# Testing the strong-field dynamics of general relativity with gravitional waves

Chris Van Den Broeck

National Institute for Subatomic Physics



GWADW, Takayama, Japan, May 2014

## Statement of the problem

### General Relativity has enjoyed important successes:

- Perihelium precession of Mercury
- Deflection of star light by the Sun
- Shapiro time delay
- Gravity Probe B
  - Geodetic effect
  - Frame dragging
- Binary pulsars

## Statement of the problem

General Relativity has enjoyed important successes:

- Perihelium precession of Mercury [weak, static field]
- Deflection of star light by the Sun
- Shapiro time delay
- Gravity Probe B
  - Geodetic effect
  - Frame dragging
- Binary pulsars

[weak, static field]

[weak, static field]

[weak, static field] [weak, stationary field] [dynamical but weak-field]

No tests of genuinely strong-field dynamics of spacetime Ideal laboratories: coalescing binary neutron stars and black holes  $\rightarrow$  Need direct detection of gravitational waves

## Coalescence of binary neutron stars and black holes



## The inspiral of compact binaries

![](_page_4_Figure_1.jpeg)

• Orbital motion during inspiral in terms of v = v(t):

$$\Psi(v) = \left(\frac{v}{c}\right)^{-5} \sum_{n=0}^{7} \left[\psi_n + \psi_n^{(l)} \ln\left(\frac{v}{c}\right)\right] \left(\frac{v}{c}\right)^n$$

- Up to factor of 2, this is also the phase of the GW signal
- In general relativity:

 $\psi_n$  and  $\psi_n^{(l)}$  are specific functions of component masses and spins

## The inspiral of compact binaries

$$\Psi(v) = \left(\frac{v}{c}\right)^{-5} \sum_{n=0}^{7} \left[\psi_n + \psi_n^{(l)} \ln\left(\frac{v}{c}\right)\right] \left(\frac{v}{c}\right)^n$$

Physical content of coefficients:

- $\psi_3$  encodes lowest-order dynamical self-interaction of spacetime
- $\psi_4$  has lowest-order spin-spin effects
- $\psi_5^{(l)}$  is lowest-order logarithmic coefficient

Possible modifications to GR:

- Massive graviton modifies  $\psi_2$
- "Dynamical scalarization" adds  $\psi_{ST}v^{-2}$  inside the sum
- Quadratic curvature corrections add  $\psi_{QC}v^4$
- Gravitational parity violations add  $\psi_{CS}v^9$

## Probing the strong-field dynamics of spacetime

$$\Psi(v) = \left(\frac{v}{c}\right)^{-5} \sum_{n=0}^{7} \left[\psi_n + \psi_n^{(l)} \ln\left(\frac{v}{c}\right)\right] \left(\frac{v}{c}\right)^n$$

If no spins, then  $\psi_n$  and  $\psi_n^{(l)}$  are only functions of masses  $\rightarrow$  Only two of them are independent

![](_page_6_Figure_3.jpeg)

![](_page_6_Figure_4.jpeg)

## Probing the strong-field dynamics of spacetime

![](_page_7_Figure_1.jpeg)

Want to combine information from all the sources we will detect

In practice: measuring parameters not convenient

Instead do model selection by computing an "odds ratio":

$$O_{\mathrm{GR}}^{\mathrm{modGR}} = \frac{P(\mathcal{H}_{\mathrm{modGR}}|d,\mathrm{I})}{P(\mathcal{H}_{\mathrm{GR}}|d,\mathrm{I})}$$

Li et al., PRD 85, 082003 (2012); Li et al., J. Phys. Conf. Ser. 363, 012028 (2012)

### Examples: binary neutron stars, AdV/aLIGO/KAGRA/IndIGO

- Consider large number of simulated binary neutron star signals, combine into catalogs of 15 each
- How is (log) odds ratio distributed?
  - Example 1:
    - GR is right
    - 10% shift at (v/c)<sup>3</sup>
      - Anomaly in dynamical self-interaction of spacetime
  - Example 2:
    - GR is right
    - 20% shift at (v/c)<sup>4</sup>
      - Quadratic curvature corrections to Einstein-Hilbert action

![](_page_8_Figure_11.jpeg)

### Binary neutron stars: robustness against unknown effects

#### Instrumental calibration errors

![](_page_9_Figure_2.jpeg)

#### Different waveform approximations

![](_page_9_Figure_4.jpeg)

#### Neutron star tidal interactions

![](_page_9_Figure_6.jpeg)

