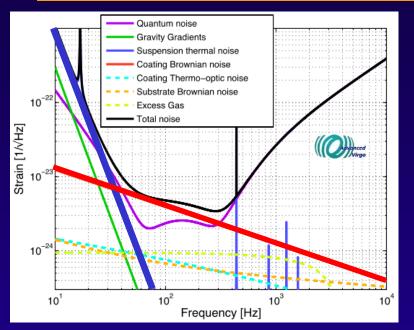


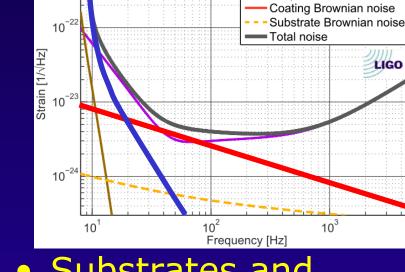
Overview on thermal noise reduction research for future GW detectors


G. Cagnoli, LMA

GWADW 2014 Takayama – 26 May 2014

Sensitivity limits in Advanced Detectors

Suspensions:

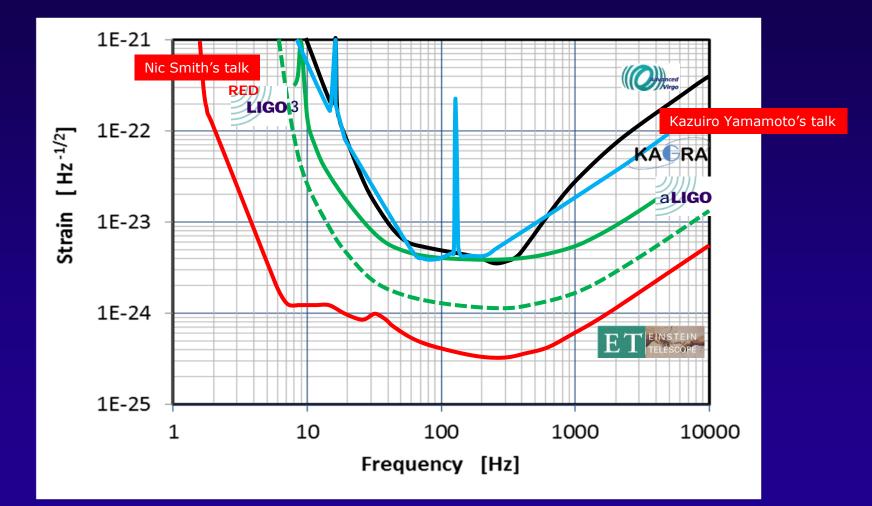

- Silica fibres
- Length <1m</p>

26 May 2014

- Thermoelastic cancellation
- Vertical mode
 frequency <10 Hz

Quantum noise

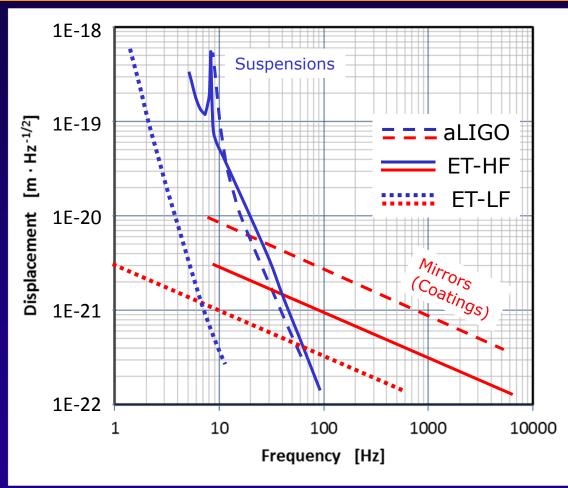
Suspension thermal noise


Seismic noise

Substrates and Coatings:

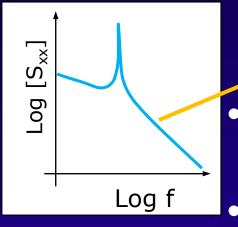
- Silica substrates
- Optimal aspect ratio
- Ti:Ta2O5/SiO2 coatings
- Optimal coating design

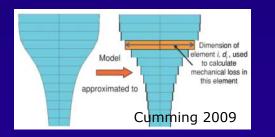
Sensitivity curves beyond the Advanced detectors



Comparison of thermal noise levels

• How do we go from Advanced to Future detectors?





