KAGRA

Summary

Mirror	
Bulk	Crystal maker is working for smaller absorption / inhomogeneity
test polish	Successfully done (Phys. Rev. D 89, 062003)
coating R&D	ETM-like coating R&D is in progress and will be characterized in the near future. Joint coating research between ICRR and Glasgow is in progress (mechanical loss measurement)
side design	Not determined
Type-A SAS	(the room temp. part is designed and manufactured by VIS)
Mathematical model w/ control	Takanori Sekiguchi developed a tool for SAS (SUMCON) and implemented a feedback control with Simulink.
Preliminary design	Followed the room tem. SAS, reflecting the above model. But, lots of detailed design has to be addressed, such as vertical GASF that works below 20K, moving masses for attitude control for PF and IM, sensors and actuators, how to suspend TM,
Final design of PF+IM+IRM	We contacted a company for the final design based on the above preliminary design and are discussing what can be done.
sapphire fiber and its bonding	Extensively investigated by the CRY group with EliTES collaboration.
sapphire suspension	In consideration. A prototype is being made for upper stage design

Design with SIS

[ppm]		Advanced LIGO			
	budget	evaluation	budget		
diffraction	(1)	substrate's size	1		
defect in polished surface	1+1	surface quality	0		
scattering in coating	9+9	measurement	4+4		
figure (LSF)	30+30	SIS	20+20		
roughness (HSF)	5+5	σ_{rms}	10+10		
absorption in coating	1+1	measurement	0.5+0.5		
ETM transmission	7	measurement	5		
Total	100	-	75		
CA		CA: R = 140mm r < 70mm: RMS = 0.5nm r > 70mm: RMS = 2nm			

Pathfinder (test polish)

200mm Pathfinder Result Summary

	Final	Final Results		Specification Values			
R1 @ 180mm Diameter	Value	Units		Target Spec.	+	-	
Radius	2250.64	m					
Z _{2,2}	-0.68	nm					
Z _{2,2}	0.45	nm					
RSS (Z _{2,2} & Z _{2,2})	0.81	nm					
Figure Z _{0.0} Z _{1.1} Z _{1.1} & Z _{2.0} Removed rms	0.59	nm					
Figure Z _{0,0} Z _{1,1} Z _{1,1} Z _{2,0} Z _{2,2} & Z _{2,2} Removed rms	0.48	nm	pass	0	2		
R1 @ 140mm Diameter							
Radius	2001.90	m	pass	2000	10	10	
Z _{2,2}	-0.41	nm					
Z _{2,2}	0.26	nm					
RSS (Z _{2,2} & Z _{2,2})	0.48	nm	pass	0	3		
Figure Z _{0.0} Z _{1.1} Z _{1.1} & Z _{2.0} Removed rms	0.31	nm					
Figure Z _{0,0} Z _{1,1} Z _{1,1} Z _{2,0} Z _{2,2} & Z _{2,2} Removed rms	0.24	nm	pass	0	0.5		
R1 High Spatial Frequency Errors							
1-750 mm-1	0.11	nm	pass	0	0.16		
R1 Surface Quality							
Defect area @ 100mm Diameter	0	μm²	pass	0	2000		
Defect area @ 180mm Diameter	14200	μm ²	pass	0	30000		
Point Defect > 2 µm Count @ 100mm Diameter	0		pass	0	10		
Point Defect > 2 µm Count @ 200mm Diameter	0		pass	0	82		
Point Defect < 2 µm Density @ 180mm Diameter	0.00	1 / mm ²	pass	0	0.25		

A target specification value of "--" Indicates that there is no specification.

Zernikes from Born and Wolf pp. 523-525.

2014/5/27

PSD

GWADW 2014, Takayama JAPAN

2.5x

50x

Sapphire crystal

Absorption and homogeneity of bulk

2014/5/27

Sapphire suspension

loop type

TM is 220mm-diameter and 150mm thick, and sapphire rods have to work as heat paths

 \rightarrow thicker fiber (~1.6mm) is needed and making a loop is tough.

It is a challenging issue, but we need to start with a configuration with which we can develop upper stages (PF+IM+IRM).

Prototype fabrication

sapphire TM

sapphire cradle

Shinkosha Co., Itd is working on these parts and they will be delivered in a month or so.

pulling test of screw thread @ 77K

	diameter	length	minor dia. of external thread	pitch	# of threads	shear	stress	bending	g stress	flank surface pressure	stress @ min. dia.
						external	internal	external	internal		P/(d1^2/4)
	d = D	L [mm]	d1=D1 [mm]	Pitch, Pp [mm]	z = L/Pp [mm]	т1 [MPa]	т2 [MPa]	σ1 [MPa]	σ2 [MPa]	σ3 [MPa]	σ0 [MPa]
tested P [N]	3000										
M6	6	10	4.917	1	9.5	27.26	19.71	59.09	37.89	34.01	157.99
M5	5	7	4.134	0.8	8.25	46.67	34.04	101.16	65.45	58.53	223.51
expected P [N]	60										
M6	6	10	4.917	1	9.5	0.55	0.39	1.18	0.76	0.68	3.16
M1.8	1.8	7	1.421	0.35	19.5	2.63	1.83	5.69	3.52	3.21	37.83
M1.6	1.6	5	1.221	0.35	13.79	4.32	2.91	9.37	5.60	5.18	51.24

2014/5/27

prototype test

Check list

- Strength
- Integration / disintegration
- Heat resistance between interfaces
- Blade performance (bounce mode)
- Fiber Q
- dynamics (pitch, yaw, longitudinal)
- Improvement by replacing parts or changing configuration

Important message

We will start with this configuration but try improving the system continuously. It would be bad if we did not do anything until we know the perfect configuration

contributors

Sapphire mirror design and fabrication

E. Hirose, D Bajuk, G. Billingsley, T. Kajita, B. Kestner, N. Mio, M. Ohashi, B. Reichman, H. Yamamoto, and L. Zhang

ICRR-Glasgow joint research on mechanical loss measurement

E. Hirose, K. Craig, H. Ishitsuka, I. Matin, N. Mio, S. Moriwaki, M. Ohashi, S. Rowan, Y. Sakakibara, T. Suzuki, K. Waseda, K. Watanabe, and K. Yamamoto

type-A SAS development for the KAGRA sapphire mirror

E. Hirose, T. Sekiguchi, Y. Sakakibara, R. Kumar, R. Takahashi, and the KAGRA CRY group

acknowledgments

Brian Lantz, Brett Shapiro, Jeff Kissel, and LIGO laboratory