Experiments towards a cryogenic interferometer: From the sublime to the practical

Richard Ottens -- Near field Ryan Goetz -- OSEMs Berik Uzakbaiuly -- Si Stacy Wise, Volker Quetschke, Guido Mueller, David Reitze, David Tanner

University of Florida

Black body radiation

Quantum Theory

LIGO

Planck's Law

•
$$B_{\nu} \propto \nu^3 \frac{1}{\frac{h\nu}{e^{\frac{h\nu}{kT}} - 1}}$$

- Far-field theory
- Near-Field
 - Casimir force
 - Evanescent-wave heat transfer
 - * Rytov, Polder/van Hove Loomis/Maris

http://en.wikipedia.org/wiki/File:Blackbody-lg.png

Theory

- Exponentially decaying field
- Produced by total internal reflection
- If a wave propagates in vacuum,
 - » k_{tx} and k_{tz} found from Snell's law.
 - » Total internal reflection:
 - $(\sin\theta_i > n_t/n_i)$
- If total reflection,

$$\vec{E}_t = \vec{E}_{t0} e^{ik_t x \frac{n_i}{n_t} \sin \theta_i} e^{-k_t z \sqrt{\frac{n_i^2}{n_t^2} \sin^2 \theta_i - 1}} e^{-i\omega t}$$

• E_{tz} is exponentially decaying

Theory 2

- Bring 2nd medium near the interface
- Energy propagates into the 2nd material
- "Frustrated total internal reflection" (photon tunneling)

Theory 3

 Propagating part (almost) constant with separation

LIGO

 Near-field becomes dominant at distances below the thermal wavelength Heat transfer components ($T_1 = 300$ K $T_2 = 310$ K)

• $\Lambda = 10 \ \mu m$ at 300 K

 $\Lambda = \frac{ch}{2\pi^{1/3}kT}$

Experimental Setup

GWADW May 2014

LIGO Heat Transfer Measurements

The heat transfer is the ratio of heater power to (area * temperature difference)

$$\boldsymbol{\mathcal{W}} = \frac{P}{A \cdot \Delta T}$$

Move the plates closer; heater power increases

Distance Measurements

LIGO

• γ , d₀, and δ found experimentally

Laser Interferometry

Laser light interferes with reflections off the two gap surfaces

LIGO

Angling beam separates reflected light off of undesired surfaces

Laser Interferometry

 Laser interference between the two plates produce fringes

- Gives relative distance
- Minima realign about every 8.1 µm
 - Use as mile markers
- Capacitors are sufficient to determine the proper 8.1 µm window
 - Gives absolute distance

New Setup

- Both sapphire plates thermally controlled
- Better thermal controller

New Setup

Modified heat exchanger

- Reduce thermal noise
- Improved thermal link

LIGO **Best Results at Room Temperature**

GWADW May 2014

~100 K

GWADW May 2014

10

10,

Implementation in LIGO

Back

- Only one surface
- Noise due to charging
- And Casimir force

Sides

- Multiple surfaces
- Reduced noise coupling

Back and Sides

Conduction through the fibers: 4.4x10⁻⁶ W/K (<< far field radiated

GWADW May 2014

Near-field summary

- Measured evanescent-wave heat transfer across a small gap
- Agrees with theory

- Can potentially be used to take excess heat from mirrors in LIGO
- Starting to get cryogenic results

- Ryan Goetz poster in GWADW13
- Many different gadgets used in the vacuum systems of GW detectors
- Would need to work in a cryogenic environment in future detectors

Cryogenic test facility

Cooler and chamber

 0.6 m³ main vacuum tank along with an attached Sumitomo cryocooler

Performance

 More than 1 W at 7 K; 10 W at 40 K

LIGO

• Base temperature below 4 K.

 If thermal link is good, cooldown is quick

BOSEM

• BOSEM used in aLIGO

LIGO

• Would need to work at low T in future detectors

- Shadow detectors and actuators throughout LIGO suspensions
- Displacement of flag read as change in photocurrent:
 - sensitivity of ~10⁻¹⁰ m/Hz^{1/2} at 10 Hz[†]
- Current through coil actuates on flag magnet

Vishay TSTS7100

- GaAs (III-V) IRLED
- Used in BOSEM:
 - 950 nm
 - Narrow intensity profile
 - Good noise performance
 - Relatively low forward voltage at 35 mA
- Cryogenic concerns: noise, efficiency, lifetime, profile, spectrum

Measure *i*, *v*, *T*, *I*

Efficiency, power

- Both external quantum efficiency and heating from the diode at 35 mA increase from 300 K to 30 K
- Not accounting for possible profile changes

Heating above ambient

Temperature dependent transmission of 200 Ω -cm Si

- Much to be done before cryogenic operations are a reality
- My opinion: The gains from low T operations justify the agony of getting there.

The end

Evanescent-Wave Heat Transfer

Richard S. Ottens

GWADW May 2014

Theory 3

• Heat transfer coefficient w is the sum of two parts $w_{\rm sin}$ and $w_{\rm exp}$

$$\boldsymbol{w}(d) = \frac{\partial S_z(d)}{\partial T} = \boldsymbol{w}_{sin} + \boldsymbol{w}_{exp}$$

- » $\boldsymbol{w}_{\mathrm{sin}}$ is the propagating field
- » w_{exp} is the near-field

k

Parallel Planes VS Sphere Plane

Parallel Planes

- » Simpler theory
- » The effect occurs <10 µm
- » Surface topography not important
- Engineering problem to keep the planes parallel
- » Applications in LIGO

- Complex theory
- The effect occurs <10 nm</p>
- Surface topography plays an important role
- No engineering problem with angular alignment
- No foreseeable use in LIGO

Material Choices

Material	Emissivity	Thermal Conductivity [W/ (m K)]	Index of Refraction
Sapphire	0.16	35	1.76
Fused Silica	0.9	1.4	1.46
Doped Silicon	0.1 to 0.7	150 to 225	3.4
NiChrome	0.9	11	-

300 K

- Four data runs at four different temperature differences
 - » offset by 2 W/m²K » $T \approx 310$ K
- Model prediction
 » solid black
- Bend in sapphire plate
 » dashed black

Temperature Dependence

- Near-field regime
 » heat flux ~ linear with ΔT
- $\varphi(\Delta T, d) = G(d)(\Delta T)^{\alpha(d)}$
- $0.70 \le \alpha(d) \le 0.91$

Systematics

- Agreement among runs
- Additional heat transfer with increased ΔT

» As much as 50 W/m²

Laser Interferometry

GWADW May 2014

New Setup

- Modified to work in cryogenic conditions
- Thicker/flatter sapphire plates
- Invar spacer to prevent warping

Laser Interferometry

Triangular pattern Measure tilt

- Must be within a vertical tilt of 12 µm over 2 inches
 - Capacitors have this accuracy
 - To make sure mile marker exists

Bend and Newton's Rings

 Interference pattern between the reflections of a flat surface and a curved surface

http://en.wikipedia.org/wiki/Newton's_rings

$$r_N = \sqrt{\left(N - \frac{1}{2}\right)\lambda R}$$
$$Z = R - \sqrt{R^2 - \rho^2}$$

• Measured Radii using 3 points

$$r_N = \sqrt{\left(N - \frac{1}{2}\right)\lambda R}$$
$$Z = R - \sqrt{R^2 - \rho^2}$$

- r_N^2 is linear with N • Z = 0.1 to 0.6 µm
 - Depending on stresses