Suspension Thermal Noise

• In the detection bandwidth, interferometers work above the pendulum resonant frequency

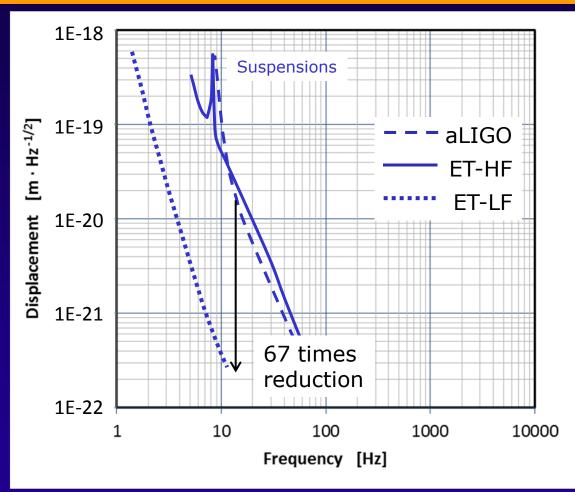
$$S_{xx} \propto T \cdot \frac{1}{m f^5} \cdot \frac{g}{L} \cdot Dil \cdot \varphi_{fibre}$$

$$Dil = \frac{r^2}{L} \sqrt{\frac{\pi Y}{mg}}$$

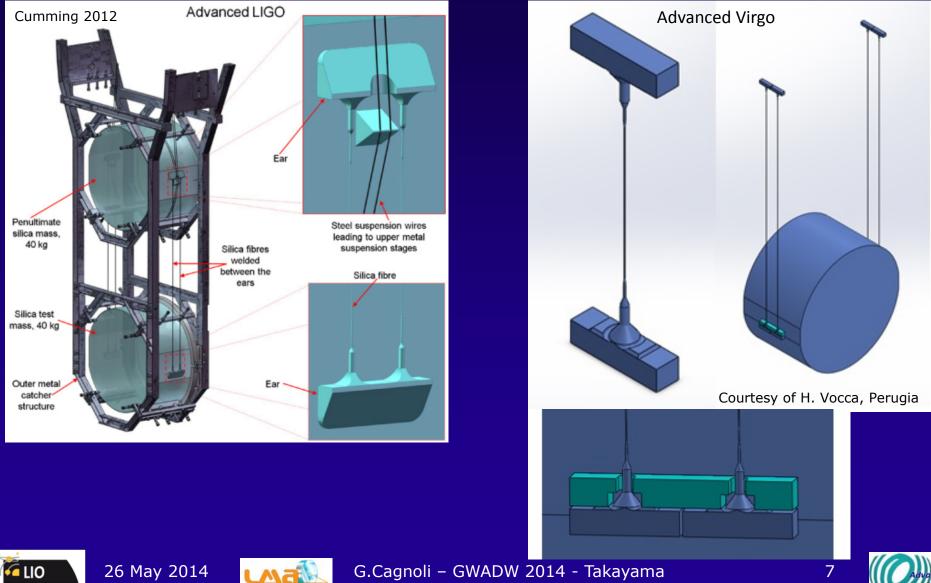
For fibres with a neck the dilution is almost independent on mass

Fixing the fibres radius

- Thermo-elastic cancellation in silica (~190Mpa)
- Sufficient heat conduction for sapphire and Si
- Dil in $ET-LF = 2.6 \times Dil$ in aLIGO
- Summing them up:
 - 1/30 from T 1/3 from L
 - 1/5 from m 1/10 from ϕ



Comparison of thermal noise levels


 What scientific and technological advancements are needed to secure the result?

