collective coupling	3x10 ⁴	99.5%
Atomic density	$10^{8}/cm^{3}$	Outcoupler
Cavity Pulling	0.1	
Atom Doppler linewidth	50 Hz	
Photons/second	3x10 ⁶	
Sensitivity	$2x10^{-21}[f_{\rm GW}/10]$	
	mHz]	

Atom interferometers in space: science

Antimatter Interferometry for Gravity Measurements

 Paul Hamilton,¹ Andrey Zhmoginov,¹ Francis Robicheaux,^{2,‡} Joel Fajans,^{1,†} Jonathan S. Wurtele,^{1,†} and Holger Müller^{1,*,†}
¹Physics Department, University of California, Berkeley, California 94720, USA
²Department of Physics, Auburn University, Auburn, Alabama 36849, USA (Received 12 August 2013; published 25 March 2014)

We describe a light-pulse atom interferometer that is suitable for any species of atom and even for electrons and protons as well as their antiparticles, in particular, for testing the Einstein equivalence principle with antihydrogen. The design obviates the need for resonant lasers through far-off resonant Bragg beam splitters and makes efficient use of scarce atoms by magnetic confinement and atom recycling. We expect to reach an initial accuracy of better than 1% for the acceleration of the free fall of antihydrogen, which can be improved to the part-per million level.

Photons versus Atoms

Atom interferometers versus lasers (oversimplified)

LIGO	$n=10^3$, 10 km, 10 ¹⁰ atoms/s
Radiation pressure noise 10 ⁻²² at 10 Hz	No radiation pressure noise
Mirror thermal noise10 ⁻²³ at 100 Hz	No mirror thermal noise
Photon shot noise 10 ⁻²³ at 1 kHz	Atom shot noise $4x10^{-20}$
Demonstrated	Basic technology demonstrated, but parameters futuristic
Two arms required	Single-arm designs studied
Broadband	Narrow-band
Well understood	Needs study

Compton clock Postdocs: S.-y. Lan, M. Hohensee, D. English Grad students: P.-C. Kuan, B. Estey,

EEP

Postdocs: P. Hamilton Grad student: G. Kim,

Lorentz invariance Postodc: M. Hohensee Grad student: F. Monsalve

Phase contrast TEM Postdoc: M. Xu Grad Student: E. Sohr

Cavity, AB effect Postdoc :J. M. Brown Grad student: B. Estey

XUV atom interferometer Postdoc :Paul Hamilton

Atomic gravitational wave detection

Approaches

- A. "AGIS," atoms as poof-masses.
- B. Light interferometry using atoms as dragfree proof masses
- C. Single-laser interferometer using atoms as clocks

Key challenges • Low atom number, high shot noise => Not competitive at high frequencies

- •Atom temperature
- •Technology maturity
- Novelty means that best approach may be unknown as yet

Key advantages

- No macroscopic proof masses
- •No vibration isolation required
- Atoms have few internal degrees of freedom ⇒No thermal noise

⇒No radiation pressure noise

Current research • Very large momentum transfer (Bloch oscillations)

- •Noise sources,
- optimization
- •Alternative schemes, e.g., superradiance
- Technology maturation
- •Atom interferometers vs. other approaches

J. Harms, B.J.J. Slagmolen, R.X. Adhikari, M.C. Miller, M. Evans, Y. Chen, H. Müller, M. Ando, Phys. Rev. D **88**, 122003 (2013). [M. Hohensee, S.-Y. Lan, R. Houtz, C. Chan, B. Estey, G. Kim, P.-C. Kuan, and H. Müller. Gen. Relativity Gravitat. **43**, 1905 (2013).

Summary

No radiation pressure noise, thermal noise, and seismic insulation issues Possibly single-arm operation Large influence of atom shot noise, wavefront distortions, narrowband operation

Sweet spot probably low frequencies, mHz (space) to 10 Hz (ground)

Technology not mature yet

A. Peters