Thermal noise reduction with higher-order Laguerre-Gauss modes

A. Gatto, M. Tacca, C. Buy, F. Kéfélian and M. Barsuglia

Laboratoire AstroParticule et Cosmologie - Paris

GWADW 2014

Outline

♦ State of the art

♦ Non-Gaussian interferometer at the APC

Introduction

- Sensitivity of 2nd generation gravitational wave detectors will be limited by coating thermal noise around 100 Hz
- ♦ For same diffraction losses, Laguerre-Gauss (LG_{pl}) modes reduce thermal noise thanks to their larger coverage of the surface
- ♦ LG modes resonate in spherical Fabry-Perot cavities
- ♦ LG₃₃ mode reduces thermal noise by ≈1.8 in AdVirgo geometry 3

Outline

♦ Non-Gaussian interferometer at the APC

♦ <u>Reduction of the degeneracy</u>

Beginning: LG generation

- A generic LG beam can be generated by spatial light modulators or diffractive phase plate and a mode cleaner cavity
- ♦ High modal purity achieved (~99%) [1,2]
- High power generation has been obtained using a phase plate [3]
 - > 83 W on LG₃₃ mode
 - Conversion efficiency 59%
 - Modal purity > 97% also at high power

[1] M. Granata et al., PRL 105, 231102 (2010)
[2] P. Fulda et al., Physical Review D 82, 012002 (2010)
[3] L. Carbone et al., PRL 110, 251101 (2013)

Glasgow 10-m cavity

♦ First attempt to realize a suspended cavity resonating on LG₃₃ mode
 ♦ Locking on the LG₃₃ mode not achieved

- Complexity of the LG system
 - Clipping
 - > Mode matching
 - Resonance splitting due to astigmatism

[4] B. Sorazu et al., Class. Quantum Grav. 30 (2013) 035004

ETM (misaligned ITM)

ITM

Main problem: LG degeneracy

◇A n-order LG mode is n-times degenerated ◇ Expected contrast defect 3 order of magnitude worse than Gaussian beam: target value (10⁻⁴) reached for RMS < 0.01 nm [5]

♦ Greater coupling on other n-order modes due to lower order defects [6-7]

[5] T. Hong et al., Physical Review D 84, 102001 (2011)
[6] M. Galimberti et al, GWADW 2010
[7] C. Bond et al., Physical Review D 84, 102002 (2011)

Thermal compensation

CHRAC: possible in-situ thermal correction of mirror defects to recover a high beam quality (> 99.9%) [8]

Adaptive algorithm for estimating the map directly from the reflected intensity pattern [9]

[8] R. A. Day et al., Physical Review D 87, 082003 (2013)

[9] G. Vajente, R. A. Day, Physical Review D 87, 122005 (2013)

Questions

Is a LG fabry-Perot Michelson interferometer feasible?

♦ Is the degeneracy an unsolvable problem?

Outline

Non-Gaussian interferometer at the APC

♦ Reduction of the degeneracy

Aim of Non-Gaussian ITF

Realize a table-top interferometer using a non-Gaussian (LG₃₃) mode

♦ LG system feasibility

- Matching and pre-alignment procedures using Gaussian beam
- Control systems (longitudinal and angular)
- Identification of the main limits and constraints
- Comparison between measures and simulations
- ♦ Test other modes (LG and non-LG)
- A Mirror thermal compensation

- ♦ Generation:
 - Phase plate
 - Linear mode cleaner
- Mode matching telescope
- ♦ Fabry-Perot arm cavities (F=200)
- ♦ Gaussian beam used for alignment and matching

♦ Generation [1]:

- > Phase plate
- Linear mode cleaner
- Mode matching telescope
- Fabry-Perot arm cavities (F=200)
- ♦ 30-cm long planoconcave cavities
- ♦ Gaussian beam used for alignment and matching

♦ Generation:

- > Phase plate
- Linear mode cleaner

Mode matching telescope

Fabry-Perot arm cavities (F=200)

- ♦ 30-cm long planoconcave cavities
- ♦ Gaussian beam used for alignment and matching

 \diamond Generation:

- Phase plate
- Linear mode cleaner
- Mode matching telescope
- Fabry-Perot arm cavities (F=200)
- ♦ 30-cm long planoconcave cavities
- ♦ Gaussian beam used for alignment and matching

Experimental setup

Experimental setup

Input beam

 Gaussian and LG₃₃ beams superposed before the mode cleaner input mirror

> Alignment of the Gaussian beam in the MC cavity

- Switching on the LG₃₃ beam (only optimization required)
- LG₃₃ purity (evaluated in terms od overlap integrals O.I.) maintained from mode cleaner to arm cavities input