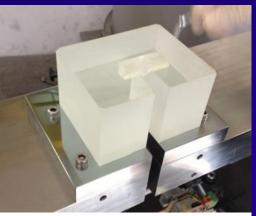
Two concepts for warm suspensions

Technologies for warm suspensions

• Fused silica fibres

- Heavier masses require thicker fibres
- Breaking strength is related to the probability to have a flaw in the fibre, which is proportional to the volume

Tapering


- A sharp neck increases the dilution factor

• Bonding

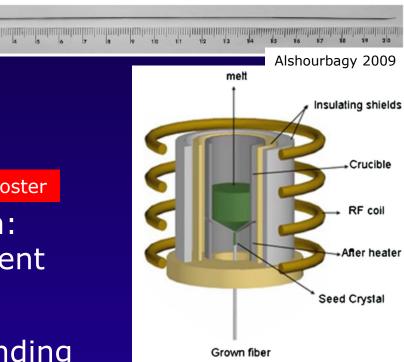
- Shear or compressive stress
- Bonding silica to silica coated steel

Cantilever blades

 DLC protective coating increases handling

Courtesy of H. Vocca, Perugia

Ross Birney's talk


Technologies for cold suspensions - 1

- Crystalline fibres
 - µpulling
 - Vertical growth
 - Machining
- Bonding M. Van Veggel's talk and poster
 - New challenges come from:1) the cryogenic environment
 - Thermal cycling

2) Sapphire and silicon bonding

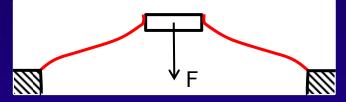
3) Indium bonding?

Pure Si L≈21 cm

UNIVERSITE DE LYON

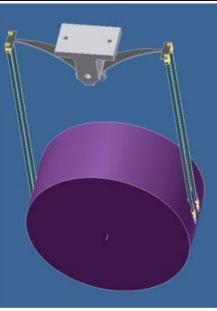
Sapphire bonded samples which broke across the bond surface, but with damage to the bulk sapphire. Strengths 60-80MPa at 77K S. Rowan's talk, GWADW 2013

gnoli – GWADW 2014 - Takayama



Technologies for cold suspensions - 2

• Crystalline LF vertical suspensions


- Cantilevers
- Elements under compression

Eric Hennes's posters

G. Hammond's poster on breaking stress of sapphire

A. Cumming's talk, 5th ET Symposium

E. Majorana's talk, GWADW 2013

Cradles

Raul Kumar's talk

26 May 2014

	Mode	Frequency no spring Hz	Frequency spring Hz			
	Pendulum	0.89	0.89			
	Vertical bounce	106	15.3			
	Violin	221	221			

Scientific investigations

• Thermal noise under heat currents

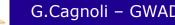
Giles Hammond's poster on Johnson noise

Daniel Heinert's poster on non-eq. Th.Ns.

 Surface relaxations in mechanical losses of amorphous and crystalline materials

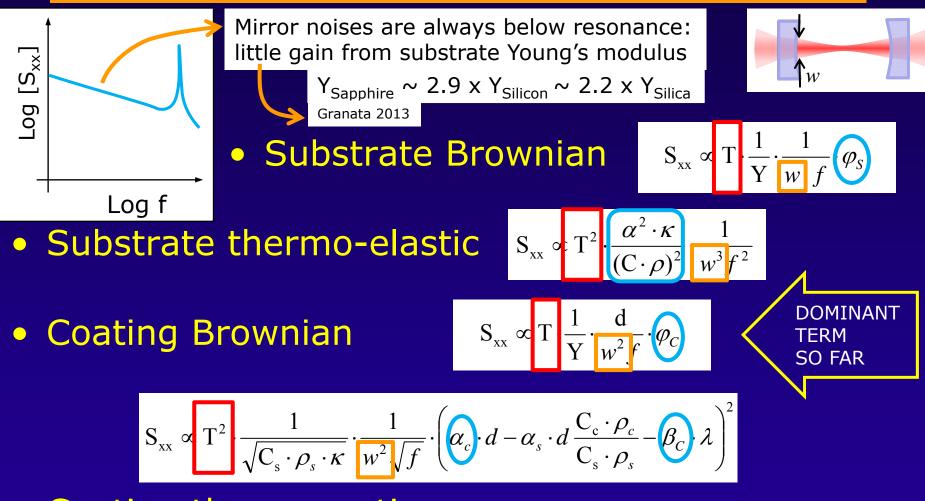
Dmitry Koptov's poster on the ESD effect on test masses

