

[Towards an] in-vacuum OPO squeezer

Georgia Mansell¹, Andrew Wade¹, Sheon Chua², Bram Slagmolen¹, Robert Ward¹, Daniel Shaddock¹, David McClelland¹

¹ Centre for Gravitational Physics, Australian National University ² Laboratoire Kastler Brossel, UPMC (France)

Overview

- Motivation
- Background
- Design
- Construction
- Preliminary results
- Characterisation & next steps

Motivation

 Develop a robust squeezed light source for aLIGO, in collaboration with MIT

Squeezed light

 Uncertainty principle for electromagnetic waves:

Quantum noise in GW detectors

Squeezing and LIGO

Nature Photonics, 7, 613-619 (2013)

ANU aluminium squeezer

ANU aluminium squeezer performance

- Sources of loss
 - Poor mode matching between OPO and interferometer
 - Faraday isolator
- Sources introducing squeezing phase noise
 - Cavity length fluctuations
 - Pointing between OPO and interferometer

Prototype vacuum-compatible OPO

- Constructed on glass
 - Like aLIGO OMC low cavity length noise <1x10⁻¹⁵ m/ Hz^{-1/2}
 - \rightarrow Low cavity phase noise (~0.1 mrad)¹
 - Long term alignment stability
- In vacuum system
 - Reduce jitter between cavity and interferometer
 - Acoustic isolation
 - Mitigates scattered light

Design & construction

Cavity layout

Cavity parameters

- Bow tie cavity
- Round trip length: 345 mm
- Resonant at 1064 nm and 532 nm
- Non-linear crystal: PPKTP
- Finesse: 35 @ 1064 nm, 16 @ 532 nm

Gluing cavity mirrors

Mirrors glued to tombstones with degassed MasterBond EP30-2 adhesive

Crystal oven

Oven testing in vacuum

Cavity construction – optical contacting

- Two very flat surfaces
 (λ/10)
- Drop of methanol between them
- Shear strength ~0.13 MPa
- Reversible

Cavity construction

110 mm

12°

Results (so far)

20

In-air results (preliminary)

21

In-air results (preliminary)

Current status

- Producing 9 dB squeezing
- Scatter mitigation underway
- Working towards
- \geq 10 dB
- Vacuum preparation ongoing

Current issues

- Grounding issues
- Lower than expected nonlinear gain
- Fringe visibility
- Vacuum tank leak issues

Next steps

- Measure cavity escape efficiency
- Improve squeezing level
- Run squeezer under vacuum
- Compare with previous AI cavity (phase noise, cavity loss)
- Long term measurements
- Populate glass breadboard
- In-vacuum homodyne detector