Cavities characterization

Gaussian	Tilt	Mismatching	
	0.8% - 3%	0.2%	
LG ₃₃	Tilt	LG ₄₃	LG ₂₃
Cavity 1	3.6% - 2.4%	3.1%	5%
Cavity 2	5.5% - 4.3%	2.4%	4.2%

♦ Cavity characterization

- Mismatching greater by a factor ~40 (confirmed by theory and simulations)
- Tilts recovered by a fine tuning of the cavity mirrors (possible only by piezo actuators)

♦ Mismatching analytical estimation

- > 4.5% waist size error (only waist size error)
- > 2.2 cm waist position error (only position error)

Interferometer control system

- Digital control system (AdVirgo-like)
- Arm cavities: standard control system (PDH)
- ITF: Schnupp asymmetry between arms not possible (huge impact on matching), Michelson error signal extracted through dithering
- Very fast lock and relock thanks to an automated system (software script)
- Stable locking of both arm cavities and Interferometer
- Power fluctuation given by acoustic noise (acoustic insulation received and installed in the next weeks)

Image analysis

Transmitted beams

 ♦ Estimation starting from shapes and the relative overlap integrals

	Astigmatism
ity 1	0.27%
ity 2	0.16%

Reflected beams

Dark fringe

Dark fringe

Near-future steps

♦ Improve the quality of the dark fringe

- Fine tuning of both input and end cavity mirrors by piezo actuators (planned in the next week)
- > Automatic alignment procedure using a quadrant photodiode at the dark fringe port (planned in the next week, Virgo quadrant)
- ♦ Measure of cavity mirrors maps
- Installation of acoustic insulation for acoustic noise reduction

Outline

♦ State of the art

♦ Non-Gaussian interferometer at the APC

Reduction of the degeneracy

Thermal compensation & LG₃₃

Installation of the CHRAC-like thermal compensation system

- Setup modified to accomodate the CHRAC
- > BK7 cavity mirrors (higher thermal coefficient)

♦ Correction of only one cavity

- Simple cavity (transmitted and
 reflected beams)

Thermal compensation & LG₃₃

 \diamond Installation of the CHRAC-like thermal compensation system

Setup modified to accomodate the CHRAC

> BK7 cavity mirrors (high

Other paths to reduce the degeneracy

AIM

Improving the contrast defect maintaining the same thermal noise reduction of LG₃₃

♦ 10 OSCAR simulations
 ♦ Advanced Virgo configuration
 ♦ Realistic mirror maps (generated by ITM04 PSD [5,10])

[5] T. Hong et al., Physical Review D 84, 102001 (2011)[10] H. Yamamoto, LIGO-T1100353-v1 (2011)

RMS roughness = 0.3

LG₀₉ + corrective coating

[5] T. Hong et al., Physical Review D 84, 31 102001 (2011)

But...

In order to recover a feasible contrast defect a total gain of at least 2 order of magnitude is needed

Other solutions

For obtaining an additional reduction other possible solutions have been considered

Configuration	Contrast defect	
LG ₃₃ , F=450	5.8*10 -2	Change of modal shape
Sin LG ₀₉ , F=450	3.4*10-2	Corrective coating
Sin LG ₀₉ , hole, F=450	7.7*10 ⁻³	Concettive coating
Sin LG ₀₉ , hole, F=225	1.9*10 ⁻³	Finesse reduction
Sin LG ₀₉ , hole, F=225, RMS=0.1 nm	3*10-4	RMS reduction

Conclusions

♦ State of the art

- ♦ LG₃₃ Table-top experiment at the APC
 - Careful beam reduction to avoid clipping
 - LG₃₃ modal purity ~99% at the input of both cavities
 - > Good matching of both arm cavities (mismatching ~8%)
 - Stable locking of arm cavities and ITF with standard PDH error signals and dithering
 - Best visibility 74%, limited by astigmatism and residual tilts
 - General agreement between measures and simulations

♦ Reduction of the degeneracy

- CHRAC-like thermal compensation system installation in LG₃₃ experiment at APC
- > Other paths for Advanced Virgo configuration under exploration

Next steps

♦ Setup improvements:

- > Automatic alignment
- > Acoustic noise reduction

♦ Experimental application of the thermal compensation technique on LG₃₃ table-top experiment at APC

♦ Under consideration

- Study (by simulation and experiments) of other modes
- Power recycling

Thank you!