Livia Conti's talk


Zach Korth's poster on silicon ribbons noise

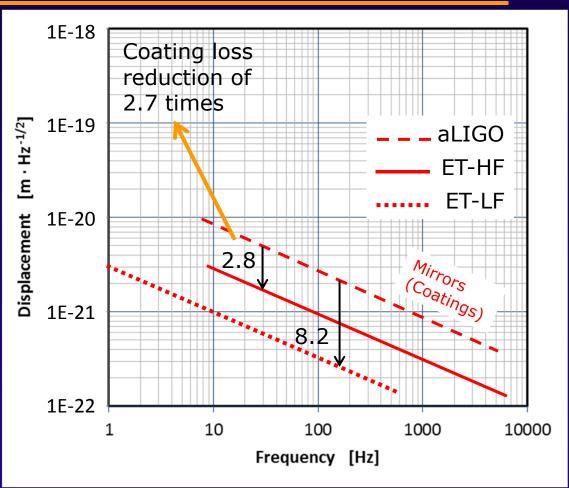
Nic Smith's poster on continous measurement of Q

 Can we have a factor 10 gain over fused silica losses?



Mirror thermal noise

Coating thermo-optic

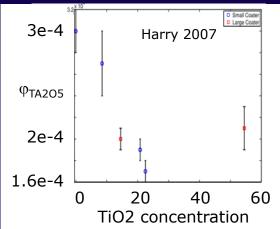

Playing with numbers

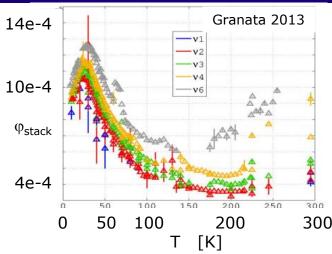
- 1/30 from T- $1/1.7^2 \text{ from } w$ - $1/x \text{ from } \phi$ $\sqrt{S_{xx}}$ may decrease: $1.7 \cdot \sqrt{x}$ times @ 300 K $9.3 \cdot \sqrt{x}$ times @ 10 K

The 1.7 factor may increase further if the LG33 mode replaces the TEM00 in the cavities

26 May 2014

Alberto Gatto's talk





The factor x in the Amorphous Coatings

• Room temperature: – Doping of Ta2O5 with Ti developed at LMA Heat treatment Martin 2010 • Effects at low T At room T Massimo Granata's talk New materials and new doping Steve Penn's research on Zr02 Nano-structured layers Innocenzo Pinto's talk Low temperature

– . ϕ_{coat} (10K) is ~2 x ϕ_{coat} (300K)

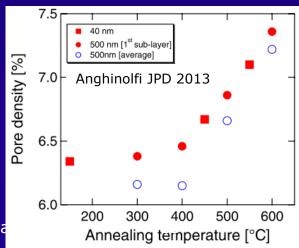
Structural studies

- To understand which are the relaxations responsible of thermal noise in amorphous materials LIGO-Virgo meeting 6th ET Symposium
- The intelligent design of coatings follows

August 29th - Stanford

• Strategy

26 May 2014


Riccardo Bassiri's talk

November 20th - Lyon

- Multi-technique analysis of static structure (x-rays and electronic diffraction) or dynamic (Raman) M. Granata's talk
- Correlation studies with mean properties like mechanical losses or refractive index
- Molecular dynamics models
- Controlled alteration of coatings

Crystalline coatings

Low temperature operation

- AlGaP grown on Si
- AlGaAs grown on
 GaAs and lift off onto substrates

Iain Martin's talk

Room temperature operation

- Lift off technique
- Thermo-optic noise seems under control

Coatings on Si disks: nodal support technique supported by 50 μm wires

A. Lin's talk, GWADW 2013

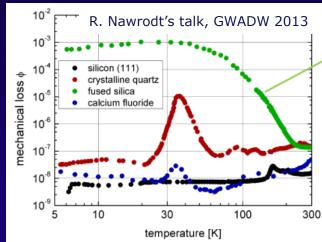
Average coating loss (at 12K) calculated to be 1.4x10⁻⁵

Optical properties

26 May 2014

- → A factor of 45x lower than AdvLIGO SiO₂/doped-Ta₂O₅ coating loss at 12K
 5 to 13ppm absorp.
 measured on Cole's coatings
- Point like defects are sometimes present
- Scattering measurements

