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Statement of the problem

General Relativity has enjoyed important successes:

* Perihelium precession of Mercury
» Deflection of star light by the Sun
» Shapiro time delay

* Gravity Probe B

- Geodetic effect
- Frame dragging

e Binary pulsars




Statement of the problem

General Relativity has enjoyed important successes:

e Perihelium precession of Mercury  [weak, static field]
» Deflection of star light by the Sun  [weak, static field]
e Shapiro time delay [weak, static field]

* Gravity Probe B

- Geodetic effect [weak, static field]
- Frame dragging [weak, stationary field]
 Binary pulsars [dynamical but weak-field]

No tests of genuinely strong-field dynamics of spacetime

|deal laboratories: coalescing binary neutron stars and black holes

— Need direct detection of gravitational waves




Coalescence of binary neutron stars and black holes
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The inspiral of compact binaries

= Orbital motion during inspiral in terms of v = v(1):
T

o) = (5) ()] ()’

n=0

-

= Up to factor of 2, this is also the phase of the G\W signal

a In general relativity:

_and y (/ are specific functions of
component masses and spins




The inspiral of compact binaries

o) = (27X [+ w0 ()] ()

=

Physical content of coefficients:
= 703 encodes lowest-order dynamical self-interaction of spacetime
= Y4 has lowest-order spin-spin effects

- -gé-é” is lowest-order logarithmic coefficient

Possible modifications to GR:
= Massive graviton modifies )
= “Dynamical scalarization” adds YsTv~? inside the sum

= Quadratic curvature corrections add ¥gcv*
9

= Gravitational parity violations add 'csv




Probing the strong-field dynamics of spacetime

o) = ()% [+ v (2)] ()

=

If no spins, then ¢ and z/)n(’) are only functions of masses

— Only two of them are independent

Generic test of GR:
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Probing the strong-field dynamics of spacetime
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" Want to combine information from all the sources we will detect
In practice: measuring parameters not convenient

Instead do model selection by computing an “odds ratio”:

Omﬂdl‘:}ﬂ _ P(HndeR|d:I}
GR P(Hgr|d, 1)

Li et al., PRD 85, 082003 (2012); Li et al., J. Phys. Conf. Ser. 363, 012028 (2012)




=xamples: binary neutron stars, AdV/aLIGO/KAGRA/IndIGO

= Consider large number of simulated binary neutron star signals,
combine into catalogs of 15 each

= How is (log) odds ratio distributed?
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Binary neutron stars: robustness against unknown effects
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Different waveform approximations

Finite number of known phase contributions
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What about binary black holes?

« Small spins

- = Binary black holes:
* Inspiral, merger, ringdown
 Very large spins
Dynamically richer, but...

e (Good waveform models
becoming available only now

* Analysis problem much harder

(- For binary neutron stars, things are under control

* Only inspiral part of the waveform can be seen in detectors
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What about binary black holes?

& For binary neutron stars, things are under control

* Only inspiral part of the waveform can be seen in detectors

« Small spins _ _
C. Van Den Broeck, to appear in Springer

Handbook of Spacetime; arXiv:1301.7291 [gr-qc]
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h  From simulations that assume zero spins:
0.5% deviation at (v/c)® beyond leading order can be seen (!)

 Work in progress




- Comparison with existing binary pulsar bounds?

with “same size”

« Example: “dynamical scalarization”

We will probe regime where (v/c) and GM/c’R both O(1)
Compare binary pulsar: (v/c) € 1 and GM/c?R < 1

GR violations may only appear at high v/c

But, let's assume that any deviation at large v/c will also show up at small v/c,
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- Comparison with existing binary pulsar bounds?

We will probe regime where (v/c) and GM/c?R both O(1)
Compare binary pulsar: (v/c) € 1 and GM/c?R < 1

= GR violations may only appear at high v/c

 Example: “dynamical scalarization”

i But, let's assume that any deviation at large v/c will also show up at small v/c,
with “same size”
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- Comparison with existing binary pulsar bounds?

We will probe regime where (v/c) and GM/c?R both O(1)
Compare binary pulsar: (v/c) € 1 and GM/c?R < 1

= GR violations may only appear at high v/c

 Example: “dynamical scalarization”

. But, let's assume that any deviation at large v/c will also show up at small v/c,

with “same size”
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Einstein Telescope
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Einstein Telescope

= Einstein Telescope will also allow

Ringdown
us to clearly see ringdown signals

= Superposition of modes with

. frequencies w
nim

 damping times t__

= Einstein equations force all of these
to depend on mass M, spin J of
final black hole:

W = (DnmI(M’J)’ T = rnmI(M,J)

nim n

... hence only two independent

U Time ¢

Black hole

perturbation
_ methods — Test of the no-hair theorem




Einstein Telescope
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= Einstein Telescope will also allow
us to see ringdown signals

= Superposition of modes with

. frequencies w
nim
 damping times t__

= Einstein equations force all of these
to depend on mass M, spin J of
final black hole:

O im = (Dnml(M’J)’ T ml = TnmI(M’J)

nim n

... hence only two independent

— Test of the no-hair theorem

J. Meidam et al., in preparation




Outlook

= Direct gravitational wave detection will gives us empirical
access to the genuinely strong-field dynamics of spacetime

* Rich physics
- Observe dynamical self-interaction of spacetime itself

e Variety of ways in which alternative theories of gravity can
manifest themselves

= Already the 2™ generation detectors will take us well beyond
the regime that we can access today

« Arobust data analysis pipeline for testing GR is already in place
for the case of binary neutron star coalescence

« Binary black holes much more challenging, but great rewards

= Einstein Telescope (and eLISA!) will herald precision
gravitational physics

« Additional tests, e.g. no-hair theorem
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