Exploring Advanced Techniques with GEO600

H.Grote for the GEO600 team

GWADW 2014

Beam Tube

Test setup: Tube diameter 1.5 m

Corrugation - material saving: ~factor 2.5 Soft and leightweight tube AISI 316LN Stainless Steel 0.9 mm thick

Corrugated with Period 3 cm and Depth 1.7 cm.

Tube dia. 0.6 m

Improved IFO Contrast from side heaters

4

~3kW at Beamsplitter

Direct measurement of thermal lens / local heating, consistent with 0.5ppm / cm absorption @ 1064 nm

65mK temp increase

w.r.t. ambient @ 3.2kW

0.2 K

0.1 K

0 K

-0.1 K

-0.2 K

Dark port power vs. BS power

12 x 12 Matrix Heater

See poster by H. Wittel

Squeezed Light at GEO600:

Squeezing Setup / Phase Control Signals

Fluctuation of Strain at 1-5kHz, for 3 squeezing phase control signals and intentional misalignment

Automatic Alignment of Squeezed Vacuum: works in 4 DOF

Up to 3.7 dB Squeezing Observed

Consistent with ~37% losses and ~20mrad phase noise

Long-term Squeezing Performance

Laser vs. Squeezer

2010-2014 @ GEO: ~250 entries vs. ~900 entries

Laser vs. Squeezer

2010-2014 @ GEO: ~250 entries vs. ~900 entries

'broken & cable': 2010

- GEO: 19
- LHO: 41
- LLO: 55
- Virgo: 26

 \rightarrow need better/more engineering For complexer detectors

'broken & cable': 2010 / 2014

- GEO: 19 / 24
- LHO: 41 / 48
- LLO: 55 / 24
- Virgo: 26 / 8

→ need better/more engineering For complexer detectors

'broken & cable': 2010 / 2014

• GEO: 19 / 24

- LHO: 41 / 48
- LLO: 55 / 24
- Virgo: 26 / <mark>8</mark>

→ need better/more engineering For complexer detectors

→ has improved,
But still need better/more engineering
For ever complexer detectors...

'broken'

GEO: 146 / 5400 : 2.7% LHO: LLO: 125 / 12400 : 1 % Virgo: 219 / 29200 : 0.75 %

Sensor, coil, main gate, QPD B, DAC, Pico Motor, microphone, MEDM link, Kantech, PZT, IRLED filter, AA board, WFS A, GEO, ...

 \rightarrow good enough for third generation ?

Cost Optimization

LIGO operations: 30 k\$ / day

1 % in range increase Is 3% Volume increase.

 \rightarrow Science run can be Shorter by 3%.

 \rightarrow on 6-month run saves 5 x 30k\$ = 150k\$

Electronic noise

Readout noise/efficiency

Strain contribution In shot-noise limited On 6-month run domain

•	Detection electronics \rightarrow	~3%	
•	PD QE →	0.5-4%	
•	Faraday / PBS loss	3-5%	
•	Mode matching	1-3%	
•	OMC loss	1-2%	

Readout noise/efficiency

Strain contribution In shot-noise limited domain Potential saving On 6-month run WITH 6dB SQUEEZING (x 6 for losses)

- Detection electronics →
- PD QE →
- Faraday / PBS loss
- Mode matching
- OMC loss

~3% 0.5-4% 3-5% 1-3% 1-2% 750k\$ 450k-3.6M\$ 2.7M-4.5M\$ 900k-2.7M\$ 900k-1.8M\$

Morals

- Pro sustainable use of Steel ressources !
- Thermal compensation: different options
- Squeezed light: works long-term, but needs continuos effort and research
- Lets not waste tax-payer money and professionally cross-optimise subsystems