Agathos et al., PRD 89, 082001 (2014)

#### Finite number of known phase contributions

![](_page_9_Figure_9.jpeg)

#### Neutron star spins

![](_page_9_Figure_11.jpeg)

#### All effects together

![](_page_9_Figure_13.jpeg)

### What about binary black holes?

### For binary neutron stars, things are under control

- Only inspiral part of the waveform can be seen in detectors
- Small spins
- Binary black holes:
  - Inspiral, merger, ringdown
  - Very large spins

### Dynamically richer, but...

- Good waveform models
  becoming available only now
- Analysis problem much harder

![](_page_10_Figure_10.jpeg)

## What about binary black holes?

### For binary neutron stars, things are under control

- Only inspiral part of the waveform can be seen in detectors
- Small spins
- Binary black holes:
  - Inspiral, merger, ringdown
  - Very large spins

### Dynamically richer, but...

- Good waveform models
  becoming available only now
- Analysis problem much harder
- From simulations that assume zero spins:
  0.5% deviation at (v/c)<sup>6</sup> beyond leading order can be seen (!)
- Work in progress

![](_page_11_Figure_12.jpeg)

# Comparison with existing binary pulsar bounds?

We will probe regime where (v/c) and GM/c<sup>2</sup>R both O(1)Compare binary pulsar: (v/c)  $\ll$  1 and GM/c<sup>2</sup>R  $\ll$  1

GR violations may only appear at high v/c

П

- Example: "dynamical scalarization"
- But, let's *assume* that any deviation at large v/c will also show up at small v/c, with "same size"

![](_page_12_Figure_5.jpeg)

# Comparison with existing binary pulsar bounds?

- We will probe regime where (v/c) and GM/c<sup>2</sup>R both O(1)Compare binary pulsar: (v/c)  $\ll$  1 and GM/c<sup>2</sup>R  $\ll$  1
- GR violations may only appear at high v/c

Ľ.

- Example: "dynamical scalarization"
- But, let's *assume* that any deviation at large v/c will also show up at small v/c, with "same size"

![](_page_13_Figure_5.jpeg)

# Comparison with existing binary pulsar bounds?

- We will probe regime where (v/c) and GM/c<sup>2</sup>R both O(1)Compare binary pulsar: (v/c)  $\ll$  1 and GM/c<sup>2</sup>R  $\ll$  1
- GR violations may only appear at high v/c

Ľ.

- Example: "dynamical scalarization"
- But, let's *assume* that any deviation at large v/c will also show up at small v/c, with "same size"

![](_page_14_Figure_5.jpeg)

## **Einstein Telescope**

![](_page_15_Figure_1.jpeg)

## **Einstein Telescope**

![](_page_16_Figure_1.jpeg)

Ringdown

Black hole perturbation methods

- Einstein Telescope will also allow us to clearly see ringdown signals
- Superposition of modes with
  - frequencies  $\omega_{_{nlm}}$
  - damping times τ<sub>nlm</sub>
- Einstein equations force all of these to depend on mass *M*, spin *J* of final black hole:

$$ω_{nlm} = ω_{nml}(M,J), τ_{nml} = τ_{nml}(M,J)$$

... hence only two independent

 $\rightarrow$  Test of the no-hair theorem

## **Einstein Telescope**

![](_page_17_Figure_1.jpeg)

- Einstein Telescope will also allow us to see ringdown signals
- Superposition of modes with
  - frequencies  $\omega_{nlm}$
  - damping times  $\tau_{nlm}$
- Einstein equations force all of these to depend on mass *M*, spin *J* of final black hole:

$$ω_{nlm} = ω_{nml}(M,J), τ_{nml} = τ_{nml}(M,J)$$

... hence only two independent

 $\rightarrow$  Test of the no-hair theorem

J. Meidam et al., in preparation

# Outlook

- Direct gravitational wave detection will gives us empirical access to the genuinely strong-field dynamics of spacetime
  - Rich physics
    - Observe dynamical self-interaction of spacetime itself
  - Variety of ways in which alternative theories of gravity can manifest themselves
- Already the 2<sup>nd</sup> generation detectors will take us well beyond the regime that we can access today
  - A robust data analysis pipeline for testing GR is already in place for the case of binary neutron star coalescence
  - Binary black holes much more challenging, but great rewards
- Einstein Telescope (and eLISA!) will herald precision gravitational physics
  - Additional tests, e.g. no-hair theorem