Crystalline substrates

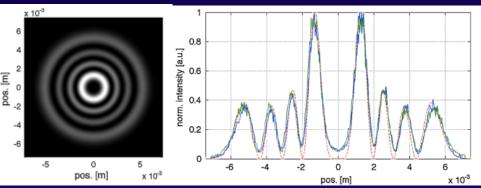

Silicon

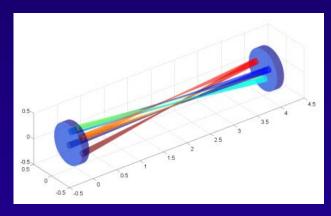
- CZ vs FZ
- Homogeneity of impurities and of thermo-optical and mechanical parameters
- Effect of crystalline axis orientation

• Sapphire

Absorption

Gerd Hofmann's talk

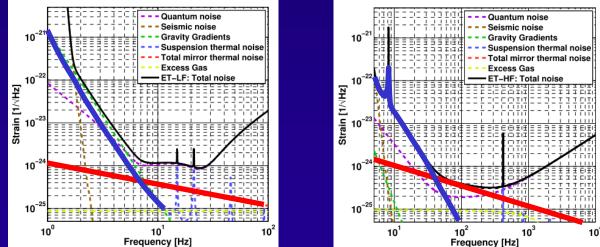



Advancements in optics

LG33 \mathbf{O} Alberto Gatto's talk – Results from the pos. [m] latests experiments

• Folded FP cavities Stefan Balmer's talk

- The history kicks back!
- Sampling ideally the whole mirror surface
- Centre of Mass detection



Parameters for different generations


			Virgo	AdV	LIGO	aLIGO	KAGR	A	LIGO 3-R	ET-LF	ET-HF
Suspension material		Steel	Silica	Steel	Silica	Sapphi	re	Silica	Silicon	Silica	
Suspension length, m			0.7	0.7	0.25	0.6	0	.3	1.2	2	0.7
Wire diameter, µm		300	400	300	400	160	00	566	3000	920	
Bending p diameter, µm		300	800	300	800	160	00	1624	?	1900	
End mirror mass, kg		21	40	11	40	2	23	160	200	211	
Input beam radius, mm		20	49	22	53	3	35	85	90	72	
End beam radius, mm		55	58	22	62	3	35	100	90	72	
Temperature, K		300	300	300	300	20		300	10	300	
		Y [Mpa]	dE/E dT [1/K]	ρ [g/cm^3]	α [1/K]	κ[W/K m]	C [J/K kg]	n	dn/n dT [1/	/K] φ struct	ural
	Steel	210	-1.32E-04	7.85	1.23E-05	58	480			1.80	E-04
_	Fused silica	72	1.60E-04	2200	4.10E-07	1.38	716	1.45	8.00E-0	6 5.00	E-09
	300 К Sapphire 20 К	392	-1.24E-04	3.99	5.49E-06	70	780			3.00	E-09
_		398	-1.41E-05		-2.91E-07	1000	0.71				
	<mark>Silicon</mark> ^{300 К} 10 К	130 / 188	-5.42E-05	2330		120				1.00	E-08
_						2200				3E-9 / 5	5E-9
	Та2О5 300 к	140		und. 7390	3.60E-06	33	280	2.06	1.40E-0	5 2.44	E-4
	doped 10 К										
	SiO2 ^{300 К}	70		2470	5.00E-07	1.38	745	1.45	8.00E-0	6 4.60	E-05
	10 K										
	GaAs ^{300 к} 85.5 / 14 10 к	85.5 / 140		5.32	5.80E-06	51	327	3.3	4.50E-0	5 Mirror 2	.5E-5
					-3.84E-09	2000	14.6				
	GaP 300 К	103		6.15	4.73E-06	110	444	3.05			
•	10 К									Mirror 1	.4E-5
26 May 2014			LMa	G.Cagn	oli – GWA	DW 2014	- Takaya	ma		19	

Conclusion

- Progresses are constants
- There are good chances to reach the expected noise levels for future detectors
- A POSITIVE COMPETITION BETWEEN
 MATERIAL RESEARCH AND OPTICS IS
 NECESSARY

G.Cagnoli - GWADW 2014 - Takayama

