

Intra-cavity filtering schemes

Haixing Miao

Reporting joint work by:

California Institute of Technology: Yanbei Chen University of Birmingham: Andreas Freise, Haixing Miao and Mengyao Wang University of Western Australia: Yiqiu Ma, and Chunnong Zhao

0

Background

- Input filtering—frequency-dependent squeezing
- Output filtering—frequency-dependent readout
- Intra-cavity filtering with passive components
 - Evading radiation-pressure noise
 - Realizing a speed meter
 - Achieving a broadband enhancement
- Intra-cavity filtering with active components
 - Stable active filters
 - Unstable active filters

* Background

- Input filtering—frequency-dependent squeezing
- Output filtering—frequency-dependent readout
- Intra-cavity filtering with passive components
 - Evading radiation-pressure noise
 - Realizing a speed meter
 - Achieving a broadband enhancement
- Intra-cavity filtering with active components
 - Stable active filters
 - Unstable active filters

Input filtering

2

Reference: H. Kimble, Y. Levin, A. Matsko, K. Thorne, and S. Vyatchanin, PRD 65, 022002 (2001)

Output filtering

3

Reference: H. Kimble, Y. Levin, A. Matsko, K. Thorne, and S. Vyatchanin, PRD 65, 022002 (2001).

Reference: M. Wang, H. Miao, A. Freise, and Y. Chen, PRD 89, 062009 (2014)

5

Background

- Input filtering—frequency-dependent squeezing
- Output filtering—frequency-dependent readout

Intra-cavity filtering with passive components

- Evading radiation-pressure noise
- Realizing a speed meter
- Achieving a broadband enhancement
- * Intra-cavity filtering with active components
 - Stable active filters
 - Unstable active filters

6

Resonant sideband extraction (RSE)—Broadband configuration

Narrowband tuned

7

Use only one filter cavity

8

9

10

Background

- Input filtering—frequency-dependent squeezing
- Output filtering—frequency-dependent readout
- Intra-cavity filtering with passive components
 - Evading radiation-pressure noise
 - Realizing a speed meter
 - Achieving a broadband enhancement
- Intra-cavity filtering with active components
 - Stable active filters
 - Unstable active filters

Realizing a speed meter

Speed meter with a sloshing cavity

11

SRM:

 $T_{\rm SRM} = T_{\rm ITM} \quad \phi_{\rm SR} = \pi/2$

Speed response:

$$y_{\text{out}} \propto x(t) - x(t - \tau_s)$$

 $\approx \tau_s \frac{\mathrm{d}}{\mathrm{d}t} x(t)$

Sloshing Frequency:

Reference: P. Purdue and Y. Chen, PRD 66, 122004 (2002).

Realizing a speed meter

12

Intra-cavity filtering scheme as a speed meter

SRM:

For tuning the bandwidth.

Speed response:

$$y_{\text{out}} \propto x(t) - x(t - \tau_s)$$

 $\approx \tau_s \frac{\mathrm{d}}{\mathrm{d}t} x(t)$

Sloshing Frequency:

$$\tau_s^{-1} \approx \omega_s \equiv \frac{c\sqrt{T_{\rm SLM}T_{\rm ITM}}}{2\sqrt{L_s L_{\rm arm}}}$$

Sloshing frequency is determined by compound mirror (ITM and SLM).

13

Background

- Input filtering—frequency-dependent squeezing
- Output filtering—frequency-dependent readout

Intra-cavity filtering with passive components

- Evading radiation-pressure noise
- Realizing a speed meter

Achieving a broadband enhancement

- Intra-cavity filtering with active components
 - Stable active filters
 - Unstable active filters

Achieving a broadband enhancement

Allows the parameters for additional optics to be tunable

14

Use a cost function to maximize the broadband sensitivity.

Achieving a broadband enhancement

Allows the parameters for additional optics to be tunable

15

Use a cost function to maximize the broadband sensitivity.

Achieving a broadband enhancement

Allows the parameters for additional optics to be tunable

16

Use a cost function to maximize the broadband sensitivity.

17

Background

- Input filtering—frequency-dependent squeezing
- Output filtering—frequency-dependent readout
- Intra-cavity filtering with passive components
 - Evading radiation-pressure noise
 - Realizing a speed meter
 - Achieving a broadband enhancement

Intra-cavity filtering with active components

- Stable active filters
- Unstable active filters

Using active components

Passive:

18

No external energy input, e.g., usual optics.

Active:

With external energy input, e.g., optical amplifiers.

Using active components

Examples (general nonlinear optics):

19

1. Raman amplifier (atomic system):

2. Optomechanical system:

GWADW 2014 Takayama Japan

Motivation:

To obtain frequency-dependent phase different from passive filters. **Example:**

Negative dispersion without absorption:

$$\frac{\mathrm{d}\phi(\Omega)}{\mathrm{d}\Omega} < 0 \quad \frac{|A_{\mathrm{out}}|}{|A_{\mathrm{in}}|} \approx 1$$

Example:

21

Negative dispersion **without absorption**:

Realization :

1. double-pumped three-level atomic system

Pump fields:

 $\frac{\mathrm{d}\phi(\Omega)}{\mathrm{d}\Omega} < 0 \qquad \frac{|A_{\mathrm{out}}|}{|A_{\mathrm{in}}|} \approx 1$

 $\omega_0 \pm \Omega$

Signal field

2. double-pumped optomechanical system

White-light cavity idea: cancelling propagation phase delay

Resonant at a broad frequency band

Bandwidth

References:

23

[1] A.Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Mueller, and R. Rinkleff (1997).[2] G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar (2007).

White-light cavity idea: cancelling propagation phase delay

References:

23

[1] A.Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Mueller, and R. Rinkleff (1997).[2] G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar (2007).

Reference:

Yiqiu Ma, H. Miao, C. Zhao and Y. Chen (in preparation).

 \Box Do not allow for enhancement in principle.

Is this applied to general **stable** active filters?

Reference:

25

Yiqiu Ma, H. Miao, C. Zhao and Y. Chen (in preparation).

26

Background

- Input filtering—frequency-dependent squeezing
- Output filtering—frequency-dependent readout
- Intra-cavity filtering with passive components
 - Evading radiation-pressure noise
 - Realizing a speed meter
 - Achieving a broadband enhancement

Intra-cavity filtering with active components

- Stable active filters
- Unstable active filters

General input-output relation:

27

 $\hat{A}_{\rm out}(\Omega) = G \,\hat{A}_{\rm in}(\Omega) + \sqrt{1 - G^2} \,\hat{n}^{\dagger}(-\Omega)$

Gain vs pumping strength:

Very high pumping:

$$\begin{array}{c} G \rightarrow 1 \\ \sqrt{1 - G^2} \rightarrow 0 \end{array}$$

Additional noise gets suppressed.

Unstable regime and phase is always in advance.

Unstable active filters

Together with feedback control

Example: unstable optomechanical filter

Reference:

28

H. Miao, Y. Ma, C. Zhao and Y. Chen (in preparation).

Unstable active filters

29

Resulting sensitivity curve:

Sample parameters for optomechanical filter:

$$m = 1\mu g$$

$$\omega_m = 10 MHz$$

$$Q_m = 5 \times 10^7$$

$$P_c = 6 W$$

$$L = 5 cm$$

$$\mathcal{F} = 3 \times 10^5$$

Unstable active filters

30

Resulting sensitivity curve:

Sample parameters for optomechanical filter:

$$m = 1\mu g$$

$$\omega_m = 10 MHz$$

$$Q_m = 5 \times 10^7$$

$$P_c = 6 W$$

$$L = 5 cm$$

$$\mathcal{F} = 3 \times 10^5$$

Bottom line:

Works in principle. Difficult to realize with optomechanical system due to thermal noise.

Any general argument?

GWADW 2014 Takayama Japan

The end

31

Background

- Input filtering—frequency-dependent squeezing
- Output filtering—frequency-dependent readout
- Intra-cavity filtering with passive components
 - Evading radiation-pressure noise
 - Realizing a speed meter
 - Achieving a broadband enhancement
- Intra-cavity filtering with active components
 - Stable active filters
 - Unstable active filters

Thank you for your attentions!